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Summary: Item response theory (IRT) is widely used in educational and psychological research 
to model how participants respond to test items in isolation and in bundles. Item response 
theory has replaced classical measurement theory as a framework for test development, scale 
constructions, scree reporting and test evaluation. The most popular of the item response 
models for multiple choice tests are the one-parameter (i. e. the Rasch model) and three-
parameter models. This is the general framework for specifying the functional relationship 
between a respondent’s underlying latent trait level, commonly known as ability in educational 
testing, or the factor score in the factor analysis tradition and an item level stimulus. In this 
paper, arguments are offered for continuing research and applying multidimensional IRT 
models. The position is also taken that multi-parameter IRT models have potentially important 
roles to play in the advancement of measurement theory about which models to use should 
depend on model fit to the test data. All calculations are conducted in R available from CRAN 
which is a widely-used and well-known environment for statistical computing and graphics. 

Keywords: IRT models, multidimensional IRT models, measurement theory, R software.

Streszczenie: Teoria odpowiedzi na pozycje testowe (Item Response Theory) jest metodą sta-
tystyki wielowymiarowej, którą najczęściej wykorzystuje się w badaniach edukacyjnych oraz 
psychologicznych. Metoda ta pozwala na modelowanie cech ukrytych o charakterze ciągłym 
na podstawie dyskretnych wskaźników. Najczęściej wskaźnikami są odpowiedzi udzielone 
na zadania testowe oraz odpowiedzi na pytania kwestionariuszowe, rzadziej zaobserwowane 
cechy respondentów. Modele IRT wiążą cechę ukrytą ze wskaźnikami dzięki zastosowaniu 
parametryzacji, która określa właściwości wskaźników i rozkład cech respondentów. Jednym 
z najpopularniejszych modeli wielokrotnego wyboru jest model jednoparametryczny (model 
Rascha) oraz model trójparametryczny. W artykule tym zaprezentowano argumenty przema-
wiające za kontynuacją badań oraz zastosowaniem wielowymiarowych modeli w praktyce. 
Przedstawiono także, jak istotną rolę w teorii pomiaru odgrywają wielowymiarowe modele 
IRT. Obliczenia przedstawione w niniejszym artykule przeprowadzono w programie R. 

Słowa kluczowe: modele teorii odpowiedzi na pozycje (IRT), wielowymiarowe modele IRT, 
teoria pomiaru, program R. 
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1. Introduction

Item response theory models (IRT) are increasingly becoming established in social 
science research, particularly in the analysis of performance or attitudinal data in 
psychology, education, medicine, marketing and other fields where testing is relevant. 

Item response theory (IRT) models show the relationship between the ability 
or trait (symbolized by θ ) measured by the instrument and an item response. The 
item response may be dichotomous (two categories), such as right or wrong, yes or 
no, agree or disagree. Or, it may be polytomous (more than two categories), such 
as a rating from a judge or scorer or a Likert-type response scale on a survey. The 
construct measured by the items may be an academic proficiency or aptitude, or it 
may be an attitude or belief. 

The first generation of item response models developed in the 1940s and 1950s 
were intended to be applied to unidimensional test items that were dichotomously 
scored. Item response functions incorporated one, two, or three parameters and were 
one of two mathematical forms, normal-ogive or logistic. Lord [1952], introduced 
the two-parameter normal-ogive model for analyzing multiple-choice test data. 
Applications of his model were hampered by the complexities of model parameter 
estimation and Lord’s concern about the failure to handle the problem of guessing in 
his two-parameter model. A few years later in the late 1950s, Birnbaum in a series 
of reports described the more tractable two and three-parameter logistic models. 
This important work is most accessible today in Birnbaum [1968]. While important 
technical and application work was going on with the unidimensional normal and 
logistic IRT models, other developments started in the late 1960s and became the 
serious activity of researchers beginning in the early 1980s. Samejima [1969], for 
example, introduced the very important graded response model to analyze data from 
Likert attitude scales and polynomously scored performance tasks such as might 
arise in the scoring of writing samples. Her model and variations on it were the first 
of many models developed by her and other scholars to handle ordered polytomous 
data. The work was stimulated by both the desire to generate and investigate new 
and potentially interesting models, and by an increase in the presence of polytomous 
data in educational testing. 

Item Response Theory (ITR) is an extension of Classical Test Theory (CTT) 
[Lord, Novick 1968; Birnbaum 1968; Baker 1985; Bock, Lieberman 1970; Bock 
1972; Lord 1980; Wright 1992; 1997]. The mathematical foundation of IRT is 
a function that relates the probability of a person responding to an item in a specific 
manner to the standing of that person on the trait that the item is measuring. It 
means that the function describes, in probabilistic terms, how a person with a higher 
standing on a trait is likely to provide a response in a different category to a person 
with a low standing on the trait. This mathematical function has a pre-specified form 
(usually a logistic ogive) and is referred to as an item response function (IRF). 
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The main advantage of IRT models is the fact that the item location parameter 
(b) and the person trait level (θ ) are indexed on the same metric. Therefore, when 
a person`s trait level is higher than the item location on the trait continuum, that 
person is more likely than not to provide a trait-indicating (positive or true) response. 
The converse is true when a person`s trait level is below the item location. IRT 
models are well suited to cope with dichotomous and polytomous responses, where 
the response categories may be unordered as well as ordered. The incorporation 
of linear structures allows for modeling the effects of covariates and enables the 
analysis of repeated categorical measurements. 

Polytomous items have become omnipresent in educational and psychological 
testing. Polytomous IRT models can be used for any test question where there are 
several response categories available. There are several types of polytomous IRT 
models: nominal response model, partial credit model, generalized partial credit 
model, rating scale model and graded response model. In this paper we present the 
most popular and best known IRT polytomous models. We also elaborate on the 
potential of the ltm package in R software (www.r-project.org). The ltm (latent trait 
models under IRT) package allows for the analysis of multivariate dichotomous and 
polytomous data using latent trait models under the Item Response Theory approach. 
It includes the Rasch, the Two-Parameter Logistic, Birnbaum’s Three-Parameter, the 
Graded Response, and the Generalized Partial Credit Models. 

In this paper we present the commonly known polytomous item response 
theory models. We show how these models originated and were developed, as well 
as how they have inspired the applied researchers and measurement practitioners. 
Additionally, we elaborate on the application of polytomous IRT models in R 
software. 

2. Polytomous item response theory models

Items that are scored in two categories (e.g. right/wrong) are referred to as 
dichotomously scored items. Items scored in multiple-ordered categories are referred 
to as polytomously scored items. For the dichotomously scored items, the probability 
of a correct response for an examinee can be described by one of the logistic IRT 
models, most typically the three-parameter logistic (3PL) model IRT model if the 
items are multiple choice. For the polytomous scored items, the probability of an 
examinee reaching a specific score can be described by one of the polytomous IRT 
models, among which are the partial credit model [Masters 1982], and its generalized 
partial credit model – the graded response model [Samejima 1969; 1972]. 

Polytomous models are extensively used in applied psychological measurement 
and strongly related to the increase of statistical information when compared to 
dichotomous items. In some settings those models may help in reducing test length 
such time, costs, respondents’ motivation, etc. 
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Polytomous IRT models are for items in which the categories are ordered, they 
cannot be used to determine the empirical ordering of the categories post hoc. They 
are appropriate for items or products (presentations, portfolios, essays, etc.) scored 
using a scoring rubric. They are also appropriate for Likert-type items, items with an 
ordered response scale such as: strongly disagree, disagree, neutral, agree, strongly 
agree. In these models a function analogous to an ICC can be plotted for each 
category. Unfortunately, the term used to label these curves is not universal, so the 
reader must infer it from the context in which the function is plotted.

2.1. Partial credit model 

Masters [1982], introduced the partial credit model (PCM) as an IRT model for at 
least two polytomous items with ordered categories. The partial credit model can be 
considered as an extension of 1 parameter model and it has all the standard Rasch 
model features such as separability of person and item parameters. The partial 
credit model can be given if the respondents answered correctly to the first but not 
all the steps. In this type of model a varying number of categories across items is 
possible. By incorporating a location parameter (b) for each category boundary (g) 
and each item (i), we obtain a flexible model where categories can vary in number 
and structure across items within a test [Masters 1982]. The PCM can be described 
as the probability of responding in a specific item category (
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where: θ  is latent variable (the person trait level), 
gi

b  is the location parameter 
of the category boundary function for category g of item i ( 0,...,l g= ,

0,..., ,...,h g m= ). 

Each adjacent pair of response categories is modelled by a simple logistic ogive 
with the same slope to produce category boundaries that differ only in location. 
Because the PCM allows for a relatively small number of estimates per set of items, 
sample sizes as small as 300 return a stable item parameter and trait estimation  
[De Ayala 2009]. 

2.2. Graded response model 

The graded response model (GRM) is an extension of Thurstone’s [1928], method 
of successive intervals to the analysis of graded responses on educational tests. 
Samejima [1969], described a graded response IRT model as one in which an item 
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has jm  ordered response categories. The examinee is permitted to select only one of 
the categories. 

The mathematical function for a graded response model looks very like the 
function for 2PL (2 parameters model) IRT model. The difference is that there are 
multiple b-parameters, one for each category except the first [Samejima 1969]: 
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where: * ( )
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P θ  is the probability of scoring in or above category g of item i (given θ  
and the item parameters), ia  is the item discrimination parameter, 

gi
b  is the 

boundary location parameter, or threshold for category g of item i. 

The partial credit model describes the probability of reaching a score category 
by the difference of two probabilities, each of which can be expressed through the 
use of a dichotomous IRT model. A graded response model is suitable for a Likert-
type rating. To fit this model within a measure, the item need not have the same 
number of response categories, no complications arise in item parameter estimation 
or the subsequent parameter interpretation as a result of a measure having items with 
different response formats. 

2.3. Polytomous Rasch model 

The Rasch model was proposed in the 1960s by the Danish statistician Georg Rasch. 
The basic Rasch model is used to separate the ability of test takers and the quality of 
the test [Rasch 1960; 1966;1977]. Rasch models have been routinely used with great 
success in order to build one-dimensional scales of unobserved quantities. The use of 
the Rasch model has been motivated mainly by its simplicity, compared to the Item 
Response Models (IRM). Its widespread use has also been motivated by the ability 
of the Rasch model to accommodate for sparse data matrices (with missing data) 
and to generate ratio measures of latent (unobserved) traits and abilities from ordinal 
observations. Rasch models were developed by Masters [1982], Bechtel [1985], 
Andrich [2004] and Christensen, Krelner and Mesbah [2013]. 

The Rasch model assigns one scale parameter to each person called ability, and 
one scale parameter to each item called item difficulty. Note that the raw score is 
a sufficient statistic for the Rasch estimates and that the person and item parameters 
have a common measurement unit which is called the “logit”. The logit scale 
is linear, so differences of one logit, for example, have the same meaning at all the 
points on the scale. Since the items and persons appear on the same logit scale, it 
is convenient to observe that a person is expected to get the items below his/her 
ability level correct and those above his/her ability level incorrect. The probability 
of a correct response for the Rasch model may be given by the formula:



48 Justyna Brzezińska

 ( ) exp( )
, ,

1 exp( )
j i

ij j i
j i

b
P b

b
θ

θ
θ
−

=
+ −

  (3)

where person j with ability jθ  has a probability Pij to respond correctly to item i with 
difficulty bi ( ib-∞ < < ∞ ). It is assumed that item i is dichotomously scored (0 for 
incorrect response, 1 for correct response). This is often called the simple Rasch 
model because it only models correct/incorrect responses, i.e. it does not model 
partially correct responses. 

The use of the Rasch model has been motivated mainly by its simplicity 
compared to the Item Response Models (IRM). Its widespread use has also been 
motivated by the ability of the Rasch model to accommodate for sparse data matrices 
(with missing data) and to generate ratio measures of latent (unobserved) traits and abilities 
from ordinal observations. 

Not all sets of data, however, can meet the requirements of the Rasch 
model. One of the fundamental assumptions of the Rasch model is that of Local 
Independence, which states that the observed responses of a person are independent 
of each other given an individual’s position on the latent variable (i.e. on the logit scale). 
In some cases this assumption may not hold in practical settings, and the use of 
multilevel Rasch models may be a useful alternative. 

3. Application in R

Polytomous Item Response Theory Models provide a unified, comprehensive 
introduction to the range of polytomous models available within item response 
theory (IRT). Analysis of Polytomous Item Response is available in the ltm package 
with the use of gpcm function in R (www.r-project.org) [Rizopoulos 2006]. The ltm 
provides a flexible framework for Item Response Theory analyses for dichotomous 
and polytomous data under the Marginal Maximum Likelihood approach.

In this paper we fit the Generalized Partial Credit model for ordinal polytomous 
data, under the Item Response Theory approach. We use the Science dataset that 
comes from the Consumer Protection and Perceptions of Science and Technology 
section of the 1992 Euro-Barometer Survey [Karlheinz, Melich 1992], based on 
a sample from Great Britain. All of the items below were measured on a four-group 
scale with response categories “strongly disagree”, “disagree to some extent”, “agree 
to some extent” and “strongly agree”: 
• Comfort: science and technology are making our lives healthier, easier and more 

comfortable.
• Environment: scientific and technological research cannot play an important role 

in protecting the environment and repairing it.
• Work: the application of science and new technology will make work more 

interesting.
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• Future: thanks to science and technology, there will be more opportunities for 
the future generations.

• Technology: new technology does not depend on basic scientific research.
• Industry: scientific and technological research do not play an important role in 

industrial development.
• Benefit: the benefits of science are greater than any harmful effect it may have.

Coefficients of the different types of Generalized Partial Credit Model for the 
Science data including parameters and information criteria (AIC, BIC) are presented 
in Table 1. Only four out of the seven categories (Comfort, Work, Future, Benefit) 
were selected for further analysis. 

Table 1. Coefficients of the Generalized Partial Credit Models 

GPCM
Coefficient Catgr.1 Catgr.2 Catgr.3 Dscrmn

Comfort –3.277 –2.891 1.537 0.861
Work –2.035 –1.033 2.059 0.840
Future –2.083 –0.975 0.832 2.234
Benefit –2.908 –1.109 1.631 0.721
The log-likelihood –1612.683
AIC 3257.365
BIC 3320.906

GPCM assuming equal discrimination parameters across items
Coefficient Catgr.1 Catgr.2 Catgr.3 Dscrmn
Comfort –3.083 –2.592 1.387 1.001
Work –1.894 –0.910 1.134 1.001
Future 2.644 –1.420 1.134 1.001
Benefit –2.447 –0.899 1.357 1.001
The log-likelihood –1619.274
AIC 3264.548
BIC 3316.175

GPCM assuming equal discrimination parameters across items fixed at 1
Coefficient Catgr.1 Catgr.2 Catgr.3 Dscrmn
Comfort –3.085 –2.595 1.388 1
Work –1.895 –0.911 1.858 1
Future –2.646 –1.421 1.135 1
Benefit –2.448 –0.899 1.357 1
The log-likelihood –1619.274
AIC 3262.548
BIC 3310.204

Source: own calculations in R.
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In the next step of the analysis we built another type of polytomous IRT model 
– the Graded Response Model. The analysis of this model is available in R with the 
use of the grm function in the ltm library. The coefficients of the Graded Response 
Model and information criteria (AIC, BIC) are presented in Table 2. 

Table 2. Coefficients of the Graded Response Model 

GRM

Coefficient Extrmt1 Extrmt2 Extrmt3 Dscrmn

Comfort –4.672 –2.536 1.408 1.041

Work –2.385 –0.735 1.849 1.226

Future –2.281 –0.965 0.856 2.299

Benefit –3.060 –0.906 1.543 1.094

The log-likelihood –1608.871

AIC 3249.742

BIC 3313.282

GRM assuming equal discrimination parameters across items

Coefficient Extrmt1 Extrmt2 Extrmt3 Dscrmn

Comfort –3.910 –2.153 1.201 1.321

Work –2.264 –0.707 1.756 1.321

Future –3.079 –1.258 1.126 1.321

Benefit –2.687 –0.800 1.367 1.321

The log-likelihood –1613.899

AIC 3253.798

BIC 3305.425

Source: own calculations in R.

The two focal polytomous models of interest to the current project are the 
GPCM and GRM for Science dataset. The GRM manifests itself as a proportional 
odds model in which for each item, all response categories are collapsed into two 
categories when estimating the IRFs. Therefore the two models do not indicate the 
same ordering among score categories and do not produce directly comparable 
parameters [Ostini, Nering 2005], although many have found that these common 
polytomous IRT models tend to produce very similar results. 

The likelihood ratio test, Akaike’s information criterion AIC [Akaike 1974] and 
Bayesian information criterion BIC [Schwarz 1978], were calculated to compare 
the fit of the two models. In this case, AIC and BIC for Graded Response Model 
(3249.742 and 3313.282, respectively) are lower than those of the Generalized 
Partial Credit Model. 
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4. Conclusions

Polytomous item response theory models provide a unified, comprehensive 
introduction to the range of polytomous models available within item response 
theory (IRT). It begins by outlining the primary structural distinction between the two 
major types of polytomous IRT models. This focuses on the two types of response 
probability that are unique to polytomous models and their associated response 
functions, which are modeled differently by the different types of IRT model. In 
this paper we present both conceptually and mathematically, the major specific 
polytomous IRT models. Relationships among the models are also investigated 
and the operation of measurement information is described for each major model. 
Practical examples of major models using real data are provided, as is a chapter on 
choosing the appropriate model.

There are some disadvantages of IRT models such as: the strict assumptions to 
be followed, they are more difficult to use then CTT, and they are more complex and 
difficult to understand. 

The purpose of this paper was to provide a summary of some of the latest 
developments in polytomous item response theory (IRT), and to help realize that 
psychometric tools can now be used for theory testing in addition to the traditional 
role of improving construct measurement. In this study, the application of general 
polytomous item response theory models, as well as practical considerations have 
been presented. We presented the gpcm and grm package available in R that covers 
the most important features of the analysis for poltomous IRT models. The main 
functions of these packages have been presented and a comparison over the presented 
polytomous IRT models was discussed. Coefficients for several poltytomous IRT 
models were calculated, as well as the information criteria for testing the goodness of 
fit. For model selection we applied the likelihood ratio test, AIC and BIC to compare 
the fit of alternative models to these data. Other fit statistics may also be useful in 
investigating the local item dependence present in these data. In testing the goodness 
of fit we chose the model with the lowest information criterion indicating the best 
fitting model. 
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