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Abstract. In the paper we consider selected formal models, coming from the field of “pure” 

mathematics, as well as from some related areas, in which the notion “efficiency” appears. 

The presented essay may be seen as a continuation, development and (at the same time) 

specification of same ideas discussed in the previous article of the author: On many-

sideness, relativity and complexity of the “efficiency” (as a category) (in Polish: 

O wielostronności, relatywizmie i złożoności kategorii efektywności). In addition to the 

proposals formulated in the above cited paper (concerning the classification and explana-

tion of various “kinds” of efficiency) we introduce some new ways of meaning of this term, 

which we suggest to call: (a) basis-type efficiency, (b) sup (inf)-type efficiency, we also 

define and shortly discuss the following three types of efficiency, related to partial 

(pre)orders and formal logics, (c) informative capacity (reflecting the “richness” of an 

information contained in formulas defining given order), (d) linear similarity – efficiency 

(expressing a “distance of the (pre)order from the linear part” of the order in mind), 

(e) logical efficiency. In the final part we put together (and compare) “official” terms 

denoting “efficiency” and related notions presently functioning in economics, management 

and praxeology. The further forms of the meaning of notion “efficiency” are discussed in 

the “twin” paper submitted for publication in the present issue of Mathematical Economics. 
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1. Introduction 

“Many a name efficiency has” – this paraphrase (of the Polish version) 

of the title of a renowned biographical book on the famous composer 

Felix B. Mendelsohn (La Mure, 1955) may be quickly decoded by all peo-
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ple of economic profession (and not only by them). This subject was rela-

tively extensively analysed (from the semantical and praxeological points of 

view) by the present author in the earlier article On many-sidedness, relativ-

ity and complexity of the “efficiency” (as a Category) (Rybicki, 2005b). In 

the cited article various ways of the interpretation of this notion were pro-

posed. The above mentioned “many-sidedness” and relativity (depending on 

the aspects and contexts they were used in) are observed and stressed. It is 

worth noting that this term functions – without any misunderstandings – in 

today’s popular speech. So, the significant part of considered models is 

based on the field of economics and technical sciences, the other part – in 

optimization and theory of games and the remaining one – in econometric 

models and stochastic models of financial and insurance dynamics 

The introduced notions are (sometimes “automatically”) illustrated by 

properly chosen examples: some formal objects which appear in a linear 

algebra functional analysis, elementary topology, stochastic finance, predic-

tion theory (Wold decomposition), stochastic orders and decision under risk 

as well as elements of welfare economics (Laplace order, Lorenz order). 

Some of them play “multiple roles”, they provide valuable information 

concerning additional features of described items (attitudes toward wealth 

and risk of agents characterized by this function; i.e. Laplace order reflects 

so called mixed risk aversion of subjects, Lorenz order ranks inequality of 

incomes within societies). The majority of the presented examples are al-

most trivial from the mathematical point of view. All of them belong to 

classics of related fields but some notions require a bit more advanced 

mathematical apparatus and the knowledge of problems appearing in con-

temporary stochastic economics (i.e. ess sup f(x), Wold decom-position, 

stochastic dominances, Hilbert space, martingale). The two last mentioned 

“kinds of efficiency” were treated in a slightly informal way. We only signal 

some loose ideas and thoughts. 

Here we recall some metaphorical examples which may reflect the sig-

nificant features of the discussed objects. Consider the case of the sport, 

bridge. The criterion of the assessment of the pairs (of players) is the skilful 

bidding and acquiring targeted result adequate to the distribution of their 

cards. This is in accordance with the common feeling of the term of effi-

ciency. Effectiveness and skills of the team lie in its competence to deal 

with the optimization of complex problems. In general: the relations be-

tween the potential of the system (materialized in the physical and financial 

assets, human intelligence, as well as the quantity and quality of informa-
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tion) and the ways and degree of its usage, stand for the core of the formal 

and intuitive description of a praxeological category “efficiency”. 

The presentation of the article is intended to have the form of an essay. 

So, the considerations will be carried out in the “mixed” convention: frag-

ments of a descriptive nature will be interwoven with formal, mathematical 

notations and formulas. 

Before passing to the main themes of the article, we count the crucial 

elements of classification proposed in the cited paper. We there defined (and 

characterized, by examples) several approaches to the notion of efficiency, 

which we called (respectively): biologically-physical meaning of efficiency, 

mathematically economic interpretation of this notion and its cooperatively-

constructive explanation. The present essay may be seen as a continuation, 

development and – at the same time – specification of some ideas discussed 

in the previous paper. 

However, the primary aim of the article is the introduction of some new 

formal methods for “grasping the essence” of the contents of the notion 

“efficiency”. We propose to call them in the following manner: 

(a) basis-type efficiency, 

(b) sup (inf)-type efficiency, 

(c) linear-order efficiency, 

(d) informative-order efficiency, 

(e) logical efficiency. 

The first type of efficiency may be interpreted as a generalization of the 

sup-type efficiency, but actually it constitutes the special case of this 

mathematical being. 

The introduced proposals are accompanied by explanation, intuitive in-

terpretations and examples. Roughly speaking: part of them refers to deter-

mining “small” sets sufficient for complete generating some “large” sets, 

part of them relates to determining “most economic” points limiting some 

sets, the others reflect some optimal properties concerning “capacity” of 

studied objects. Some of the proposed notions function in “pure” mathemat-

ics, some others appear in mathematical economics (in a wide sense, includ-

ing so called stochastic economics). Some quoted examples are of quite an 

elementary level, others come from more sophisticated contexts. 

The proposals formulated in points (c) and (e) were conducted in a less 

rigorous (more fictional) convention. At the end of the article the official 

terminology for the notions “efficiency”, “effectiveness” and “economy” (of 

acting, functioning, etc.) is given. 
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2. The basis-type efficiency 

In our opinion the proper way of approach to the formalization of the 

notion of efficiency would be: joining its mathematically-economic with 

cooperatively-constructive approaches (see (Rybicki, 2005b)). At the first 

approximation one may suggest to regard as “efficient” some points or 

subsets (of reasonably adjusted abstract spaces). The word “reasonably” 

should be understood as 

(a) fulfilling appropriate postulates, and, at the same time, 

(b) the “minimal” (in the well defined, mathematical sense) object for 

which these properties hold. 

The above description expresses (in a little abstract formulation) the 

praxeological principle of attaining desirable aims with the use of minimal 

means. The classic phrase (somewhat incorrect from the formal point of 

view) states: “the maximal output at the cost of the minimal input”. Passing 

to the standard mathematical terminology, we are going to distinguish two 

different formal beings which we call basis-type and sup-type efficiency, 

respectively. At the beginning we will discuss the first of the above ap-

proaches. 

We can find elementary examples of the basis-type efficiency in the 

domain of linear algebra. However, one can easily notice its benchmarking 

character. In this case there are the bases (sensu stricto) which are efficient 

objects. Let us remember that by the basis in the usual sense we mean a 

maximal system of linearly independent vectors which can be found in a 

given linear space. At the same time this is a minimal such set spanning the 

whole space (in the classical case, finite-dimensional Euclidean spaces, the 

bases consist of finite number of elements – ex definitione). In standard 

notation we have 

 E = lin B, (1) 

where: 

E – linear space in mind, 

B = {b1, ..., bn} – the set of linearly independent vectors in E. The sym-

bol lin B denotes (as usually) the linear hull of B. 

In the close “neighbourhood” of the above discussed bases one can find 

so called fundamental solutions systems of the system of linear equations 

(this is, of course, the special case of finite bases for model). 
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An analogous role play complete systems in linear normed spaces and 

linearly-dense subsets of topological linear spaces. Their fundamental prop-

erty may be briefly indicated by the following equation 

 linE B  (2) 

(the bar over the right-hand term denotes topological closure). 

The next class of examples (also-classical ones) are provided by bases 

in general topological spaces (as well as the bases of neighbourhoods). Let 

us remember that by the basis in the topological space  ,T   we mean any 

minimal (in the sense of inclusion) family of open sets such that each open 

set in  T G   is a sum of sets belonging to this family. 

An important, particular case make up countable bases in separable 

topological spaces – or spaces fulfilling the second countability axiom (each 

open set in such a space can be built as a sum derived from the countable 

family of open sets). In the case of metric spaces, the equivalent condition 

for separability is an existence of countable set of points (say D ) which is 

dense in the space S  

  , , ,iD S D d i N S D     (3) 

(then D  itself may by meant as a basis-type efficient set).  

A particularly important role is played here by so called “canonical” 

spaces (originated from functional spaces): separable Hilbert spaces and 

separable Banach spaces (including so called Polish spaces – metric, com-

plete, separable spaces). 

It seems to be an appropriate time to mention an important application 

of the basis-sense efficiency in contemporary stochastic finance. If every 

marketed financial asset is obtainable (or-replicable) as some combination 

of certain fundamental “primary” instruments (i.e. shares, bonds or suitable 

derivatives), then the market is called complete. So the minimal subset of 

such instruments, sufficient and necessary for replication of any evaluated 

asset, may be treated as a base (for the considered market). Thus, conse-

quently, the above set may be regarded as efficient. 

Some remarks should be made on the occasion. The questions concern-

ing the efficiency of the financial markets (in dynamic, stochastic setting) à 

la E. Fama (1970); (Lipman, McCall, 1981) or efficient market hypothesis 

(EMH) as well as rational expectation hypothesis (REH) of J. Muth, 

R. Lucas and others (Muth, 1961; Lucas, 1972) was mentioned by the au-

thor in the article initiating the current series of papers; see also (Rybicki, 
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1998, 2008). We stressed there the strict connection of the martingale struc-

ture of the stochastic dynamics of finance phenomena with EMH (it is a 

commonly known fact). The general problem of market efficiency meant its 

ability to achieving the equilibrium when properly determined prices and 

quantities of commodities, will not be discussed here (in spite of its funda-

mental role in micro-, meso- and macroeconomics). These are the questions 

of a strictly economic character with some politics behind them: the “power 

of invisible hand”, the role of a state as a specific agent, superior to the other 

participants of market, admissibility of the existence of a central planner. 

These themes go beyond the scope of our consideration, as we focus on 

searching for the common formal “denominators” to various types of effi-

ciency. Anyway we may notice that in idealistic, competitive market as-

sumptions, Pareto-type conclusions prevail. 

We can meet an important example of basis-type efficiency while dis-

cussing the famous Wold decomposition of a stationary process (or – in a 

slightly general setting – the separable Hilbert space; see, i.e. (Urbanik, 

1967; Mlak, 1970). Recall that the above decomposition plays a crucial role 

(as an important building block) in the prediction theory of stationary (wide 

sense) random sequences. The essence of this theoretical construction is 

contained in the observation that any such process admits representation as 

a sum of some “uninteresting” random sequence (anyway – significant for 

the description of the process), and the second sequence – “strictly random” 

one. In the case when we enumerate random variables, starting from the 

moment “zero” (or another finite point of time) this first part of the above 

decomposition becomes “trivial”, being in fact generated by the finite col-

lection of random variables (the so called determined part of the process). 

The remaining part of the process is called completely indetermined and it has 

been proved that it has a form of a sequence of cumulative sums built of 

white noise (discrete time) process (in general it is not a Gaussian process). 

This results in a specific form of mean-square optimal predictors of future 

variables: given “short” segment plus respective “moving average”. 

Following Urbanik (1967) we will present the above ideas in a more 

formalized way. Let  ,nX n Z  ( Z  – integers) be a stationary sequence of 

random variables defined on a probability space  , , P B , and let 
kX X  

be the subspace of space ,X  spanned by  ,nX n k . 
kX may be interpreted 

as the “linear past” of the sequence  ,nX n Z  up to the time K  (recall that  

X itself is also a linear subspace of Hilbert space  2 , ,L P B  generated by 

all random variables of considered process). 
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Denoting *

k( ) Proj ( )n nX k X  (orthogonal projection of function 
nX  on 

subspace 
kX ) we say that *( )nX k  is the predictor of 

nX  at time k  (based on 

the history of process up to time k ). In the cited paper the following defini-

tion was formulated. 

Definition (Urbanik, 1967, p. 18) 

(a) The sequence  ,nX n Z  is called determined if *

1 1(0)X X , 

(b) The sequence   ,nX n Z  is said to be completely indetermined if 

 *

1lim ( ) 0
k

X k


 . (4) 

We need to recall two important properties of introduced processes, be-

fore presenting the theorem of Wold (according to the version given in 

(Urbanik, 1967) 

(a) A stationary sequence  ,nX n Z  is determined if  Xr = X ( )r Z , 

(b) A (nontrivial) stationary sequence  ,nX n Z  is completely inde-

termined if there exists a representation 

 
0

, ( )n k k n

k

X a V n Z



  , (5) 

where  ,kV k Z  is an orthonormal sequence in X. 

Theorem (Wold Decomposition). Every stationary sequence 

 ,nX n Z  is a sum of two stationary sequences  ' ,nX n Z  and  '' ,nX n Z  

 ' '' ,n n nX X X n Z    such that the following statements are true: 

(i) for the spaces 'X and ''X  spanned by  ' ,nX n Z  and  '' ,nX n Z  

respectively, we have 

 ' '' X X X , (6) 

where the symbol   denotes, as usual, the orthogonal sum, 

(ii)  ' ,nX n Z  is determined, 

(iii)  '' ,nX n Z  is completely indetermined. 
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Remarks. 

(i) If we drop the “determined” part, the role of basis (which enables 

efficient description of process) is taken over by an orthonormal sequence 

 ,kV k Z . 

(ii) One may easily observe the analogy with stationary autoregressive 

sequences admitting (infinite) moving average representation; see, i.e. (Box, 

Jenkins, 1970). In the latter case “all machinery governing” the random 

movement is “hidden” in generalized linear combinations of uncorrelated, 

identically distributed variables. After adding some restrictive conditions on 

spectral density we obtain “reasonable” expression of the present variable 

depending only on the “past” of the “efficient basis”  ,nV n Z . 

The subsequent example of a basis-type efficiency is provided by the 

family of intervals (open rays) on the reals. Immediately from the definition 

it follows that the family of sets 

   , ;I c c R    (7) 

makes the “efficient basis” for the family B of Borel sets in the space of real 

numbers R  (let us note that B is defined as the smallest σ-algebra – in the 

sense of inclusion – of subsets of R , containing all open sets in R ). This 

construction (and reasoning) automatically generalizes to higher dimensions 

with the obvious modification – substituting intervals by unbounded open 

rectangles 

         1 2 1 2, , ... , ; , , ..., .n n

n nI c c c c c c R         (8) 

The last (but not least) mathematical example of basis-type efficiency 

comes from algebra. However, we will also demonstrate its importance at 

the field of comparisons of inequality in allocation of bundles of commodi-

ties, as well as the comparison of the riskiness of distributions (and attitudes 

for risky projects). 

Consider the class of so called (square) permutation matrices. Such ma-

trices consist of zeros and ones, fulfilling the condition: in each row and in 

each column only (and exactly) one element “1” appears. Note, by the way, 

that from the above assumption follows the summing of elements belonging 

to each row (as well as to each column) to unity. So the considered matrices 

make the subset of so called doubly stochastic (bi-stochastic) matrices. The 

latter is a significantly larger class than the former one. The famous theorem 

of Birkhoff (Marshall, Olkin, 1979; Arnold, 1986; Kolm, 1976; Nermuth, 
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1993) claims that the class of all doubly stochastic matrices can be in fact 

obtained as a convex hull of a class of permutation matrices. Let us write 

them in symbols. The set of all permutation matrices ( )n n  will be denoted 

by 
nP . So 

     
1 1

; , 1, 2, ..., 0,1 , 1.
n n

n n ij ij ij ij

j i

P p i j n p p p
 

      P  (9) 

To illustrate a “mechanics of operating” 
nP consider the linear operator 

3 3

3 :p R R , the matrix of which 
3P  has the form 

 3

0 1 0

1 0 0

0 0 1

P

 
 

  
 
 

 (10) 

Then  

 3 3( , , )

a b

p a b c P b c

c a

   
   

     
   
   

. 

The thesis of the Birkhoff theorem may be written shortly in a form of 

equality 

  nn nconvP P , (11) 

where Pnn means here the (convex) set of all doubly stochastic matrices 
n n  

 

  

1 1

; , 1, 2, ...,

0; , 1, ..., ; 1

nn n ij

n n

ij ij ij

i j

P p i j n

p i j n p p
 

  

    

P

 (12) 

and symbol  nconv P  denotes, as usual, a convex hull of a set 
nP . 

Concluding, we can observe that the relatively „thin” set of permutation 

matrices spans quite “large” set of doubly stochastic matrices – so the for-

mer may be regarded as a basis-type efficient generator of the latter. 

Let us pass to presenting an important application of this theoretical 

fact. We will refer to a fragment of the article (Nermuth, 1993, p. 272). To 

this aim, consider two finite sets of objects (points) in a linear space X : 
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 1, ..., nx x x ,  1, ..., ny y y ,  ,x y X  and two probability vectors 

 1, ..., n   ,  
1( , ..., n   ) such that   probi ix  ,   probi iy  ; 

1, ..., .i n  So ( , )x  and ( , )y  denote the two probability distributions 

(supported by x  and y , respectively). A distribution ( , )x  is called less 

dispersed than distribution ( , )y , when the following condition holds 

    
1 1

n n

i i j j

i j

f x f y 
 

     for all convex functions   :f X R . (13) 

Take X  to be kR  interpreting it as a set of possible quantities of com-

modity bundles of dimension k , and let  1, ...,i i ikx x x X   denote the 

commodity bundle allocated to person i, in a population with n  members. In 

this case 
1

i i
n

    for all i  and 
ihx  is the amount of commodity h  allo-

cated to a person i , x  itself is an n k -matrix of allocation. Putting u f   

we realize that u  is a concave function. So we may adapt the previous 

definition. 

An allocation x  is more equal than an allocation y  if the following 

condition holds 

    
1

n n

i i

i n j

u x u y
 

      for all concave functions kR R . (14) 

The following crucial theorem, coming from the (Blackwell (1951)), 

and the appearing in the stochastic dominance as well inequality compari-

sons context, i.e. (Mosler, Scarsini, 1991; Kolm, 1976) gives the very im-

portant equivalent condition 

Theorem. An allocation x is more equal than an allocation y  if 

 
nnx P y  (15) 

for some doubly stochastic matrix 
nnP . 

So, the definition contained in inequality (14) named more equal such 

allocations, which were preferred according to the utilitarian principle for 

(identical) utility functions with diminishing marginal utility (or – preferred 

by all risk averters as distributions of risky projects). Meanwhile the condi-

tion (15) says that the commodity bundle 
ix  of person i  is a weighted mean 
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of the bundles 
1, ..., ny y , with weights 

1, ...,i inp p . In the light of the cited 

theorem of Birkhoff we realize that the more equal allocation of x may be 

obtained from the original allocation y  by a process of permuting and then 

mixing the original commodity bundles. 

It may be seen that in each case mentioned above, the “efficient object” 

is a set. Generally speaking, such sets play the role of the minimal systems 

of generators. On the one hand, the set is sufficiently large to determine the 

“genuinely bigger” object. However, “depriving” it even of one element 

results in the vanishing of this property. It would be instructive to pay atten-

tion to some similarity of the discussed ideas with the introduced earlier 

(Rybicki, 2005b) cooperatively-constructive meaning of efficiency. “The 

case of table” can elicit its essence: three table legs constitute “a basis” for 

stabilizing it in a given place (on the plane). Two of them (any two) are not 

sufficient to this aim. Adding the fourth one creates three potential possibili-

ties: if this additional table leg is properly adjusted, then it does not disturb 

the equilibrium, but it is not needed; similar effects may be observed if it is 

too short (in this case its “dummy” leverage); if it is too long, then it proves 

to be totally pointless and impossible to install. 

3. Sup(inf)-type efficiency 

Let us pass to sup-type efficiency. The classical “point-wise” efficient 

objects is “ordinary” supremum of the subset of partially ordered space (as a 

benchmark may serve the “most classical” sup A , where A  is a subset of 

reals: A R ) and, also, related notion: sup ( )ess f x , where ( )f x  is a real 

function (both of them will be explained in the subsequent part of the arti-

cle). If such an element belongs to the considered set, we may call it effi-

cient in the proper sense. In the opposite case it can be named efficient in 

appearance. In this point we concentrate on the case of a sup-type efficiency 

(the inf-type efficiency could be elaborated in a perfectly analogous man-

ner). 

Without the loss of generality we may illustrate this notion in terms of 

subsets of reals. Let us begin by introducing the necessary assumptions and 

notation: A R , A  – bounded above. This means that the set of all points 

of R  which are greater or equal to all elements of A  – Upper Bound of A  

( ( )UB A ) is not empty. 
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Fig. 1 

The number s has two properties 

(α)  ( )x A s x s UB A    , 

(β) 0 a A a s       . 

Equivalently: (β') s  is the least element of ( )UB A  or if any point (say: 

b ) of the real line fulfils the condition (α), then s b . In the latter formula-

tion the definition may be immediately generalized to any ordered space 

 ,X  – it suffices to substitute the word “number” by the word “element” 

and “ordinary” weak inequality in a set of real numbers by the universally 

applied symbol . The idea is old and simple: s  should bound A  from 

above but any decreasing of it is impossible: the “new candidate” loses this 

essential property. So it is the least element bounding A  from above. If we 

give up the assumption of boundedness of a set A , it is a natural way to 

“enreach” reals of element ( )  , which leads to the so called extended 

real line. Then the role of “an efficient boundary” (for a set, which is not 

bounded above) plays an element  . 

The related (however, slightly more subtle) notion is the so called es-

sential supremum (essential infimum) of a measurable real function, defined 

on some set: supess ( )
x A

f x


( inf ess ( )
x A

f x


, (Sikorski, 1968, p. 13). Let 

 , ,X B  be the measure space. For any given B-measurable real function 

:f X R  and the set AB ( ( ) 0A  ) we define supess ( )
x A

f x


 as the in-

fimum of the set *A where 

   * : : ( ) ( ) 0 .A a R x x A f x a          (16) 

Equivalently we can say that supess ( )
x A

f x


 is equal to inf sup ( )
g F x A

g x
 

 
 
 

, 

where F denotes the set of all functions μ-equivalent to f . It seems that this 

s – ε b  UB(A) 

a  A 

sup A 

R s 
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mathematical object perfectly reflects the essence of the notion of sup-

efficiency (as a point-wise efficiency). 

Consider the subsequent pair of (twin) mathematical examples which 

may prove to reveal in quite simple and elegant form of point-wise bounda-

ries (despite the fact that one has to accept their somewhat abstract perspec-

tive). The topological closure A  of the set A  in topological space ( , )X  , is 

defined as the least – in a sense of ordering by inclusion – closed set in this 

space, such that A  is his subset (in short – the least closed superset of A ). 

So A  may be treated as a “point” (in the power set 2x ), which is inf-type 

effective for the family ,X AF  closed supersets of A in ( , )X  . We can write 

  ,inf : X AA F F F  (17) 

Analogically, the interior of  ÅA  is a sup-type efficient element for 

the family ,X AG  – open subsets of A  and we can write – in short  

 ,Å sup X A G  (18) 

In the next article we will discuss the subsequent approach to efficient 

bounding of the sets – but, unlike sup-efficiency, the introduced objects will 

be of a set-wise character. Anticipating this theme at the moment we will 

show the last example “in spirit” of sup-efficiency – but their “points” are of 

a complicated, “set-wise” nature. 

The last several remarks of the current point will concern the problems 

appearing in the theory of stochastic ordering. In economics more popular is 

the other term: stochastic dominance. Although fields corresponding to both 

of the formulations almost coincide in economics’ contexts, the range of the 

notion “stochastic (pre)orders” obeys in fact a slightly different (somewhat 

wider) family of relations (Mosler, Scarsini, 1991, 1991a; Szekli, 1995; 

Shaked, Shanthikumar, 1993). 

Consider the measure space (m.s.)  , S  and let P denote the set of all 

probability measures on  , S . The preorders on P may be introduced in 

various ways. One of the possible definitions is to refer it to some family 

(say A) of sets. This leads to the so called set dominance (defined) on P 

(Mosler, Scarsini, 1991). Formally: let A be the family of measurable sub-

sets in m.s.  , S  or A. 
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The space P can be endowed with a partial preorder 
A
 in the following 

manner 

(i) ( ) ( )
DEF

AP Q P A Q A   for all AA ,  

or 

(ii) ( ) ( ) ( ) ( )
DEF

A AAP Q I x P dx I x Q dx      for all AA , 

where the symbol 
AI  acts as an indicator function of the set A . The stan-

dard procedure (considering, step by step, simple measurable, positive 

functions, and next, passing monotonically increasing – to limit) leads, in 

the light of the Lebesgue monotone convergence theorem, to preserving 

generalized inequality (ii) “limit” relation  

 , ( ) ( ) ( ) ( )P Q f x P dx f x Q dx  F A  (19) 

for all functions of the closed, convex cone, generated by indicators of 

sets AA . 

One may converse the procedure: starting from a family F (of real func-

tions on  ) to seek for family of sets generating F. On the other hand, the 

“set stage” may be omitted (in a sense – ignored) and one can start defining 

the order from the family of integral kernels (F ). In this case we deal with 

the so called integral stochastic orders. It is possible to found a unified 

theory for such orders (Müller, 1998). It is worth noting that the “economic” 

aspects of such orderings (reflecting the postures of decision makers to-

wards variable wealth or losses, including various kinds of attitudes to risk). 

They are done in “expected utility wine” and belong in fact to the class of 

stochastic dominances derived from the above integral conditions. The same 

is true for stochastic orders exploited in insurance mathematics, queuing and 

reliability theories, and some stochastic finance (Rolski, 1976; Stoyan, 

1983; Alzaid, Kim, Proshan, 1991). 

When we deal with real-valued variables and probability distributions 

on the real line, then the commonly used preorder in (such) P is an univari-

ate stochastic order called: first order stochastic dominance, usual stochastic 

order or strong stochastic order (Mosler, Scarsini, 1991; Shaked, Shanthi-

kumar, 1993; Szekli, 1995). The generating family of sets (A) is then the set 

of all half-lines (rays) of the form ( , )x  , x R , and the corresponding set-

dominance condition leads to comparisons of survival functions 
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  ( ) , 1 ( )F x P x F x    , where F  denotes the distribution function of 

measure P . In this case we may denote 

 1 ( ) ( ) .P QP Q F x F x x R     (20) 

The generalisation of this approach goes to considering the so called 

upper sets in partially ordered Polish spaces which are defined in analogous 

manner as “usual real half-lines” (of course, on a higher level of generality 

(Mosler, Scarsini, 1991; O’Brian, 1987). 

There appear two dual questions when considering integral orders: 

a) what is a minimal set of functions (Fm) generating (as integral ker-

nels) the order. Strictly related to this question is a problem of characteriz-

ing the smallest family of sets (A), which indicators can be “extended” to 

“whole” or “essentially true” family of kernels defining the order; 

b) what is the maximal set of functions (FM), for a given (integral) sto-

chastic order , compatible with this order in a sense of the relation (19):  

 ( ) ( ) ( ) ( ) .MP Q f x P dx f x Q dx f     F  (19a) 

In other words, we are asking for the above mentioned “essentially 

true” (“necessary” and sufficient) family of integrands (integral kernels). 

In the case (a) we are seeking for a “bases” for given stochastic orders. 

It is known that such basis for a usual stochastic order make indicators of 

upper rays (on line as well as in more general situations (Mosler, Scarsini, 

1991). So such systems of the functions may be well regarded as basis-type 

efficient (for the stochastic order in mind). In the opposite extreme attempts 

are made for the identification of a maximal set of integral kernels, which, 

applied to an integral-wise definition of pre(order), provide the order which 

coincides with a given order. These collections play a role of sup-type effi-

cient “objects” – in the sets consisting of generators of the order. Note that 

“points” of these, bounded above by the efficient element FM, have 

a somewhat strange and abstract nature: they are themselves families of sets 

of functions! 

At the end we will present examples of maximal sets (or sup-type effi-

cient elements) of functions compatible with some partial ordering for prob-

ability distribution (or, equivalently, for distribution functions if we restrict 

analyses to the univariate orders). The strong stochastic order is determined 

by strictly increasing integral kernels. This condition may be quite well 

accepted as a definition of usual order. In economics we say about cardinal 
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utilities which reflect the rationale of preferring more rather than less – this 

is the idea of classical stochastic dominance. The so called second domi-

nance corresponds to preferences of agents who prefer more than less and 

are risk averters or prefer the sure payoffs to lotteries with expectations 

equal to those payoffs. It comes down to postulating increasing and concave 

cardinal utilities – integral kernels “responsible” for obtaining such an ef-

fect. If we restrict the set of kernels to (sufficiently) smooth functions, the 

above postulates may be formalized as '( ) 0f x  , ''( ) 0f x  ; x R  (charac-

terizing the subsequent example of sup-type efficiency).  

Especially important is the so called Laplace-transform order, having 

many applications (we will come back to them later) and quite nice formal 

properties (bringing, in turn, very interesting interpretations – which also 

will be mentioned in a further part of the paper). Remember that 

 ( ) ( ) 0
DEF

st st

L

o o

P Q e P dt e Q dt s

 

      . (21) 

The properties of this order were studied by many authors, to mention 

only (Rolski, 1976; Stoyan, 1983; Reuter, Riedrich, 1981; Alzaid, Kim, 

Proschan, 1991). It turned out that the maximal set FM  for this order makes 

the set of all completely monotone functions defined on the positive half-

line of reals (this topic was obtained by Reuter and Riedrich (1981)). We 

will remember here the definition of such a function and quote the part of 

the main theorem proved in the cited paper. 

Definiton. Let f  be a real valued function, defined on the interval 

 0, . The function f  is called completely monotone, if it is everywhere 

differentiable arbitrarily often ( (0, )f C  ) and the sequence of inequali-

ties 

 ( )( 1) ( ) 0; 0,1, ..., (0, )n nf t n t      (22) 

holds. 

Remarks. In other words: the signs of subsequent derivatives alternate. 

Immediately from the definition follow the properties (much weaker than 

the condition defining the notion in mind, but important for interpreting “the 

contents” of Laplace order): f  is non-negative, non-increasing and convex 

on (0, ) . 
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The cited authors took advantage of classical lemma of S. Bernstein 

(from 1923, see i.e. (Achiezer, 1965; Feller, 1969)) which gives the funda-

mental characterization of completely monotone functions as Laplace–

Stieltjes transforms of positive measures (on the interval 0;  ), and 

proved that the maximal set of functions, which generates the L-ordering 

(for distribution functions) coincides with the set of all real functions ( )f t  

defined on the interval (0, ) , for which the first derivative is completely 

monotonic. Therefore we can say that the above set of functions makes sup-

type efficient element for the set of families of functions compatible with   

L-ordering. (Remember, to supplementing of arguments that the famous 

Bernstein lemma establishes that two following conditions are equivalent: 

for a given function : (0, )f R   

(i) f  is completely monotone, 

(ii) there is exactly one non-negative measure P  on 0;  , such that 

 
0

( ) ( ), (0, )xtf t e P dx t



   ). (23) 

4. Efficiency of orders and preorders 

The subsequent formal models concern the efficiency of partial orders. 

There is a possibility of viewing the topic from two different perspectives. 

The first one qualifies as “better” (pre)orders, similar – in a sense – to linear 

orders. Our loose proposition is to quantify they “closeness to linearity” by 

means of properly defined measures. Formally, these measures might visu-

alise “masses” of relations in mind (as an area or volume of appropriate 

subset of Cartesian product X X  – with its whole mass normed to unity). 

The maximal attainable masses would correspond to the least linear 

(pre)order containing a given order. The “antecesor” of such a comparison 

methodology comes from finite sets of reals (of cardinality, say, n ). Then 

the “usual” inequality has (not normed) mass of 
( 1)

2

n n 
, whereas partial 

order M  has less cardinality, say m . So efficiency M  may be expressed by 

the ratio  

 
2

( 1)
M

m
e

n n



. (24) 
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In the “continuous version” of the above construction, we start from 

unit square 0;1 0;1  with (for instance) the Lebesgue measure (we may 

imagine simple area l  of figures at the plane, subset of X X ). In such 

a case the “natural” coefficient of efficiency of relaction M can be defined 

immediately as this area 

        1 2 3 1 2 3Me l M M M L M L M L M      . (25) 

 

 

 

 

 

 

 

 

 

Fig. 3 

It should be pointed out (once again) that both the above examples 

(special cases illustrating the general idea) play merely the role of proposals 

and suggest the direction of further investigation. These ideas demand pre-

cise definitions. 

The second criterion of (pre)order efficiency we propose is the property 

which we called “informational capacity” (of a given order). As 

a preliminary announcement, which may help in understanding the idea, we 

M1 

M2 

M3 

n

n













 


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give a hint: the “worst” – in a considered sense – order is an “ordinary” 

order on a real line, defining by “usual” (weak) inequality: 
det

( , )x y x y x y R   . This relation is really the poorest one, because it 

tells us nothing but the statement that number x  is no greater than number y . 

On the extreme polar there are such relations as preorders in functional 

spaces (general domains, (pre)ordered sets of values). We shall elaborate in 

some detail selected facts of stochastic dominances, Laplace order and in 

shortly, Lorenz order. They may be regarded as stochastic (pre)orders, 

however, other interpretations (of a formal as well as of a “practical” char-

acter) are also possible (it is, otherwise, a commonly known fact). 

Let us remain for a moment in Euclidean spaces. It is obvious that the 

higher the dimension (of compared objects), the more subtle (richer) infor-

mation can be brought and extracted (from data), which in turn, enables us 

to consider more comprehensive and deeper (pre)orders. The Pareto order 

informs us about mutual relations between elements of n  pairs (correspond-

ing) coordinates. Going a step ahead consider the other examples: 

(α) 
1

1 1

, ,
n n

n

i i

i i

x y x y x y R

 

    , 

(β) 2 2

2

1 1

, ,
n n

n

i i

i i

x y x y x y R

 

     

( nR  denotes, as usual, positive orthant in nR :   , 0; 1, ...,n

ix R x i n   ), 

(γ) 
ix y  (lexicographic order)   , n

xx y R . 

All the above orders are “less informative” than the Paretian order (ex-

amples (α), (β) provide linear preorders, (γ) – linear order). So we observe 

the “reverse” (with respect to the property of “being similar to linearity”) 

tendency. One may, carefully, conjecture that the linear-similarity and in-

formative-capacity types of efficiency play mutually opposite roles. But let 

us leave the question open at the moment and notice subsequent, obvious 

(anyway, important) observation. It also could be useful to realize the “eter-

nal” conflict between efficiency meant as coherency (compactness, econ-

omy) and as a capacity (the possibility of providing a significant amount of 

the information): any form of parametrization or aggregation of original, 

complete description of objects, results in allowing (improving, simplifying) 

comparison procedures, but at a cost of losing a part of characterization. So 
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seeking for the “golden mean” has been a permanent, “historical” task of the 

subject. 

Continuing the main discussed thread, let us pass to stochastic orders. 

First of all we can make the observation that they play a three-fold role 

(depending on point of view, purposes and interpretation). One of them we 

call: “static statements”. We can deal with them when comparing the “shape 

of populations” or other “static” distribution of some quantities, mass, in-

come or wealth. The second one appears when comparing “behaviour” of 

some random variable (especially: mean level of attaining values or their 

variability which is often identified with “riskiness”). The other is strictly 

connected with the previous, but is “dual for it”, in a sense: it concerns the 

attitude of the decision maker towards risky situations, described (say) by 

real random variables or their distributions. 

Let us begin the elaborating (of some feature) of stochastic orders, from 

(mentioned earlier) usual stochastic order (or – strong stochastic order, or – 

stochastic dominance of the first (stochastic) order). We may (in principle, 

equivalently) define it as a preorder in a space of random variables (“genu-

inely dynamic” setting) as well as – in a space of probability distributions 

(we restrict our consideration to the one-dimensional case). So, if P  and Q  

will from now denote, respectively, distributions of random variables X  or Y , 

then the notations 

 
1 1, , stX Y P Q P Q  (26)  

mean the same thing, namely  

    , ,P x Q x x R      (27) 

 ( ) ( ) ( ) ( ) :u x P dx u x Q dx x R R     (28) 

with u  increasing, and such that the both integrals in (28) exist. In other 

words Q  is preferred with respect to P  by all agents preferring more (of 

wealth) than less. 

It also known that by applying the so called technics of coupling (non-

trivial mathematically (Szekli (1995)) these “measure-integral “comparisons 

can be changed by more convincing condition of point-wise comparisons 

 1
ˆ ˆX Y X Y       almost sure, (29) 

for some “artificially” constructed, defined on a “new” probability space, 

random variables, with distributions identical with the original phenomena. 
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The above several remarks clearly reflect the considerable amount of infor-

mation contained in the discussed relation. By the way we may point out 

that if in condition (29) the family of functions u  (utilities) would be substi-

tuted by the exactly one such a function, the “efficiency” of (pre)order 

drastically diminishes. Although we “gain” a complete order (instead of a 

partial preorder) but the relation turns out very “thin” in a sense that it de-

scribes the preferences of only one subject. 

The next two orders, we comment, have even more interesting proper-

ties and interpretations – they are more informative-capacity efficient. Let 

us pass to variability orders and related notions. Remember that random 

variable X  is called less than variable Y  in a sense of convex order (we 

write 
cxX Y  or 

cxP Q ) if 

 ( ) ( ) ( ) ( ) :g x P dx g x Q dx g R R    ,    g  – convex, (30) 

such that integrals in (30) exist. 

The condition (30) means that the greater variability is preferred (be-

cause of the convexity of g , the “spread is highlighted and exponed” by the 

integral functional). The above condition is also equivalent (Goovaerts et 

al., 1990; Shaked, Shantihikumar, 1993; Rybicki, 2005a) to the so called 

stop-loss order, popular in actuarial context (after adding the condition that 

g has to increase), defined (for variables X and Y ), by relation 

 ( ) ( )E X a E Y a a R       (31) 

(less – in average – excesses over each arranged level of the retention are 

better for insurance companies). So we can also write 
varX Y  or 

s lY X
. 

Let us modify the point of view. The qualifying a random project Y  as a 

“better” than less variable X  reflects the subject’s attitude for risk: it char-

acterizes the so called risk seeking (or risk lovers) subjects who prefer risk-

ier projects. 

The contrasting philosophy presents the so called second (stochastic) 

dominance. The integral order which has been used in this case, requires 

(from integral kernel ( )g x , which will be denoted traditionally, by letter 

( )u x  – “utility”) to fulfil two conditions 

 ( ) ( ) ( ) ( )u x P dx u x Q dx   (30') 

for each function :u R R , increasing and concave in its domain ( ( )u x  is, 

as a rule, continuous; in application ( )u x  is twice differentiable and then 
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one may write '( ) 0u x  , ''( ) 0u x  ). So the second dominance reflects 

a behaviour of “classical rational economic agents”, preferring more (of wealth) 

than less and are risk averse – because the preorder (30') is in accordance with 

choices and rankings of member belonging to this group: concave utility 

“discriminates” the large deviations against central, “safe” values. 

The next (commonly known) property of the convex order itself appears 

when applying to comparing statistical “static” populations. Assume that 

distributions of (say) incomes in populations X and Y coincide with distribu-

tions of X  and Y . There are surprisingly close connections linking (on the 

level of “definitional mechanics”) this order with the famous Lorenz order. 

Remember that the Lorenz order makes the key tool for the most universal 

comparing the grade of inequality in a distribution of given “mass” among 

the elements of a set in mind  

 Lorenz cx

X Y
X Y

EX EX
  (32) 

(Shaked, Shanthikumar, 1993; Arnold, 1986; Rybicki, 2005a,
 
b). 

The condition (32) turns out to be equivalent to the point-wise compar-

ing of the respective Lorenz functions 

 ( ) ( ) 0,1X YLorenzX Y L u L u u    . 

So it leads to pass to (partial) preorder in a family of functions and (possi-

bly) uncountable number of comparisons! 

Concluding the last fragment of consideration we notice – at first glance 

– the large informative contents of the discussed order. The “informational 

richness” (and variety of interpretations) increases together with passing to 

higher orders of stochastic dominance and specifications of cardinal utilities 

“governing” these preferences. The popular DARA, CARA, HARA, 

INARA properties of attitudes of decision makers’ towards the risk appear 

and, corresponding to them, analytical postulates concerning utility func-

tions; see also standard risk aversion, s-convexity or sensivity to Dalton 

transfers (Kimbal, 1991, 1993; Le Breton, 1991; Denuit et al., 1999, 2001; 

Shorrock, Foster, 1987). We have to omit these very interesting subjects and 

will pass, immediately, to the “top step of the ladder”. Such a role plays the 

stochastic dominance of infinite order – in other words: stochastic domi-

nance for the class f  completely monotonic (c.m.) utility functions (con-

sidered, among others, by Whitmore (1991) and Brocket, Golden (1987)). 

This order may be regarded as “most efficient in a sense of informative 
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capacity” for many reasons. First of all, the cone of utility functions making 

its integral kernels consists of the class of c.m. functions (discussed by the 

author in an earlier part of the article). Alternating signs of subsequent 

derivatives indicate appearing all known “rational” properties of the deci-

sion-makers (acting according to this order). Finally, the celebrated Bern-

stein lemma (also cited in the article), guarantees that the first derivative of 

every u U  (from the above mentioned cone of infinitely many differenti-

able utility functions) is in fact the Laplace transform of some (Borel) 

measure B  on 0, )  

 
0

'( ) exp( ) ( ) (0, )u x ax B da y



      (33) 

It follows that the extreme points of U
 constitute themselves the fam-

ily of exponential utilities too. So we observe the very close similarity be-

tween the Laplace transform order and considered “universal” stochastic 

orders. But the most significant observation (following from the fact that 

representation (33) implies  

  
0

( ) 1 exp( ) / ( ) (0)u x ax a B da u



     (33') 

is the following corollary: the order defined by kernels given by the formula 

(33') represents the B-mixture of preferences characterized by constant 

absolute risk aversions (CARA) for all positive constants a  (see also, so 

called, mixed risk aversion (Caballé, Pomansky, 1996). In consequence: if 

the project X  is preferred to Y  in accordance to the Laplace order, then, at 

the same time, the reverse rankings hold for all risk averters with all positive 

constant absolute risk aversions. So the Laplace order as well as infinite 

rank stochastic order can be truly regarded as “strong efficient” in an infor-

mative-capacity sense. 

5. The final remarks and conclusions 

Let us begin this point from noticing “something else” on the matter of 

the essence of notion “efficiency” (it soon will turn out that the majority of 

observations and comments made in the article concern in equal measure the 

related terms: “effectiveness” or “economy”). We mean the kind of effi-

ciency announced in the Introduction to be a “logic-type efficiency”. It is, in 

a sense, a quite general approach to the discussed subject. So the next (the 
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last one in the article) example of efficiency can be found in rudiments of 

classical logic. At the same time this case is of great practical importance. 

Very often the theorems have a “standard” structure of implication: “if A  

then T ”. This formalisation can be accompanied by a restriction that it is 

not possible to weaken conditions brought by A , since then the thesis T of 

the theorem will fail. On the other hand, it is impossible to “achieve” any-

thing but the “original” thesis T  from “original assumptions” A . Thus we 

deal with some form of “logical efficiency”: both the so called minimal 

systems of assumptions and maximally strong conclusions genuinely reflect 

the idea of efficiency, again. The theorems of equivalence-type structures 

may be regarded as perfectly logically efficient. 

It seems to be a proper time to present (in a very short, synthetical 

form) the piece of official terminology accepted by managers and account-

ants community (Nita, 2010; Pszczołowski, 1978; CIMA Official Terminol-

ogy, 2005). The specialists of this field distinguish three related (but slightly 

different) notions: economy, efficiency and effectiveness. It is, however, 

worth noting that there is no unanimity in the meaning of these three (popu-

lar and even basic for the disciplines) terms. The generally recognized Polish 

specialist on praxeology and organization T. Pszczołowski (1978) proposed 

the following definitions: “Economy” (as a property of managed processes) 

means a relation between benefits (gains) and losses (costs) resulting in 

prevailing the former over the latter. In the opposite case, he says of “non-

economy” (of the unit’s or organisation’s activity). Subsequently “effi-

ciency” itself is characterized in the following way: act A  is more efficient 

than act B , if it – at certain costs (losses) – gives the more valuable (“bet-

ter”) than B , final product. The third term of the discussed “triad”, “effec-

tiveness”, is defined by him as characteristics of activities, leading to some 

positively assessed result regardless if it was aimed for or not. 

The CIMA Official Terminology (2005) establishes somewhat different 

definitions of this system of notions. “Economy” denotes acquiring re-

sources in the proper volume and quality at the lowest possible cost. “Effi-

ciency” in turn is understood in the “classical” manner. There are two 

(“dual” in a sense) formalisations of it as principles: (α) gaining maximal 

useful effect for a given (in advance – for this aim) input (endowment); 

(β) attaining the desired effect at a minimal endowment (of resources). The 

last term, “effectiveness” is reserved for a modest task: making use of re-

sources leading to achieving the aimed result. At this point the author feels 

obliged to make the reader sensitive to the fact that in mathematics, as well 

as in the wider-sense understood mathematical economics (and even in the 
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area of economic theory), such classification is, to a considerable degree, 

pointless. The term “efficiency” is commonly accepted as a universal de-

scription of a whole family of various features of phenomena (sometimes 

substituted, without any misunderstanding, by “effectiveness”). So, “many 

a name” (and kinds) efficiency has, but only one “core” – there is an un-

questionable agreement among researchers working at the “sufficiently 

serious and efficient” level of science! Some supplementary, instructive (at 

least, in the author’s opinion) types of appearance of situations, in which 

one can ask the question concerning efficiency (effectiveness, economy) 

will be discussed in the second (“twin”) paper submitted to the same issue 

of Mathematical Economics. 

Literature 

Achiezer N. (1965). The Classical Moment Problem and Some Related Questions 

in Analysis. Hafner. New York. 

Alzaid A., Kim S., Proschan F. (1991). Laplace ordering and its applications. 

Journal of Applied Probability. Vol. 28. Pp. 116-130. 

Arnold B. (1986). Majorization and the Lorenz Order: A Brief Introduction. Lec-

ture Notes in Statistics. Springer-Verlag. Berlin-Heidelberg–New York–Tokyo.  

Arrow K.J., Intriligator M.D. (Eds.). (1981). Handbook of Mathematical Econom-

ics. Vol. 1. North Holland. Amsterdam–New York–Oxford–Tokyo. 

Birkhoff G. (1946). Tres observaciones sobre el algebra linear. Univ. Nac. Tu-

cumán Rev. Ser. A5. Pp. 147-151. 

Blackwell D. (1951). Comparison of Experiments. Proc. of the Second Berkeley 

Symp. On Math. Statistics and Probability, Univ. of California Press, Berkeley–

Los Angeles. Pp. 93-102 

Box E.P., Jenkins G.M. (1970). Time Series Analysis. Forecasting and Control. 

Holden-Day. San Francisco–Cambridge–London–Amsterdam.  

Brocket P., Golden L. (1987). A class of utility functions containing all the com-

mon utility functions. Management Science. Vol. 33, No 8. Pp. 955-964. 

Caballé J., Pomansky A. (1996). Mixed risk aversion. Journal of Economic Theory. 

Vol. 71. Pp. 485-513. 

CIMA Official Terminology (2005). CIMA Publishing. Oxford.  

Dardanoni V. (1991). On the Lorenz curve ordering of discounted streams of 

income. Bulletin of Economic Research. Vol. 43. Pp. 293-296. 

Denuit M., Lefèvre C., Scarsini M. (2001). On s-convexity and risk aversion. 

Theory and Decision. Vol. 50. Pp. 239-249. 

Denuit M., Vermandele C. (1999). Lorenz and excess wealth orders. With applica-

tions in reinsurance theory. Scand. Actuarial Journal. No 2. Pp. 170-185. 



Wojciech Rybicki 

 
100 

Dudycz T. (Ed.). (2005). Efektywność – rozważania nad istotą i pomiarem. Prace 

Naukowe Akademii Ekonomicznej nr 1060. Wydawnictwo Akademii Ekono-

micznej. Wrocław. 

Duffie D. (1992). Dynamic Asset Pricing Theory. Princeton University Press. 

Princeton.  

Engelking R. (1968). Zarys topologii ogólnej. PWN. Warszawa.  

Fama E. (1970). Efficient capital markets: A review of theory and empirical work. 

Journal of Finance. Vol. 25. Pp. 384-418. 

Feller W. (1969). Wstęp do rachunku prawdopodobieństwa. T. 2. PWN. Warszawa.  

Fölmer H., Schied A. (2002). Stochastic Finance. An Introduction in Discrete 

Time. Walter de Gruyter. Berlin–New York. 

Goovaerts M.J., Kaas R., Van Heerwaarden A.E., Bauwelinckx T. (1990). Effective 

Actuarial Methods. North Holland. Amsterdam–New York–Oxford–Tokyo.  

Kamae T., Krengel U., O’Brien G.L. (1977). Stochastic inequalities on partially 

ordered spaces. Annals of Probability. Vol. 5. Pp. 899-912. 

Kimball M.S. (1993). Standard risk aversion. Econometrica. Vol. 61. Pp. 589-611. 

Kolm S.-Ch. (1976). Unequal inequalities. Journal of Economic Theory. Vol. 12. 

Pp. 416-442. 

Kuratowski K. (1962). Wstęp do teorii mnogości i topologii. PWN. Warszawa.  

La Mure P. (1955). Beyond Desire. Random House. New York.  

Le Breton M. (1991). Stochastic orders in welfare economics. In: K. Mosler, 

M. Scarsini (Eds.). Stochastic Orders and Decision Under Risk. Inst. of Math. 

Stat. Lecture Notes Monograph Series. Vol. 19. Institute of Mathematical Sta-

tistics. Hayward, CA. 

Levy H. (1992). Stochastic dominance and expected utility: Survey and analysis. 

Management Science. Vol. 38. Pp. 555-593. 

Lipmann S.A., McCall J.J. (1981). The economics of uncertainty: Selected topics 

and probabilistic method. In: K.J. Arrow, M.D. Intriligator (Eds.). Handbook of 

Mathematical Economics. North Holland. Amsterdam–New York–Oxford–

Tokyo.   

Lucas R.E. (1972). Expectations and the neutrality of money. Journal of Economic 

Theory. Vol. 4. Pp. 103-124. 

Marshall A.W., Olkin I. (1979). Inequalities: Theory of Majorization and Its Appli-

cations. Academic Press. New York.  

Mlak W. (1970). Wstęp do teorii przestrzeni Hilberta. PWN. Warszawa.  

Mosler K., Scarsini M. (1991). Some theory of stochastic dominance. In: 

K. Mosler, M. Scarsini (Eds.). Stochastic Orders and Decision under Risk. IMS 

Lecture Notes – Monograph Series. Hayward, CA. Vol. 19. Pp. 261-284. 

Mosler K., Scarsini M. (Eds.). (1991). Stochastic Orders and Decision under Risk. 

IMS Lecture Notes – Monograph Series. Hayward, CA. Vol. 19. 

Mostowski A., Stark M. (1968. Algebra liniowa. PWN. Warszawa. 

Müller A. (1998). Stochastic orders generated by integrals: A unified study. Ad-

vances of Applied Probability. Vol. 29. Pp. 414-428. 



On the formalization and interpretation of the notion of “efficiency” 

 
101 

Muth J. (1961). Rational expectations and the theory of price movements. Econo-

metrica. Vol. 25. Pp. 315-335. 

Nermuth M. (1993). Different economic theories with the same formal structure: 

Risk. Income inequality. Information structures. In: W.E. Diewert, 

K. Spremann. F. Stehling (Eds.). Mathematial Modelling in Economics. Essays 

in Honor of Wolfgang Eichhorn. Springer-Verlag. New York–Heidelberg–

Berlin–Tokyo.  

Nita B. (2010). Rola rachunkowości zarządczej we wspomaganiu zarządzania 

dokonaniami przedsiębiorstwa. Wydawnictwo Uniwersytetu Ekonomicznego. 

Wrocław. 

O’Brian G.I. (1987). The comparison method for stochastic processas. Annals of 

Probability. Vol. 3. Pp. 80-88. 

Pliska S. (1997). Introduction to Mathematical Finance: Discrete Time Models. 

Blackwell Publishing. Oxford. 

Pszczołowski T. (1978). Mała encyklopedia prakseologii i teorii organizacji. 

Ossolineum. Wrocław.  

Reuter H. Riedrich T. (1981). On maximal set of functions compatible with a 

partial ordering for distribution functions. Math. Operationsforsch Statist. 

Vol. 12. Pp. 597-605. 

Robertson A.P., Robertson W.J. (1964). Topological Vector Spaces. Cambridge 

University Press. Cambridge. 

Rolski T. (1976). Order Relations in the Set of Probability Distributions and Their 

Application in Queuing Theory. Dissertationes Mathematicae. Vol. 132. PAN. 

Warszawa-Wrocław.  

Rolski T., Schmidli H., Schmidt V., Teugels J. (1998). Stochastic Processes for 

Insurance and Finance. J. Wiley & Sons. Chichester. 

Rybicki W. (1998). Racjonalne oczekiwania. Prognozy i ryzyko w zagadnieniach 

mikroekonomicznych. Prace Naukowe Akademii Ekonomicznej nr 780. Wy-

dawnictwo Akademii Ekonomicznej. Wrocław. Pp. 37-46. 

Rybicki W. (2005a). Reprezentacje preferencji i modelowanie ryzyka. Prace Na-

ukowe Akademii Ekonomicznej nr 857. Wydawnictwo Akademii Ekonomicz-

nej. Wrocław. Pp. 148-175. 

Rybicki W. (2005b). O wielostronności, relatywizmie i złożoności kategorii efek-

tywności. In: T. Dudycz  (Ed.). Efektywność – rozważania nad istotą i pomia-

rem. Prace Naukowe Akademii Ekonomicznej nr 1060. Wydawnictwo Akade-

mii Ekonomicznej. Wrocław. Pp. 358-382. 

Rybicki W. (2008). Uwagi o formalnych modelach racjonalnych oczekiwań. In: 

J. Pociecha (Ed.). Modelowanie i prognozowanie zjawisk społeczno-gospodarczych. 

Wydawnictwo Uniwersytetu Ekonomicznego. Kraków. Pp. 31-42. 

Shaked M., Shanthikumar J.G. (1993). Stochastic Orders and Their Applications. 

Academic Press. Harcourt Brace & Co. Boston.  

Shorrock A.F., Foster J.E. (1987). Transfer sensitive inequality measures. Rev. of 

Ec. Studies. Vol. 54. Pp. 485-497. 



Wojciech Rybicki 

 
102 

Sikorski R. (1958). Funkcje rzeczywiste. T. 1. PWN. Warszawa. 

Stoyan D. (1983). Comparison Methods for Queues and Other Stochastic Models. 

J. Wiley. Berlin–New York.  

Szekli R. (1995). Stochastic Ordering and Dependence in Applied Probability. 

Springer-Verlag. New York-Berlin.  

Urbanik K. (1967). Lectures on Prediction Theory. Lecture Notes in Mathematics. 

Springer-Verlag. Berlin–Heidelberg–New York. Vol. 44. 

Wold H. (1938). A Study in the Analysis of Stationary Time Series. Almqvist-

Wiksell. Stockholm. 




