

Software Engineering:

Improving Practice through Research

Scientific Editors

Bogumiła Hnatkowska, Michał Śmiałek

The Polish Information Processing Society

Scientific Council

prof. dr hab. Zdzisław Szyjewski – Chairman

dr hab. prof. PW Zygmunt Mazur – Vice-Chairman

dr hab. inż. prof. PG Cezary Orłowski – Vice-Chairman

dr hab. Jakub Swacha – Secretary

prof. dr hab. Zbigniew Huzar

prof. dr hab. inż. Janusz Kacprzyk

prof. dr hab. inż. Marian Noga

prof. dr hab. inż. Ryszard Tadeusiewicz

dr hab. Tadeusz Gospodarek

dr hab. Leszek Maciaszek

dr hab. inż. Lech Madeyski

dr hab. Zenon Sosnowski

dr inż. Adrian Kapczyński

dr inż. Andrzej Romanowski

dr inż. Marek Valenta

Authors

Wiktor Zychla – CHAPTER 1, Aneta Ponieszewska-Marańda, Patryk Wójcik –

CHAPTER 2, Piotr Jeruszka, Andrzej Grosser – CHAPTER 3, Adrian Najczuk, Artur

Wilczek – CHAPTER 4, Adrian Najczuk, Artur Wilczek – CHAPTER 5, Krzysztof

Miśtal, Ziemowit Nowak – CHAPTER 6, Ferenc Attila Somogyi, Mark Asztalos –

CHAPTER 7, Agnieszka Patalas, Wojciech Cichowski, Michał Malinka, Wojciech
Stępniak, Piotr Maćkowiak, Lech Madeyski – CHAPTER 8, Tomasz Gawęda, Ewa

Nestorowicz, Oskar Wołk, Lech Madeyski, Marek Majchrzak – CHAPTER 9,

Jarosław Hryszko, Lech Madeyski, Marta Dąbrowska, Piotr Konopka – CHAPTER

10, Lucjan Stapp, Adam Roman, Maciej Chmielarz – CHAPTER 11, Grzegorz

Kochański – CHAPTER 12, Cezary Orłowski, Tomasz Deręgowski, Miłosz Kurzawski,

Artur Ziółkowski, Bartosz Chrabski – CHAPTER 13, Cezary Orłowski, Bartosz

Chrabski, Artur Ziółkowski, Tomasz Deręgowski, Miłosz Kurzawski – CHAPTER 14,

Cezary Orłowski, Tomasz Deręgowski, Miłosz Kurzawski, Artur Ziółkowski, Bartosz

Chrabski – CHAPTER 15, Tomasz Wala, Marek Majchrzak, Jolanta

Wrzuszczak-Noga – CHAPTER 16

Reviewers

Zbigniew Banaszak, Włodzimierz Bielecki, Miklós Biró, Ilona Bluemke, Přemek

Brada, Krzysztof Cetnarowicz, Zbigniew Czech, Włodzimierz Dąbrowski, Iwona

Dubielewicz, Mariusz Flasiński, Jozef Goetz, Janusz Górski, Adam Grzech, Piotr

Habela, Bogumiła Hnatkowska, Zbigniew Huzar, Stanisław Jarząbek, Hermann

Kaindl, Audris Kalnins, Piotr Kosiuczenko, Kevin Lano, Laszlo Lengyel, Leszek

Maciaszek, Lech Madeyski, Marek Majchrzak, Erika Nazaruka, Ngoc-Thanh Nguyen,

Mirosław Ochodek, Aneta Poniszewska-Marańda, Krzysztof Sacha, Bartosz Sawicki,
Klaus Schmid, Miroslaw Staron, Andrzej Stasiak, Krzysztof Stencel, Jakub Swacha,

Tomasz Szmuc, Michał Śmiałek, Lech Tuzinkiewicz, Bartosz Walter, Andrzej

Wąsowski, Krzysztof Wnuk, Janusz Zalewski, Jaroslav Zendulka, Adrian Żurkiewicz

Scientific Editors

Bogumiła Hnatkowska, Michał Śmiałek

Copyright by the Polish Information Processing Society, Warszawa 2016

ISBN: 978-83-943248-2-7

Edition: I. Copies: 100. Publishing sheets: 13,2. Print sheets: 17,1.

Publisher, print and branding: WESTGRAPH,

Przecław 96c/5, 72-005 Przecław, www.westgraph.pl

Contents

PREFACE ... 7

I. SOFTWARE ARCHITECTURE AND MODELLING

1. HETEROGENEOUS SYSTEM ARCHITECTURE IN EDUCATION MANAGEMENT

SOFTWARE ... 13

2. SERVICE-ORIENTED ARCHITECTURE FOR INTEGRATION OF INFORMATION

SYSTEMS AT DATA LEVEL .. 31

3. THE USE OF WEB SERVICES ARCHITECTURE FOR ENGINEERING CALCULATIONS

BASED ON THE WEBMES PLATFORM .. 49

4. DESIGNING A DATA WAREHOUSE FOR CHANGES WITH DATA VAULT 65

5. TOWARD AGILE DATA WAREHOUSING ... 81

6. PERFORMANCE ANALYSIS OF WEB APPLICATION USING MYSQL, MONGODB AND

REDIS DATABASES .. 97

7. MERGING TEXTUAL REPRESENTATIONS OF SOFTWARE MODELS – A PRACTICAL

APPROACH ... 113

II. SOFTWARE MAINTENANCE

8. SOFTWARE METRICS IN BOA LARGE-SCALE SOFTWARE MINING

INFRASTRUCTURE: CHALLENGES AND SOLUTIONS ... 131

9. HOW TO IMPROVE LINKING BETWEEN ISSUES AND COMMITS FOR THE SAKE OF

SOFTWARE DEFECT PREDICTION? .. 147

10. DEFECT PREDICTION WITH BAD SMELLS IN CODE ... 163

11. POSTGRADUATE STUDIES ON SOFTWARE TESTING IN POLAND 177

12. DATA FLOW ANALYSIS FOR CODE CHANGE PROPAGATION IN JAVA PROGRAMS

 ... 187

III. AGILE TRANSFORMATIONS

13. TRIGGER-BASED MODEL TO ASSESS THE READINESS OF IT ORGANIZATIONS TO

AGILE TRANSFORMATION... 207

14. THE REFERENCE MODEL OF TOOLS ADAPTATION IN THE PERSPECTIVE OF

TECHNOLOGICAL AGILE TRANSFORMATION IN IT ORGANIZATIONS 223

15. BUILDING PROJECT AND PROJECT TEAM CHARACTERISTIC FOR CREATING

HYBRID MANAGEMENT PROCESSES ... 241

16. EXPERIENCE REPORT: PROCESS OF INTRODUCTION OF DEVOPS INTO

PRODUCTION SYSTEM .. 257

Preface

Progress in software engineering is strongly related to advancements in

the software industry. It would be ideal if this progress depended on challenges

emerging during actual software projects and new solutions coming from aca-

demic research. Successes and failures in software projects should stimulate

directions of academic research; industrial practice should validate academic

results.

Unfortunately, everyday practice is not ideal. Thus the KKIO Software

Engineering Conference series serves as a platform to promote cooperation

between industry and academia right from its beginning. This book is based on

materials prepared for the 18th edition of the conference held under the motto:

“Better software = more efficient enterprise: challenges and solutions”.

The book relates to cooperation between universities and software in-

dustry mainly in Central Europe, with the emphasis on Poland. We leave to the

Reader the assessment of the degree to which the materials reflect the current

situation and its quality. Nevertheless, comparing this book to the volumes

from previous conferences we can notice some progress. Hopefully, this trend

will continue in the future. We also hope that the book becomes a contribution

to current discussions on the development of universities in Central Europe

and Poland that emphasise the importance of linking academic research with

practice.

The book is split into three parts. Part I is devoted to Software Architec-

ture and Modelling. In the first chapter, Wiktor Zychla presents a dynamic

architecture suitable for large-scale education management systems. The archi-

tecture features such quality factors as flexibility, security, and scalability. In

the second chapter, Aneta Ponieszewska-Marańda and Patryk Wójcik address

the problem of integrating heterogeneous applications into a consistent ho-

mogenous system by reusing the existing components and ensuring transpar-

ency of exchanged data. They concentrate on the use of Service Oriented Ar-

chitecture (SOA) – mainly micro-services – for this purpose. The pros and

cons of the proposed solution are discussed. In the third chapter, Piotr Je-

ruszka, and Andrzej Grosser present the architecture of the webMES system

8 Software Engineering: Improving Practice through Research

that supports numerical simulations. The system is service-oriented, and it

collaborates with existing engineering software (e.g. NuscaS). The chapter

presents the basic network services and data needed to perform calculations.

The next two chapters, written by Adrian Najczuk and Artur Wilczek, treat the

topic of data warehouse modelling. The first one researches the Data Vault

architecture to find it better adjusted for changes than the alternatives. The

second one presents outcomes of applying selected agile practices to ware-

house modelling and development. In the sixth chapter, Krzysztof Miśtal, and

Ziemowit Nowak conduct performance analysis where a web application

communicates with either a non-relational database (MongoDB, Redis) or a

relational one (MySQL). The experiments show that the non-relational solu-

tion is more efficient, especially under heavy traffic. The last chapter in Part I

concentrates on modelling. The authors, Ferenc Attila Somogyi and Mark

Asztalos, present the details of a method that aims at merging textual represen-

tation of software models. The method works on abstract syntax tree represen-

tations of merged models and addresses different conflicts that can appear

during the integration process.

Part II of this monograph is devoted to Software Maintenance. Software

testing and defect prediction are its central concerns. In the eight chapter, a

group of authors from the Wrocław University of Science and Technology

(Agnieszka Patalas, Wojciech Cichowski, Michał Malinka, Wojciech Stę-

pniak, Piotr Maćkowiak, and Lech Madeyski) present how to use a large-scale

software repository mining platform called Boa in practice. Specifically they

explain how to retrieve interesting metrics of open-source projects. These met-

rics can be used – for example – to build software defect prediction models.

Chapter 9 presents descriptions of three algorithms (ReLink, MLink, and

RCLinker) that aim at linking issues reported in issue trackers with commits in

versioning repositories. After an analysis, the authors (Tomasz Gawęda, Ewa

Nestorowicz, Oskar Wołk, Lech Madeyski and Marek Majchrzak) have im-

plemented one of them (RCLinker), and checked the results on open-source

projects first, and next – on a commercial project provided by Capgemini. In

chapter ten, the authors (Jarosław Hryszko, Lech Madeyski, Marta Dąbrowska,

and Piotr Konopka) answer the question of whether code smell metrics, added

to the basic metric set, can improve defect prediction in an industrial project.

The main finding of their research is that the impact of code bad smells

 Preface 9

metrics on defect prediction is negligibly small. Chapter 11 is about post-

graduate studies on software testing in Poland. The authors (Lucjan Stapp,

Adam Roman, and Maciej Chmielarz) present the profile, experiences and

expectations of postgraduate students as well as the curricula of studies at four

universities and colleges. In the twelfth chapter, Grzegorz Kochański proposes

an approach for managing code change propagation in weakly typed lan-

guages. Such solutions are crucial in maintenance processes where a change in

one place can influence many other places. The author defines a simple for-

malism for describing various effects of change propagation as well as for

defining stack transformations and operations for manipulating local variables

and object fields. The notation covers typical constructs like conditional state-

ments, iterations, arrays and exceptions.

 The last part of the book (III) addresses problems of IT Agile Trans-

formations. Three first papers in this part form a logically connected sequence

written by the same authors: Cezary Orłowski, Tomasz Deręgowski, Miłosz

Kurzawski, Artur Ziółkowski and Bartosz Chrabski. The first paper presents

key factors and enablers in IT company’s agile transformation process. Au-

thors define the stages of readiness to agile transformations and the elements

that should be analysed. The second paper proposes a reference model of tools

adaptation in the perspective of agile technological transformation. The model

was validated in two business cases. In the third paper, authors propose a

method that allows for building a characteristic of the project and project team.

Such a characteristic can be used for many purposes, like selecting the proper

software development methodology among others. In the last chapter, Tomasz

Wala, Marek Majchrzak and Jolanta Wrzuszczak-Noga, describe a process to

introduce some elements of the Development and Operations (DevOps) prac-

tices to a production system in the Capgemini company. The system was

originally developed using a waterfall methodology which was then trans-

formed into Scrum. The DevOps pillars were accompanied by the “continuous

everything” approach.

Bogumiła Hnatkowska and Michał Śmiałek

I. Software Architecture and Modelling

Chapter 1

Heterogeneous System Architecture in Education

Management Software

1. Introduction

1.1. The need for a versatile architecture

Designing and implementing education management software was al-

ways a challenge but the Internet introduced a whole new era by giving a lot of

new possibilities to both users and software providers. Systems slowly turned

from local desktop applications focusing on selected areas and used by a few

users to multiple web applications from different vendors, developed using

different technologies and integrated together and thus forming large ecosys-

tems of services for pupils, their guardians, teachers and managers.

In recent years, more and more local governments call for tenders ([1–

5]) for implementing and deploying integrated web-based systems usually

covering multiple different areas of educational management, including:

 school management – grades, attendance, web and mobile access for

pupils,

 guardians and teachers,

 supervision of compulsory schooling,

 computer-aided school enrolment,

 online e-Learning systems,

 timetable planning,

 organizational charts planning,

 HR and accounting,

 public information newsletters and other kind of content management.

14 Software Engineering: Improving Practice through Research

Unfortunately, not only so such systems have to be large in scale and

must fulfil a detailed list of functional and non-functional requirements but

also requirements vary from call to call. For example, a grade/attendance is

often (but not always!) listed but other areas of educational managements are

more or less optional. Another difficulty stems from the fact that while there

are at least few software publishers in Poland who offer most services that

could possibly be called for a detailed list of requirements in a specific call

usually introduces such new features that are not present in the already imple-

mented software. This leads to a situation where each single call for tender

introduces new challenges and direct competitors in one call (where a single

publisher can possibly deliver all software components alone) can closely co-

operate in another call (where in order to fulfil caller’s requirements, a system

has to be composed of multiple applications from different publisher; more-

over, a similar component requirement in two different public procurements

can possibly be fulfilled by two different applications from two different pub-

lishers!).

Currently, the largest existing deployment consists of about 25 different

modules and the number of different software publishers in a single deploy-

ment varies from 2 to 5.

Ultimately, each such educational management system can possibly be

composed of unknown number of different applications from different pub-

lishers – an exact number of applications that form a system and an exact

number of publishers who form a consortium which answers the call usually

differ from call to call.

There is then an interesting challenge, a challenge of flexible and scal-

able architecture behind each such project. An architecture that would create

a solid foundation and would quickly adapt to any similar set of requirements

in the future. An open architecture focusing on interoperability so that differ-

ent software platforms used by different publishers would talk to each other

giving a seamless experience for users expecting a single, integrated solution

rather than a set of different applications.

 Heterogeneous System Architecture in Education ... 15

1.2. The challenge taken

The challenge for architecture of such heterogeneous integrated educa-

tion management system was taken early 2011. A core architecture was suc-

cessfully reused later and currently there are over a dozen of deployments: a

single shared cloud deployment and multiple on-premise deployments on cli-

ent’s infrastructure. Table 1 is a summary of selected major deployments from

2011–2015 including approximate number of actual user accounts.

There are a few Common Principles behind. CPs are requirements

which have been identified as common in most public procurements and in

rare cases where a requirement was not explicitly stated in the original specifi-

cation, it has always been acknowledged by contracting authorities during

consultation phases of technical dialogues.

Table 1. Selected major deployments

Installation Local

government

Year User accounts

in thousands

(January 2016)

Shared NA 2010 and later 1200

GPE Gdańsk 2012 110

ZSZO Radom 2014 100

Resman2 Rzeszów 2013 100

Portal edukacyjny Szczecin 2012 90

Opolska e-Szkoła Opole 2011 90

EduNet II Tarnów 2014 70

ESZO Koszalin 2012 40

EduS@cz Nowy Sącz 2012 20

Single Source of Information (SSI)

It is expected that the information is reused throughout the system and

there is no need to re-enter the information to any module of the system as-

suming it has already been entered somewhere in the system.

16 Software Engineering: Improving Practice through Research

Automatic Account Provisioning (AAP)

It is expected that user accounts are provisioned automatically which

means that an account with corresponding set of permissions has to be cre-

ated/updated as soon as the person registry entry is created/updated in an ap-

plication which is the source of information about the group of users the user

belongs to. This will be further discussed in Section 4.

Single Sign-On (SSO)

It is expected that all users gain access to all modules of the system

upon a logging once. It is also expected that a global user registry doesn’t only

authenticate but also authorize users (which leads to a Claims-Based-Security-

driven approach). It is also expected that a single sign-out operation is suffi-

cient to terminate user’s current session which means that all modules become

inaccessible instantly.

The single sign-on will be further discussed in Section 4.1.

Data Integration (DI)

It is expected that there is a way of distributing the information between

various modules of the system. This distribution is assumed to be user-assisted

or automatic, depending on the specific business cases. For example, while the

account provisioning (AAP) is expected to be automatic, importing pupil data

from an enrolment module to a school management module should only be

performed manually and on purpose.

The data integration will be further discussed in Section 3.

The goal of this submission is to show how these requirements are ful-

filled while maintaining the scalability and flexibility of the overall architec-

ture and keeping it secure in terms of identity and data integration.

2. Overview of the System Architecture

The overview of the system architecture is presented in Figure 1.

The frontend layer is composed of modules which are available to users

and cover the functional requirements of the system. Since modules are

 Heterogeneous System Architecture in Education ... 17

developed by multiple software publishers, various software platforms are

used in the development (Microsoft. NET, Java EE, PHP, others) and various

operating systems are used to host web-based services (Windows Server plat-

forms and different distribution of Linux-based systems).

The backend layer – the one we focus on in this paper – consists of three

components described in more details in the following sections.

Figure 1. Overview of the System Architecture

18 Software Engineering: Improving Practice through Research

Messaging Middleware

The Messaging Middleware is implemented as a Data Service Bus

which enables system-wide publication/subscription communication based on

WSDL/ HTTPs protocols.

Global User Registry

The Global User Registry implements a source of information about us-

ers and their roles as well as organizational units which are part of the system

(schools and local governments).

Single Sign-On Service

The Single Sign-On Service implements several active and passive

flows of enterprise SSO protocols and what is interesting here is that it acts as

a Protocol Normalization Service – it is both a proxy and an adapter, hiding

implementation details of several protocols and exposing a narrower but predi-

cable set of services.

3. Message-oriented Middleware

The data integration across the system is based on the Service-Oriented

Architecture pattern ([6, 7, 8]) specifically, the Event-Driven Architecture

approach [9].

The conceptual diagram of the Data Service Bus component is presented

in Figure 2. The component depends on two elements:

 Domain Language – A common Domain Language [10] is developed

so that all modules across the system are able to both send and receive

notifications.

 Queuing Subsystem – A reliable Queuing Subsystem [8] is used for

publish/subscribe pattern implementation.

 Heterogeneous System Architecture in Education ... 19

Figure 2. Simplified architecture of the messaging middleware

3.1. Domain Language

The Domain Language is one of the most important parts of the archi-

tecture and its design takes significant amount of time. It requires a solid busi-

ness background and validation.

The Domain Language of the system is constantly evolving. Starting

from 4 types of entities, it currently consists of about 100 different domain

types in several categories:

 school management system pupil data, guardian data, teacher data,

groups, assignments, subjects, attendance, grades

 accounting budget plans, plan items, sections and positions

 HR work positions, salary tables, salary table items

 organizational data school data, branches, divisions, local govern-

ment data

 shared dictionaries Educational Information System dictionaries [11]

Because of the strict legal requirement [12], the specification is

XSD/WSDL based which means that for every single type, its XSD schema is

publicly available as a part of the specification.

And example notification is presented in Figure 3 and its specification

in Figure 4.

20 Software Engineering: Improving Practice through Research

Figure 3. Example pupil data notification

<? xml v e r s i on =" 1 . 0 " e n c o d i n g =" u t f �16" ?>
<EnvelopedMessage xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Id>4bf4f78a-010b-426c-9cfe-2163ac68a10f</Id>

 <Date>2016-04-06T14:52:39.8521016+02:00</Date>

 <Sender>CN=[example certificate]</Sender>

 <CorrelationId>00000000-0000-0000-0000-000000000000</CorrelationId>

 <MessageTypeName>Vulcan.eSzkola.Services.Model.Uczniowie.Uczen_v2

 </MessageTypeName>

 <MessageXml>

 <Uczen_v2 xmlns="" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <Uid>33092828874</Uid>

 <Context>Wroclaw</Context>

 <DaneOsobowe>

 <TypUid>PESEL</TypUid>

 <Imie>Poniktof</Imie>

 <Nazwisko>Cinikola</Nazwisko>

 <DataUrodzenia>1933-09-28</DataUrodzenia>

 ...

 </DaneOsobowe>

 <Uid_Jednostka>13159058-435a-48b7-9804-088d32b1fc02</Uid_Jednostka>

 <Kod_Jednostka>Oncyliuszt</Kod_Jednostka>

 ...

 <Status>Uczen</Status>

 <KsiegaEwidencji>

 <MiejsceNauki>Pawiko</MiejsceNauki>

 <PodlegaObowiazkowi>true</PodlegaObowiazkowi>

 <Numer>341</Numer>

 ...

 </KsiegaEwidencji>

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod Algorithm=

 "http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 <SignatureMethod Algorithm="http://www.w3.org/2000/09/

 xmldsig#rsa-sha1"/>

 <Reference URI="">

 <Transforms>

 <Transform Algorithm=

 "http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/

 09/xmldsig#sha1"/>

 <DigestValue>Vph2gR9IEm471TLVnRcNNILDFt4=</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>Z8rtEZRUPrXNsnMcAPqVOVL4do7oHHlzDlhhZMUTsk...

 </SignatureValue>

 <KeyInfo>

 <X509Data>

 <X509Certificate>MIICNzCCAaCgAwIBAgIQAMmclBl2C4DM4fGTa...

 </X509Certificate>

 </X509Data>

 </KeyInfo>

 </Signature>

 </Uczen_v2>

 </MessageXml>

</EnvelopedMessage>

 Heterogeneous System Architecture in Education ... 21

Figure 4. Part of the pupil data notification specification

Beside a formal interoperable specification which makes it possible to

integrate applications developed with various software platforms, software

development kits (SDKs) are provided for selected software platforms, namely

the .NET (SDK is production ready) and Java EE (SDK is under develop-

ment).

The SDK provides a complete object model for the Domain Language

and numerous APIs which make it easier to implement an interoperable code.

The SDK also contains a custom synchronous broker which acts as a devel-

opment-time replacement of the fully-fledged service bus used in production

environment. The broker is able to send, receive and pipeline messages but

provides a basic set of debugging operations, including message inspection

and modification. We have found that using the broker for early integration

tests of applications which publish/subscribe notifications, significantly re-

duces the time spent later on acceptance tests. On the other hand, the broker is

a lightweight desktop application and can be distributed and configured much

easier than the actual service bus used in production environment.

<?xml version="1.0" encoding="utf-16"?>

<xs:schema elementFormDefault="qualified" >

 <xs:element name="Uczen_v2" nillable="true"

 type="Uczen_v2" />

 <xs:complexType name="Uczen_v2">

 <xs:complexContent mixed="false">

 <xs:extension base="ModelBase">

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="1"

 name="DaneOsobowe" type="DaneOsoboweDS" />

 <xs:element minOccurs="0" maxOccurs="1"

 name="Uid_Jednostka" type="xs:string" />

 <xs:element minOccurs="0" maxOccurs="1"

 name="Kod_Jednostka" type="xs:string" />

 <xs:element minOccurs="1" maxOccurs="1" name="Od"

 nillable="true" type="xs:date" />

 <xs:element minOccurs="0"

 maxOccurs="1"

 name="KsiegaEwidencji"

 type="KsiegaEwidencji" />

 ...

22 Software Engineering: Improving Practice through Research

3.2. Queuing subsystem

The queuing subsystem is used internally by the messaging middleware

to implement basic publish/subscribe scenarios. At the moment the Rab-

bitMQ/AMQP [13] is used as it achieves the throughput of up to 20k m/s on a

single server and can be easily scaled-out horizontally. In a few deployments,

the MSMQ is used as a queuing subsystem [14] with noticeably lower

throughput (about 1k m/s).

The bare queuing subsystem is extended with support of message seri-

alization, exceptions and retries and the control of subscription processing

throughput. Also, since the AMQP protocol is much more low-level than the

required level of abstraction of the interoperable communication protocol, a set

of input/output ports is implemented supporting various kinds of authentica-

tion/authorization, notably:

 WSDL/HTTPs the port that supports a symmetric pub/sub contract

and XMLDSIG based signatures ([16, 17]) involving the shared X509

infrastructure and following the Webservice Gateway pattern ([8],

[9])

 DBMS the port that relies on the DBMS authentication/authorization

 file system the port that relies on file system ACLs and easier mainte-

nance

The overall throughput of the messaging middleware, including the

overhead from signature validation on input ports and resigning XML notifica-

tion on output ports is about 1.5k m/s and is scaled horizontally if necessary.

4. Identity Management

The Global User Registry is the source of information on all users and

their roles as well as organizational units throughout the system. There are two

implementations of the registry, the DBMS implementation and the Directory

Service implementation (the latter is recommended when there are desktop

applications used by some users and integrated, Kerberos-based authentication

is required for these applications). A web-based SSO component is used to

deliver active/passive web-based authentication scenarios.

 Heterogeneous System Architecture in Education ... 23

From the Data Integration perspective, the Global User Registry is one

of components that subscribe to notifications about users and it updates the

registry accordingly. These notifications are published by Authoritative Infor-

mation Sources. An AIS’s business responsibility is to maintain user registry

for selected groups of users. The introduction of AISes is a direct implementa-

tion of previously mentioned AAP and SSI principles.

There are obvious candidates for information sources of some groups of

users. For example, pupil data and guardian data is maintained by School

Management Systems, specifically, School Secretary’s Office staff is respon-

sible for keeping the record up-to-date. Teacher and other personnel data come

from HR systems. The flow of information about users from designated data

sources to the Global Registry is presented in Figure 5.

Figure 5. Information flow from data sources to the Global Registry

There are interesting cases when the very same user data is registered

independently by two or more AISes. The case is common – two notable

24 Software Engineering: Improving Practice through Research

scenarios are pupils who graduate a lower level school and move to a higher

level one and guardians who need to access their pupil information in two or

more different schools.

There are two ways to handle such cases:

 enforcing global identification – this approach is possible for pupil

and teacher data. The idea is to use the Polish national identification

number (PESEL) to identify the same person data published by two or

more different AISes. There are no legal impediments on using PE-

SEL for such identification.

 no global identification – this approach is used for guardian data. In

this case there is a legal conflict between the requirement to create a

single account for a single person and the requirement to follow per-

sonal data protection obligations. The conflict is resolved by Local

Government authorities who take legal responsibility for their deci-

sion: they could either require guardians to provide the identification

number (thus providing a single account throughout the system) or re-

quire the system to create a identification substitute each time the

guardian data is entered to the system somewhere (thus following a

strict legal obligation but creating possible duplicates in the Global

Registry).

4.1. Single sign-on

The architecture of the Single Sign-on component introduces an inter-

esting idea of Protocol Normalization. The idea is presented in Figure 6.

There is an important motivation behind this idea – although the SSO

component should offer a reliable and well-defined contract, an actual identity

provider sometimes doesn’t implement one for various business and technical

reasons. Therefore, the SSO component "normalizes" actual SSO protocols by

acting as a Relying Identity Provider (R-IdP) ([16]):

 to a relying party (an actual client application) the SSO component

looks like a regular identity provider which implements both WS-

Federation [18] and OAuth2 [19] protocols,

 Heterogeneous System Architecture in Education ... 25

 to an actual identity provider the SSO component looks like a regular

client application which follows the actual provider’s protocol specifi-

cation.

Figure 6. Normalization of SSO protocols

As an example, we present how actual normalization works in a sce-

nario when the client expects the identity provider implements the OAuth2

protocol but the actual provider implements the WS-Federation protocol. The

flow of the federated normalization is presented in Figure 7 and the re-

quest/reply sequence is as follows:

1) An unauthenticated user initiates a session with a client application. The

application redirects the request back (HTTP 302) to the identity pro-

vider, the R-IdP in this case.

2) The browser initiates an OAuth2 authorization code flow sequence with

the identity provider.

3) (this is where the normalization starts) Instead of just authenticating the

user and returning the OAuth2 authorization code, the R-IdP initiates a

WS-Federation authentication sequence with its identity provider, the

26 Software Engineering: Improving Practice through Research

IdP. The identity provider performs an actual authentication and returns

a WS-Federation SAML token back to the browser.

4) The WS-Federation flow continues – the SAML token is POSTed back

to the RIdP. The R-IdP establishes a local session and caches incoming

Claims so that they can be reused later, when an OAuth2 graph API

query will be issued by the client application. The WS-Federation flow

is complete. The R-IdP issues the OAuth2 authorization code back to

the application.

5) The application continues the OAuth2 flow, it asks for exchanging the

code for a token.

6) The application uses the OAuth2 token to query the R-IdP’s graph API

for actual user data. This is where the claim cache is used and the in-

formation is returned back to the application.

The above example session of OAuth2 =>WS-Federation normalization

is used quite commonly.

Another common scenario is a regular WS-Federation=>WS-Federation

relying where the SSO component just delegates the authentication to another

provider. The latter scenario is used in the multitenant, shared deployment (see

Section 1.2) where different tenants are configured to use their own actual

identity providers.

5. Conclusions and Future Work

Considering its scale and existing deployments, we have built one of the

largest and widely used architectural foundation for heterogeneous education

management systems in Poland. And while some elements are specific to the

area of education (the Domain Language), other ideas could potentially be

used in different context (the SSO normalization). The system meets the re-

quirements (Common Principles) but focusing on flexibility, scalability and

security lets us easily use it as an architectural backbone of about 20 different

implementations (with a few other pending).

 Heterogeneous System Architecture in Education ... 27

Figure 7. Example OAuth2 =>WS-Federation normalization sequence

While the design has been partially based on the School Interoperability

Framework (SIF) specification [20], our contribution introduces:

 the Domain Language for Polish educational system,

 the XML/WSDL/HTTPs-based communication with XMLDSIG-based

signatures,

 the specification of the SSO infrastructure with protocol normalization.

28 Software Engineering: Improving Practice through Research

The Domain Language is constantly evolving and needs to be updated

to follow current legal obligations. There is a versioning policy enforced and

while there is an agreement on "extreme cause in changing/updating the Do-

main Language" (as each change potentially involves many systems that al-

ready implement the language), the general rule of the versioning policy is: if

a type needs to be changed, a new type is created. This rule, together with

explicit translation rules between types, so far lets us safely expand the lan-

guage while keeping old systems compatible.

There are also features planned for future in the area of Single Sign-on.

For example, there are other enterprise SSO protocols used by some identity

providers which are not currently supported by the SSO component – the

SAML2 [21] and Shibboleth [22].

Also, due to the distributed nature of architectural components, there is

work to be done in the monitoring/auditing area. While it is currently possible

to monitor/audit components separately, there is no easy way of combining

audit traces from different components and it is mostly performed manually. A

high-level auditing mash-up could be implemented with possible warning/alert

triggering.

References

[1] Elektroniczny System Zarządzania Oświatą, Call for tenders,

http://ted.europa.eu/udl?uri=TED:NOTICE:229491-2011:TEXT:PL:HTML,

Koszalin, 2011.

[2] Gdańska Platforma Edukacyjna, Call for tenders,

http://www.gdansk.pl/bip/zamowienia-publiczne,825,19214.html, Gdańsk, 2011.
[3] EduS@cz, Call for tenders,

http://www.nowysacz.pl/content/resources/przetargi/urzad_miasta/2012/0174_12

/siwz.pdf, Nowy Sącz, 2012.

[4] Zintegrowany System Zarządzania Oświatą, Call for tenders,

http://bip.radom.pl/download/69/40737/SIWZ1552.pdf, Radom, 2013.

[5] Edunet, etap II, http://bip.malopolska.pl/umtarnow/Article/get/id,906097.html,

Tarnów, 2014.

[6] M. Fowler. Patterns of enterprise application architecture. Addison-Wesley

Longman Publishing Co., Inc., 2002.

[7] G. Hohpe, B. Woolf. Enterprise integration patterns: Designing, building, and

deploying messaging solutions. Addison-Wesley Professional, 2004.

[8] A. Rotem-Gal-Oz. SOA patterns. Manning, 2012.

 Heterogeneous System Architecture in Education ... 29

[9] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krogdahl, M. Luo. Newl-

ing T. Patterns: serviceoriented architecture and web services. IBM Corporation,

International Technical Support Organization, 2004.

[10] E. Evans. Domain-driven design: tackling complexity in the heart of software.

Addison-Wesley Professional, 2004.

[11] Ustawa o systemie informacji oświatowej, Dz. U. 2011 Nr 139 poz 814.

[12] Krajowe Ramy Interoperacyjności Dz.U. 2012 poz. 526.

[13] AMQP 0.9.1 Explained, https://www.rabbitmq.com/tutorials/amqp-concepts.html

[14] Microsoft Message Queuing,

 https://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx.

[15] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, P. Som-
merlad. Security Patterns: Integrating security and systems engineering. John

Wiley & Sons, 2013.

[16] D. Baier, V. Bertocci, K. Brown, M. Woloski, E. Pace. A Guide to Claims-Based

Identity and Access Control: Patterns & Practices. Microsoft Press, 2010.

[17] XML Signature Specification, https://www.w3.org/Signature/, RFC 3275, 2002.

[18] WS-Federation Protocol Specification,

http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.html, OASIS,

2009.

[19] OAuth2 Protocol Specification,

http://www.rfc-base.org/rfc-6749.html, RFC 6749, 2012.

[20] SIF Implementation Specification,
https://www.sifassociation.org/Specification/Pages/United-Kingdom.aspx, 2007-

2014.

[21] SAML2 Protocol Specification,

http://saml.xml.org/saml-specifications, OASIS, 2005.

[22] M. Erdos, S. Cantor. Shibboleth architecture draft v05. Internet2/MACE, May,

2002.

Chapter 2

Service-Oriented Architecture for Integration

of Information Systems at Data Level

1. Introduction

The complexity of information technologies (IT) has increased signifi-

cantly over the last 20 years, introducing to the enterprises more and more

applications to improve the efficiency of operation and business management.

Business is constantly evolving through new markets, trends, mergers or de-

velopment strategies. The main challenge with which the IT has to measure

now is to keep pace with this development. Unfortunately, complex, inflexible,

heterogeneous systems inefficiently used are often the result of such rapid

growth.

Users of information systems are demanding immediate access to cur-

rent information which the organization or organizations cooperating with it

have, regardless of the system in which this information is stored. The need to

adapt the systems for their mutual operation and integration is linked to it pre-

cisely. Manually updating of information between the systems would entail too

much effort and the risk of inaccuracies or inconsistencies of updated data.

The integration of heterogeneous applications in consistent homogene-

ous systems using existing components while maintaining the transparency of

the exchange of data between them has become a challenge for software de-

velopers [3]. The main problems faced by the existing solutions are low scal-

ability, high costs, low flexibility and speed of implementation of existing

solutions, as well as the need for significant interference in the source code of

existing applications.

32 Software Engineering: Improving Practice through Research

The integration of information systems can be implemented both at the

application source code level by re-implementations of functions or applica-

tions, but also at the level of exchange of data or business logic through the

formalization of services descriptors and the access to applications. Increas-

ingly used web services with the popularization of Service-Oriented Architec-

ture (SOA) change the paradigm by introducing the service-based communica-

tion between heterogeneous systems and enterprises [1, 2, 10, 15]. It avoids

many common problems faced by other approaches.

The problem presented in the paper concerns the possibility of integrat-

ing existing heterogeneous systems for data exchange in accordance with the

concept of service-oriented architecture. It was achieved according to SOA,

mainly on the basis of network services.

The presented paper is structured as follows: section 2 gives the outline

of types and methods of information systems integration. Section 3 deals with

the concepts of service-oriented architecture and micro-services. Section 4

presents the proposed model of systems integration based on micro-services,

while section 5 describes the architecture of integration model, showing its

elements, their responsibilities and functionalities.

2. Integration of Information Systems

Normally one to several less or more complex information systems exist

in companies of different size. Most of them have completely different func-

tions that putting in one set of software would be much troublesome. However,

despite the differences these systems often operate on the same or dependent

data.

Integration is essential in order to ensure the functioning of business

processes and data exchange between systems, both within the company and

between the companies. It has to provide a spectacular, reliable and secure

exchange of data between different parts of the system or systems, regardless

of language, data format or platform on which these systems are based.

 Service-Oriented Architecture for Integration of Information Systems ... 33

2.1. Types of integration

Designing and creating the integration solutions enabled the authors of

[4] to identify six types of integration projects:

 information portals,

 data replication,

 shared business functionality,

 service-oriented architecture,

 distributed business logic,

 B2B (Business to Business) integration.

Information portals allow an access to all required for this purpose func-

tions from a single location. The simplest of them operates on the principle of

"tiles" which dividing the screen display the functions of individual systems or

subsystems.

Many information systems require an access to the same data sets. Most

of systems store the necessary data in their own databases. In a situation where

the same data is required by many systems, each of them must have their inde-

pendent copy. In chase of change of the part of common data, the data in all

dependent systems must be updated to maintain the consistency. The solution

to such problems is the integration based on data replication.

Shared logic allows, depending on the requirements and control that we

have over the system, a significant reduction of redundancy both data and

business logic itself.

Service oriented architecture blurs the boundaries between integration

and fragmentation of business logic of information systems. New business

functionalities can be created through the use of ready-made functions or com-

ponents, supplied from existing systems in the form of extracted services.

One of the key elements of system integration is the fact that business

functionality is often based on many different systems. In most cases, all func-

tions necessary for its course are contained in existing applications. Element

missing in this case is the coordination of these applications/functions.

However, in many cases the business functionalities are also used by

other companies cooperating with the company (suppliers or business part-

ners), while talking about the bilateral dependence. These and similar incidents

are defined as B2B (Business to Business) integration.

34 Software Engineering: Improving Practice through Research

2.2. Integration methods of information systems

There are many criteria to be considered when designing and developing

the integration solutions on information systems and applications: depend-

ences between applications, interference with the existing implementation,

coherence and data format, type of communication, data transport and security.

There is no universal method that would include and cope equally well

with all aspects/criteria of integration. A multitude of solutions has led the

authors [4] to separate four main groups of integration methods:

 methods based on exchange of data files,

 methods based on shared databases,

 methods based on remote procedure call (RPC),

 methods based on exchange of messages.

In integration based on exchange of data files one party (the application)

produces the file containing the information required by the other party (an-

other application). The file is stored in a format supported by the application

that created it. For other applications able to read the file, it is required to bring

it to a comprehensible format. Therefore, before the data is sent to the waiting

applications, the data is transferred to the module or separate integration soft-

ware, whose task is to convert data to a form understandable to all applica-

tions. After processing of file to the ’standard’ format it can be read by other

applications.

The basic mechanism of methods based on sharing databases is the cen-

tral data storehouse available for all applications, making it possible to share

the required data. A requirement here is handling the database for each appli-

cation. If any application does not support by default a shared database, it is

necessary to use an appropriate adapter.

Remote procedure call, RPC is a mechanism for synchronous remote

calls, where one of the programs (client) calls the second (remote) program

(server) [5]. The basic assumption of RPC is providing by server the proce-

dures defined by the Interface Definition Language, IDL. Based on the created

definitions the code fragments are generated respectively for the customer to

allow a remote procedure call, and for the server that are required to imple-

ment the remote procedure.

 Service-Oriented Architecture for Integration of Information Systems ... 35

The methods based on exchange of messages allow the integration of

applications belonging to the systems of a company or companies, through the

exchange of information in the form of messages. Systems allowing this type

of communication are often determined as MOM (Message-Oriented Middle-

ware) [6]. In the context of MOM, the message is understood as an independ-

ent package of business data supplemented by the corresponding headers con-

taining primarily the data about routing of messages and often other useful

information.

In order to ensure the integration between systems in enterprises, a lot of

products using the exchange of messages were created. Both the older ones,

such as IBM MQSeries, Microsoft MSMQ, TIBCO Rendevous or Open Hori-

zon Ambrosia and newer, such as SonicMQ or FioranoMQ were created in

order to provide reliable and efficient connection of company systems through

a network.

3. Service-Oriented Architecture

Service-Oriented Architecture, SOA is an architectural style designed

for the construction of information systems based on loosely coupled, granular

and autonomous components, called services. Services are provided by service

providers, through registration in the service registries. Each service describes

its processes and "behaviour" by so-called contracts that are used by external

components, called service consumers or service users that execute the ser-

vices found by service registry [8, 9].

In order the system is consistent with the idea of SOA, it should adhere

to the following principles [9]:

 contracts of all services should be subordinated to a common standard,

 services should not be dependent on the surrounding environment (in-

cluding from each other)

 contract should contain only essential information and the services

should be defined only by their contracts,

 services should be independent of the use context and usable in many

different contexts,

36 Software Engineering: Improving Practice through Research

 services should be autonomous, i.e. their runtime environment should

not be shared with other services,

 services should be autonomous, i.e. they should not keep the commu-

nication status and the consumed resources should only grow in case

of calling them,

 services should enable the effective location in the network via so-

called service discovery,

 services should allow for easy composition, i.e. creation of new sys-

tems and services based on existing ones.

The basic elements of SOA are the services with contracts describing

them. In the model representing SOA from the technical side, usually there are

three main elements: vendors, consumers and services register as well as three

operations performed by them: registration, discovery and calling of services

[7, 11] (Figure 1).

Figure 1. Schema of application functioning based on SOA with its elements

Service Component Architecture, SCA is a set of specifications describ-

ing a model for building the applications or systems based on SOA [12, 13].

SCA extends and complements the other realization modes of services, creat-

ing an open standard.

The micro-services are an architectural pattern that is the "light" subset

of SOA. It was created in order to avoid the problems associated with imple-

mentation and deployment of monolithic systems and applications. In assump-

tions it has to draw the best ideas from SOA, while being deprived of its main

 Service-Oriented Architecture for Integration of Information Systems ... 37

drawbacks, which are the costly, complicated implementation and amount of

time needed to implement the architecture [14].

Figure 2 presents certain assumptions arising from the use of micro-

services pattern. The main idea is the division into business modules, not the

technical ones – the components of monolithic architecture presented on the

left side of the figure map the application layers from the technical point of

view.

Figure 2. Differences between monolithic application and approach using

micro-services

4. Model of Information Systems Integration Based on Micro-

services Architecture

To solve the problems of information systems integration presented

above the architecture of integration solution, consistent with the principles of

service-oriented architecture, was developed. It uses the micro-services pattern

to integrate the communication between the heterogeneous information sys-

tems. The proposed solution is a method based on exchange of messages.

In order to realize the integration with the developed solution, two

pieces of heterogeneous systems were modelled in the form of models of inde-

pendent applications, which were then extended with integration modules,

implemented in accordance with the proposed solution, enabling the exchange

38 Software Engineering: Improving Practice through Research

of data between applications, while maintaining the established requirements

and assumptions.

The resulting models of systems were called System Model A and Sys-

tem Model B, and the whole developed integration solution were determined as

Microserviced Integration Broker, MIB.

The main assumption, required to explore the possibility of using the

proposed solution, is the heterogeneity of prepared information systems mod-

els. In this case, it is based primarily on the absence of direct relationships

between the mock-ups, i.e. the lack of sharing by them any data types or for-

mats, or implementation fragments. In addition, both models provide different

communication interfaces and for further stress of the heterogeneity they were

implemented in different programming languages.

Another assumption concerning the solution implementation is the fact

that the modelled systems exist in the same local network. It can be therefore

assumed that the part of the company structure was only modelled. It leads to

the deployment of integration solution locally bypassing the security aspects

related to for example the using of Internet as the transmission medium (Fig-

ure 3).

The basic functional requirement of System Model B is to enable the

operator to call from the user interface level the method using the data of inte-

grated System Model A. As a result of realization of such call the data re-

ceived by MIB should be stored into internal database of System Model B and

then presented to the operator.

The functional requirement of System Model A is listening for connec-

tions incoming on a specific communication interface and the service of com-

mands received from connected client applications, whose format and content

are consistent with the commands implemented in the system. In response to

the command, the system should read the data from its internal database and

then return it in certain form as a response to the query sender.

The most important functional requirements from the point of view of

this solution are those relating to MIB. The basic requirement of MIB is to

receive the requests incoming from the sender (System Model B) and forward-

ing them to the recipient (System Model A). Since MIB is a distributed system

consisting of several micro-services, it should have the possibility to explore

their effectiveness. In addition, an important requirement implemented by MIB

 Service-Oriented Architecture for Integration of Information Systems ... 39

is the translation of data passing between the systems as appropriate for their

types and formats.

Figure 3. Basic functionality of integration solution model

Apart from the above functional requirements, also some non-functional

requirements were determined. The first one is to provide the integration of

System Model A with System Model B without any modifications of System

Model A implementations, which would be related to integration of these sys-

tems.

40 Software Engineering: Improving Practice through Research

The second requirement is a distributed solution architecture of MIB,

which enables an easy replacement of individual modules and the extension of

integration of new systems with a minimum of changes to the implemented

solutions. In addition, MIB should implement the common data type for the

certain functionality, which allows the independent changes in native data

types, derived from System Model A and System Model B, and also an easy

use of the same data in the next integrated systems.

5. Architecture of Information Systems Integration Model

Integration solution MIB was based entirely on the Java Enterprise Edi-

tion platform. All micro-services included in MIB and their registers were

implemented with the use of number of modules integrated into Spring Boot.

Models of System Model A and System Model B were made as separate appli-

cations. System Model A is a simple application made in client-server archi-

tecture in PHP language. System Model B like MIB solution was implemented

in Spring Boot. To communicate with the end user the REST web services

were used. The architecture of developed solution is presented in Figure 4.

System Model A was developed as server part of client-server architec-

ture. The application listens the incoming calls on a specific TCP port. When a

customer calls (e.g. by telnet) the server waits for a message incoming from

the client. Incoming message is validated on the server side. Validation is to

determine whether the received message is supported by the server command.

If the server receives a supported command, it starts the execution of the re-

lated business logic. Otherwise, the server responds returning the appropriate

message about unrecognised or unsupported command, and then returns to

listening. For the needs of MIB solution, the System Model A supports the

command, which business logic is to connect to a database, execute the query

and then return the result to the client.

System Model B is a simple application that provides REST service us-

ing the MIB solution to retrieve the data from System Model A and then re-

cording it in database embedded in memory and returning the stored data to

the author of the request. Moreover, the application has a built-in client allow-

ing the execution of requests from the web browser level.

S
ervice-O

rien
ted

 A
rch

itectu
re fo

r In
teg

ra
tio

n
 o

f In
fo

rm
a
tio

n
 S

ystem
s ...

4
1

 F
ig

u
r
e
 4

. A
rch

itectu
re o

f in
teg

ration
 so

lu
tio

n
 M

IB
 w

ith
 in

teg
rated

 m
o
d

els o
f sy

stem
s

42 Software Engineering: Improving Practice through Research

The developed integration solution is used to communicate the System

Model B with System Model A. Because it works as the intermediary between

systems designed in micro-services architecture, it was called Micro-service

Integration Broker, MIB.

Micro-service Integration Broker was implemented in accordance with

the concept of service-oriented architecture. However, in contrast to the clas-

sical approach, it is devoid of its main drawbacks such as increased complexity

of the system, poor resistance to crashes or difficult testability. Use of micro-

services makes that the whole MIB solution consists of five autonomous mi-

cro-services that do not affect the existing part of the system and they can be

managed, changed or tested individually. The resiliency is ensured by the reg-

ister and the so-called load balancer that monitors and manages the instances

and the redirections to particular micro-services.

MIB may consist of a different number of modules depending on how

much systems have to communicate with each other. In the framework of

communication between System Model A and System Model B four micro-

services were implemented recording to a single services registry. It is possible

to distinguish two types of micro-services in MIB: input/output adapters and

data/messages transformers. As the models of systems A and B, have been

created with the assumption that System Model B will request the data from

System Model A, two adapters were prepared respectively: micro-serviced

outbound integration adapter of system B, MOIA-B and micro-serviced in-

bound integration adapter, MIIA-A. In addition, two transformers have been

implemented: micro-serviced integration message transformer, MIMT, respec-

tively for system A and for system B. The last module of MIB is Eureka

server, developed by Netflix micro-service, which is a services register provid-

ing: discovery of services, load balancing and service of failures. The main

task of Eureka service is to monitor the services registered in it and to provide

its location based on the names under which they were recorded.

MIB is the most important element of implementing the proposed inte-

gration model. It consists of five applications (written in Java language using

Spring Boot) that, as five independent micro-services, together form the inte-

gration solution, used to communicate System Model A with System Model B.

The central point of MIB is micro-service "Eureka Server" acting as a registry

of other micro-services.

 Service-Oriented Architecture for Integration of Information Systems ... 43

Next micro-service within MIB is Microserviced Outbound Integration

Adapter, MOIA cooperating directly with System Model B. Activity of this

adapter was focused in controller mapping the functionality made available by

adapter of incoming messages of System Model A. It is based on sending the

request received from System Model B to the adapter of System Model A,

found in the registry. Then the received message is translated on the format

compatible with System Model B using the transformer found in the registry.

A request that goes from MOIA adapter to the adapter of incoming mes-

sages of System Model A (Micro-serviced Inbound Integration Adapter,

MIIA) is supported by the controller, whose logic is to connect through proto-

col (native to System Model A), sending commands with parameters received

in the request and then the transformation of the response to general form and

returning it to MOIA adapter.

To make the data extracted from one system be understood for the sec-

ond one, it is necessary to translate them. It is implemented using two micro-

services, acting as transformers. Using a common data format allowed for

implementation of transformers in such a way that they are not aware of each

other – it makes data format of System Model A independent on data format of

System Model B.

The integration of communication using MIB proceeds as presented in

Figure 5. The user sends via SwaggerUI interface a request to System Model B.

In the framework of service of user’s request, System Model B through its

own REST client sends a request to B output adapter.

B output adapter maps all of the functionalities offered by other input

adapters. Thanks to it, System Model B may send a request in the form identi-

cal, which will reach the target system, differing only in the recipient’s ad-

dress.

B output adapter within the service of received request, send it to A in-

put adapter associated with a given functionality, using to it the Eureka client

oriented on Eureka register. Thanks to it B output adapter does not to know the

address of input adapter – just it knows the name of the system, which the

request has to reach. On the basis of the system name and the prefix identify-

ing the input adapters, the running instance of A input adapter is found in

Eureka register.

44 Software Engineering: Improving Practice through Research

When a request sent from B output adapter reaches the A input adapter,

the operation logic associated with its service is performed. A input adapter

connects to System Model A, sending the command native for A, by commu-

nication protocol, supported by System Model A. System Model A returns the

data associated with this command to the sender, i.e. to A input adapter.

Figure 5. Schema of MIB system working on the example of data transmitted between

System Model A and System Model B

After receiving the data in a format compatible with System Model A,

the A input adapter searches for the instances of A messages transformer in

Eureka register.

 Service-Oriented Architecture for Integration of Information Systems ... 45

Transformers are the only elements of the system, knowing the formats

supported by the systems. A input adapter sends the data obtained from Sys-

tem Model A in order to transform them to the agreed general format. The data

in general format returns back to A input adapter where they are immediately

sent back to direct request sender, i.e. to B output adapter.

Finally, B input adapter performs the analogous reference to the rele-

vant transformer, that translates the data from general format to format specific

for System Model B. After returning the data by transformer, they are immedi-

ately returned by the B output adapter to the original author of request, i.e. to

System Model B.

The use of general format well-known for all transformers allows the

independent modification of data specific for the system without the necessity

of modifications of all transformers, translating the data to and from the format

of the system.

6. Conclusions

Service-oriented architecture has introduced the new possibilities for

communication between heterogeneous systems or applications, largely due to

the popularization of network services. Micro-services, as an architecture de-

rived from SOA, but fully consistent with it, try to solve the typical problems

of pure service-oriented architecture. Therefore, this architectural pattern as

well as the technologies strongly associated with it, has been selected for the

main objective of presented work.

The described assumptions and requirements fully address the problems

associated with SOA, so that the proposed solution minimizes their occur-

rence. Designed solution architecture allowed performing the optimal imple-

mentation, and the presented models of information systems have enabled the

mapping of conditions of solution deployment for existing heterogeneous sys-

tems.

Conducted simulation tests showed the correct operation of imple-

mented integration model, the use of which has enabled seamless communica-

tion between prepared mock-ups of system.

46 Software Engineering: Improving Practice through Research

The use of micro-services is very flexible and universal approach for in-

tegration of information systems. Thanks to its flexibility, the created integra-

tion solution can be further developed. It is scalable and can be used for the

integration of more than two systems. The potential directions of development

should focus first on expanding and optimizing of existing modules, for exam-

ple by more universal system of message translations or by developing of

more universal way of functionalities mapping between various adapters of

incoming and outgoing communication. Moreover, the security aspect and the

ability to customize the integration solution prepared to cooperate with more

systems represent the future direction of presented works.

There is probably no software architecture without drawbacks. There is

also no universal approach that will work in each information system. SOA is

not an ideal creation, applicable in every situation. However, its main advan-

tages are:

 thanks to well definition and separation of elements, the software can

be easily modified – flexibility of architecture allows to quickly add

new services,

 good design and implementation of applications/systems in accordance

with SOA principles allows to reuse the services in other systems or

projects,

 SOA provides the separation of logic, enabling the developers to work

independently on services, not blocking to each other,

 due to SOA, the creation of new functionalities does not affect the

other functions, and if the contract was not affected, the customer does

not have to make any changes to his system,

 through standardized communication of services in SOA, the easiest

integration of services and applications is possible,

 due to high pressure on the business aspects, SOA contributes to the

creation of software better meets the user requirements.

 SOA is platform independent and it does not exclude the cooperation

between applications written in different programming languages.

 Service-Oriented Architecture for Integration of Information Systems ... 47

References

[1] M. P. Papazoglou and W. J. Heuvel. Service oriented architectures: approaches,

technologies and research issues, VLDB Journal, 16 (3), 389–415, 2007.

[2] G. Alonso, F. Casati, H. Kuno and V. Machiraju. Web Services – Concepts,

Architectures and Applications, 2004.

[3] H. Paulheim, Ontology-based Application Integration, Springer Sci-
ence+Buisness Media, LLC, 2011.

[4] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building,

and Deploying Messaging Solutions, Addison-Wesley Longman Publishing,

2004.

[5] C. Bussler. B2B Integration: Concepts and Architecture, Springer-Verlag Berlin

Heidelberg, 2003.

[6] R. Monson-Haefel and D. A. Chappell. Java Message Service, Second Edition,

O’Reilly, 2009.

[7] X. Pan, W. Pan and X.Cong. SOA-based Enterprise Application Integration,

proc. of 2nd International Conference on Computer Engineering and Technology,

7, 564–568, 2010.

[8] A. Rotem-Gal-O. SOA Patterns, Manning Publications Co, 2012.
[9] T. Erl. SOA Design Patterns, SOA Systems Inc., 2009.

[10] T. Erl. Service-Oriented Architecture (SOA): Concepts, Technology, and Design,

2005.

[11] S. Kumari and S. Kumar Rath. Performance comparison of SOAP and REST

based Web Services for Enterprise Application Integration, Proc. of International

Conference on Advances in Computing, Communications and Informatics

(ICACCI), 1656–1660, 2015.

[12] A. Karmarkar and M. Edwards. Assembly of Business Systems Using Service

Component Architecture, Springer–Verlag Bering Heidelberg, 529–539, 2006.

[13] D. Du, J. Liu and H. Cao. A Rigorous Model of Contract-based Service Compo-

nent Architecture, Proc. of International Conference on Computer Science and
Software Engineering, 409–412, 2008.

[14] M. Villamizar et all. Evaluating the Monolithic and the Microservice Architec-

ture Pattern to Deploy Web Applications in the Cloud, IEEE, 583–590, 2015.

[15] L. Chomatek and A. Poniszewska-Maranda. Multi-agent systems in SOA archi-

tecture, Proc. of 16th Conference Networks and Information Systems, 2008.

Chapter 3

The Use of Web Services Architecture

for Engineering Calculations

Based on the webMES Platform

1. Introduction

The increase in computing power and the evolution of numerical algo-

rithms (approximating the solution of a physical problem) influenced the de-

velopment of engineering calculations. Physical phenomena, described by

differential equations, with given boundary conditions may be simulated by

means of computer calculations.

The analytical solution of these equations is in many cases difficult or

even impossible. Therefore, the researchers use numerical methods, using

transformed differential equations (and other data about the problem, such as

material properties and boundary conditions) to create a system of linear equa-

tions. In case of large problems, when the entire region is divided into a num-

ber of discrete components, the system of equations may consist of millions of

unknowns (the searched physical values) that can be calculated only by a digi-

tal machine [1].

The calculation of the abovementioned large systems of equations and

the use of other methods to solve a given physical problem consume a part of

resources of the computing unit. In addition, the implementation of the simula-

tor involves writing a code in one of programming languages, which requires

knowledge and experience in this field. On the other hand, the use of custom-

ized engineering software, as a module in a larger system, is associated with

the development of an interface between the individual modules. All these

elements mean that there may be a need for delegating these tasks to

50 Software Engineering: Improving Practice through Research

a separate, perhaps remote software, which will be able to communicate with

any system because of the universal interface.

An important aspect during the tests in numerical experiments is the

ability to monitor the calculations. Computing performance of modern per-

sonal computers allows performing simulations in time, in which a given cal-

culating unit is not used for other tasks – for example at night. The remote

monitoring of calculations seems to be interesting when it comes to the use of

web services. It allows to detect the interruption of calculations by external

factors (e.g. a computer failure), which will later contribute to the prevention

of similar occurrences. The following paper presents a simple client program

that allows checking the status of calculations.

1.1. Web services

One of the possible architectures to be used in the design and implemen-

tation of the system is a service-oriented architecture. The system, divided into

service, can be treated as a collection of objects that communicate with other

objects via the interface.

This concept, which is close to the concept of interface as a “contract”

[2], allows for the multiple use of one module in a single system, as shown in

Figure 1.

Figure 1. The division of the information system as a set of services. The webMES

 module provides an interface for modules ExperimentalModule,

ResultsAnalyser and Postprocessor

 The Use of Web Services Architecture for Engineering Calculations ... 51

The services, mentioned above as “objects”, are not necessarily objects

included within the local system. They can be treated as distributed objects

that can communicate with a remote computing unit, taking only the output

data. The implementation and technology is completely indifferent, while the

important things are data transmitted within a given interface. The article de-

scribes the use of web services – services whose communication medium is

the Internet.

1.2. Literature review

Following a literature review, the authors could list several works that

have tried to implement similar functions. The work [3] proposed a complete

web server in which pre- and post-processing are performed on the website,

while the calculations are performed by the computing server (back-end). Un-

fortunately, the results are not available via web services, and hence – the inte-

gration of its software with a calculation module is not possible without the

inconvenience of page parsing.

On the other hand, the article [4] describes a web application form of

Vine Toolkit which is useful in the construction of scientific portals that pro-

vide an integrated set of tools, applications and data (science gateway). This

software, by providing an extensible, unified and modular application pro-

gramming interface, allows access to grid technologies and disk resources.

Vine Toolkit also enables the integration of Adobe Flex and BlazeDS, which

allow creating powerful web applications.

The paper [5] presents an interesting concept of using web services to

generate finite element meshes. The main emphasis was placed on the refine-

ment of services, so that they could be widely used, e.g. in mobile applica-

tions.

The abovementioned works have contributed to the creation of a project

and prototype of web services, which was named webMES. The efforts were

focused on the creation of appropriate data structures and adapting the used

technology to work with engineering software. The work [6] presented mainly

theoretical issues associated with the performance of numerical simulations

and a physical project of the system, including the description of classes.

52 Software Engineering: Improving Practice through Research

1.3. Purposes

The purpose of this work is to create a server of web services, working

with existing engineering software. The software presented in the subsequent

part of the article differs in terms of requirements and programming dependen-

cies. The user must provide an appropriate environment and libraries. The

concept of web services allows providing a unified interface, regardless of the

employed simulation software (solver). Additional benefits will be presented

in Section 5.

One of the problems, outlined in Section 3, is to use the solvers that

were not designed to work with web services. Their communication with the

user comes down to generating output files. This hinders the interaction be-

tween applications (the server of web services and solver). This Section pro-

posed a solution to this problem without having to modify the source code of

the proposed engineering software.

Section 4 presented a client program, which is the first tool that works

with the webMES system.

2. Engineering Software

The examined engineering software (abbreviated to ES) will be treated

as software, having the following characteristics:

 it is run by a single program on a system with a console shell;

 the user enters input data (e.g. the file names) using command-line ar-

guments;

 the program saves the results to the output files;

 each file represents one time step (which narrows the studied phe-

nomenon to the initial value problems).

Consequently, the works do not include large simulation programs (e.g.

AutoCAD) that display a real-time simulations. The web services presented in

the subsequent part of the article use software that operates according to the

above characteristics – which converge all of the software to the batch soft-

ware architecture [7].

 The Use of Web Services Architecture for Engineering Calculations ... 53

2.1. Used software

The concept of the abovementioned engineering software was initiated

after analysing the NuscaS software [8]. NuscaS is a program for engineering

calculations on the basis of the finite element method. In order to operate it

requires data on the mesh (the original format msh, used by the built-in gen-

erator of meshes) and task. The task is represented by a series of files:

 bc – description of the boundary conditions,

 ic – description of initial conditions,

 m – material properties,

 cp – task properties (time step, number of steps, etc.).

The launch of NuscaS with the above data results in the generation of

output files in rlt format. This is the file in which each node (identified by a

number) is assigned to the value of the desired variable (or variables).

The work on theoretical issues of the finite element method and the

analysis of heat conduction resulted in the creation of jMES. jMES is a heat

conduction simulator, which uses the same format of the input data as NuscaS.

However, the output data format is different. JSON format was picked because

of the availability of parsers in different programming languages, making it

easy to upload data to other system.

The authors are also designing and implementing a different simulation

system, using the TalyFEM library [9]. This library provides a set of classes

that make it easier to create software using the finite element method. Applica-

tions developed with the use of this library can run faster than other programs

due to the scalability and parallelism. One of the tasks during the work on

webMES will be the integration of web services with the software developed

on the basis of TalyFEM.

3. Design and Implementation of Web Services

The web services described in this section are implemented using the

concept of REST API [10]. This concept allows treating services as a set of

API (Application Programming Interface) to communicate with engineering

software. The HTTP technology was used as the data exchange protocol, and

54 Software Engineering: Improving Practice through Research

the JSON format as the language of messages. The subsection 3.2 presented

the employed technology for creating web services. The presented concepts

can be applied using a variety of technologies, oriented on programming of

web applications (e.g. Java EE or .NET), which would therefore contribute to

the better description of the problems associated with the combination of

available engineering software and the server of web services.

One of the problems was sending messages from the software to the

server of web services. The existing and employed programs are not designed

to send messages, they do not allow access to their own mechanisms and inter-

faces to inform about their status.

3.1. Integration with the existing ES

Two possible ways of communication between software and web ser-

vices were specified during the analysis:

 the code of engineering software informs the server of web services

about its status (Figure 2a);

 the server of web services based on the analysis of engineering soft-

ware sets its status (Figure 2b).

It appears that the first method, from the perspective of software design

and software engineering, is better than the other for future expansion. If one

connected it to the possibility of communication between engineering software

(available through its API) and the server of web services, the simulator itself

can be regarded as a service, in which a separate server of web services acts as

a proxy between the client and engineering software.

Unfortunately, the programs prepared and employed to simulate physi-

cal phenomena do not have the ability to inform about their status with their

modules (written using, for example, the observer pattern [11]), nor do they

give the possibility of polling by the remote software using the prepared API.

While in the case of jMES and TalyFEM adding communication with separate

modules is a matter of supplementing their projects, it is not possible in the

case of NuscaS, as the project is no longer being developed. From the begin-

ning, NuscaS was envisioned to be a single station program, which does not

have any ability to communicate with the outside world.

 The Use of Web Services Architecture for Engineering Calculations ... 55

Figure 2a and 2b. The concepts of communication between engineering software

and the server of web services

a) with the use of API simulator

b) without the use of API simulator (analysis results)

The behaviour that can be used to monitor the calculations was observed

when analysing the operation of the above software. Each of the solvers after

calculating a time step can save the result into a file. Knowing the number of

steps (due to the file with data on the task), one can assess the percentage of

completed tasks (CT) using the following formula:

, (1)

where OF is the number of output files, and NS is the number of all the

steps. The appointment of CT allows monitoring the task. To calculate the

number of files that meet certain criteria for the name (each task generates

output files whose names contain the appropriate prefix) one is required to use

libraries to manage file systems. Such libraries have virtually all popular pro-

gramming languages. In this way, one of the possibilities of the described sys-

tem – monitoring calculations – can be done without interfering in the code of

ES.

56 Software Engineering: Improving Practice through Research

The next task – downloading the results – can be accomplished in a very

similar way, without the need to perform any software modifications. If the

calculation of each time step results in recognition of an appropriate file, then

it is enough to return the file as a result of the calculation. The output files

contain an appropriate suffix, which is the step number. To manage this task it

is necessary to have a library to operate the file system. It should not be prob-

lematic to load and return the file content.

It should be noted that returning the file content in the form of HTTP re-

sponse is not entirely optimal, and in the case of larger meshes it will not be

possible (due to expiring session – time-out). Nevertheless, this method, in

which the file content is perceived as a check box in JSON, is only a tempo-

rary solution.

3.2. Used technologies

Web services need tools that enable to create a program which allows

reacting in a deterministic way to incoming requests. Since the HTTP protocol

is based on the transmission of character strings, the whole is possible to im-

plement in any programming language and any technology that enables listen-

ing on the appropriate port and sending a reply to the remote client. From the

perspective of web application development it seems that the use of one of the

dedicated web technologies will create appropriate network services in the

shortest time and with integrated solutions ensuring high-quality software.

Due to the authors' experience, the server software was written in Py-

thon using the Django framework [12]. Django allows to create a web applica-

tion, using the built-in object-relational mapper (and database support), the

system that generates content based on templates or automatically-generated

admin panel. This particular panel is used to run tasks. The main task of any

programmer is to define models (classes) and views (functions that return the

appropriate HTTP request). Due to the fact that the web services, in the current

stage of development, do not require generating websites, it was not necessary

to implement templates.

Each view should return a Response object. The HTTPResponse

object, which can return the appropriately generated response with the use of

HTML, is the most frequently used object. If the only returned response is in

 The Use of Web Services Architecture for Engineering Calculations ... 57

JSON format, there is a need to manually set the appropriate type of resource

and add a return information. The creators of Django simplified the return of

responses in the appropriate format, providing a JSONResponse object,

requiring only a dictionary object (dict from Python). The object itself and

the framework set the appropriate type of response, and other metadata, while

the dictionary is converted to JSON format. This allowed for a significant ac-

celeration of works on services, hiding metadata of the HTTP protocol (Figure

3).

Figure 3. The use of a JSONResponse object, turning the dictionary object in the

HTTP response with the appropriate object in JSON format

3.3. System layers

In the current version of the system, running an engineering simulation

can be represented as a sequence of actions, initiated by the admin panel. The

user must activate the appropriate check box to run the simulation. It should be

emphasised that this is a temporary solution, easy to implement, and the

launch of calculations is possible in the future by the appropriate web services.

Launching the simulation begins with the creation of a thread (Nsc-

Thread) using the Python interpreter and notifying the system (database)

about any change in the calculation. Then, the process is launched through the

interaction with a system layer (subprocess module) – the executable file

of an engineering application with appropriate arguments. As described previ-

ously, the engineering application does not inform about its status, but the

process itself will finish its operation when the engineering application is fully

executed. Full information is again entered into the database, ending the

NscThread thread. The results are stored as files, which can be accessed

through the web services described in the next section. The entire scheme of

calculations, including the layers, technologies and Python modules is shown

in Figure 4.

58 Software Engineering: Improving Practice through Research

Figure 4. Layers of the calculation module of the webMES system

4. Available Services

The web services operating within the described system are services that

do not change the system status or influence the formation of new calculations.

These services are “read only” and take the results of all calculations. The

creation of new tasks is not currently possible using only web services. A tem-

porary solution is to use an admin panel to place tasks on the server. In the

future, it is envisaged to use appropriate requests, along with the development

of a client application.

At the time of work, webMES provides the following web services:

 get_tasks (returning information about all tasks),

 get_computed_steps (the completion level of tasks),

 The Use of Web Services Architecture for Engineering Calculations ... 59

 get_computed_step (results in a given step),

 get_task_properties (task properties loaded from the cp file),

 get_files (information about identifiers and types of all uploaded

files),

 get_file_content (returning the file content).

4.1. Arguments of web services

The GET method is used to transmit the parameters of requests. It was

decided to use it because of the relatively small number of data transferred, the

ease of testing and the use of this method to the controller handling requests in

Django. The parameters can be placed in a URL address, which does not use

the query string. Instead, it uses a semantic URL.

Using the query string one can provide an argument name and its value,

which are appended to the resource identifier, such as e.g.:

http://page/tasks?task_id=1&step=20

The whole request (address) is processed by the data controller of web

services. Therefore, it is possible to modify the controller by the independently

analysed HTTP request. In Django it is achieved through the URL Dispatcher

that consists of a list of supported URLs, and corresponding views. Using the

semantic URL, such a request can be written as:

http://page/tasks/1/20

and the URL dispatcher triggers an appropriate method, including the transfer

of appropriate arguments to the view.

4.2. Implementation of services

The implementation of services comes down to writing appropriate

methods (views) that return responses. Django allows, as mentioned in Section

3, to return a dictionary object in JSON format as a response to a request.

Therefore, the task of the programmer is to create an appropriate dictionary

object, which will be returned as JSON.

The currently used solution is the manual creation of a dictionary based

on the available data. The models, whose content is returned in web services,

60 Software Engineering: Improving Practice through Research

have a defined toJSON method that creates a dictionary (not a JSON object)

and returns it.

This is not the target solution. Each code refactoring of models (chang-

ing fields, adding new models etc.) makes it necessary to manually modify the

appropriate methods, generating dictionaries based on the data. In addition, it

is required to monitor the controller to include the added methods in the URL

Dispatcher module. The solution used in the future will be the use of library,

generating basic web services based on the content of models – it can be com-

pared to the use of serialization in Java. One of the proposed libraries is REST

Django, which is intended to be implemented in the system. Some web ser-

vices (which require calculations and operations on files, such as returning the

status of calculations) cannot be automatically generated and there is still a

need for manual management.

4.3. Communication with webMES

A client software was developed to monitor the running tasks using the

system. It was written with the use of Python and PyQt (application form),

making it possible to check the status of calculations on the most popular op-

erating systems, including Windows and Linux.

Figure 5. The client of webMES

The application, based on the JSON files provided by services, fills in

all information about the running tasks (Figure 5). This way one can obtain

data about the task name, the time of its commencement and status

 The Use of Web Services Architecture for Engineering Calculations ... 61

(completed, running, stopped), the number of steps concerning the performed

calculations and percentage of completed tasks (CT).

5. An Example of How the System Works

A simple example of the initial problem of heat flow was used to pre-

sent the results of the webMES system. The two-dimensional area in the size

of 2x2 is divided into triangular finite elements. One side contains a boundary

condition of the third type (heat exchange with the surroundings), and the op-

posite side contains a boundary condition of the second type (constant heat

flux). Such a problem can simulate the process in which certain body is heated

from “below”, and the top exchanges heat with the environment.

Figure 6. The examined task area. The q stream works from the bottom, the heat ex-

change with the environment occurs from the top. The selected nodes: 1 (the centre),

2, 3, 4, 5 (the corners)

5.1. The input data and results

The jMES software uses input files that are compatible with NuscaS.

Grid files, initial conditions, boundary conditions, material properties and task

properties were created. The time step was set to 0.01 s, the number of steps to

1000. The starting temperature was 400K, the ambient temperature 300K. The

remaining properties of the task do not affect the duration of web services, and

were therefore omitted in the description.

62 Software Engineering: Improving Practice through Research

The results, obtained in the JSON format for the 1000th step (after 10

seconds in the simulation), can be obtained using the following address:

http://page/tasks/4/1000

These results (the number of dimensions, the number of nodes, etc. were

omitted for readability) are as follows:

{

 "errors":"",

 "result":{

 "vals":[

 […]

 {

 "id":1,

 "val":400.0

 },

 {

 "id":2,

 "val":300.0182570430909

 },

 {

 "id":3,

 "val":411.4285714285529

 },

 {

 "id":4,

 "val":300.0182570430909

 },

 {

 "id":5,

 "val":411.4285714285529

 }

],

 "desc":""

 }

}

The temperature in the 3
rd

 and 5
th
 node increased (the heat flow of low

power), and it decreased in the 2
nd

 and 4
th

 node (very high heat transfer coeffi-

cient). The further work will optimize the results. Currently, the model of out-

put file concerning the NuscaS system, the resulting file contains a lot of re-

dundant information (task data, the numbers of nodes) which can be removed.

The speed of the system was not analysed during calculations. It de-

pends on the calculation time performed on the engineering software. As part

 The Use of Web Services Architecture for Engineering Calculations ... 63

of the further work, using a scalable simulation software, it will be possible to

carry out comparative studies between different solvers.

5.2. Benefits of using webMES

The use of the created jMES simulator would require the user to use the

proper preparation of a computing environment. The programmer would have

to manage the needed software (Java Virtual Machine, computing libraries)

and data. WebMES allowed hiding the necessary software components from

the user. This is a big advantage if one wishes to use the NuscaS program – its

console version runs only on Linux.

The web services allow the programmer-client to delegate tasks to the

selected calculation program. This has not been implemented in any work, but

after the release of the system it will be possible to use its web services for

numerical calculations.

6. Conclusion and Plans for Further Work

Web services are increasingly used as a method for exchanging data be-

tween the server and the client (e.g. a mobile application). The use of this con-

cept allows for a remote analysis of engineering calculations, including sys-

tems that do not allow access to their API. As shown in the work, it is possible

with the use of Django framework and the relevant test behaviour of the soft-

ware, and in particular the generated output data. A simple client program that

communicates with the server was designed and written for the purposes of

this study.

In future it is planned to develop the system as a web service. Addition-

ally, the project should be refactorized using the REST Django library to

automatically generate CRUD services for individual models. The problems of

launching calculations and transmitting input data to the server should also be

studied.

An important element of the work will be the analysis and use of scal-

able engineering simulators. The person responsible for the simulation will be

able to choose to run calculations in a multi-core application when defining the

64 Software Engineering: Improving Practice through Research

task. The simulators of physical phenomena, with the ability to work in a dis-

tributed environment are in the implementation phase. WebMES can be used

as a medium to compare the current solutions with the new, scalable simula-

tion systems.

References

[1] O. C. Zienkiewicz. Finite Element Method, McGraw Hill, 1977.

[2] B. Eckel. Thinking in Java. Wydanie IV, Helion, Gliwice, 2006.

[3] H.-M. Chen, Y.-C Lin. Web-FEM: An internet-based finite-element analysis

framework with 3D graphics and parallel computing environment. Advances in

Engineering Software, 1, pp. 55–68, 2008.
[4] P. Dziubecki, P. Grabowski, M. Krysiński, T. Kuczyński, K. Kurowski, D.

Szejnfeld. Modern Portal Tools And Solutions with Vine Toolkit for Science

Gateways. In: Proceedings of the 3rd International Workshop on Science Gate-

ways for Life Sciences London, United Kingdom, 2011.

[5] N. Sczygiol, J. Mikoda, A. Wawszczak. Web service for finite element mesh

generator. Computer Methods in Material Sciences, 10, pp. 176–180, 2010.

[6] P. Jeruszka. webMES – projekt usług sieciowych do realizacji symulacji in-

żynierskich, Studia Informatica 119, pp. 169–179, 2015,

[7] A. S. Tanenbaum, H. Bos. Systemy operacyjne. Wydanie IV, Helion, Gliwice,

2015.

[8] N. Sczygiol, A. Nagórka, G. Szwarc. NuscaS – autorski program komputerowy

do modelowania zjawisk termomechanicznych krzepnięcia. Polska metalurgia w
latach 1998–2002, pp. 243–249, 2002.

[9] H.K. Kodali, B. Ganapathysubramanian. A computational framework to investi-

gate charge transport in heterogeneous organic photovoltaic devices. Computer

Methods in Applied Mechanics and Engineering, 247, pp. 113-129, 2012.

[10] Learn REST: A RESTful Tutorial, http://www.restapitutorial.com/, accessed:

May 11, 2016.

[11] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Inżynieria oprogramowania:

Wzorce projektowe, WNT, Warszawa, 2008.

[12] Django. The web framework for perfectionists with deadlines,

https://www.djangoproject.com/, accessed: May 11, 2016.

Chapter 4

Designing a Data Warehouse for Changes with

Data Vault

1. Introduction

Designing a data warehouse may appear to be quite a simple task, espe-

cially at the conceptual level because it's often treated as a database which

main purpose is to leverage complex analytical queries efficiency and ability

to store and audit historical data. Nowadays there are few popular data ware-

house data models and there is a vibrant debate among data warehouse archi-

tects and engineers over which model is better. Authors of this paper having a

strong commercial experience in delivering data warehouse projects are aware

that finding an optimal approach is rather impossible, because every data

model has its pros and cons in particular scenarios. During implementations in

BPO companies (business process outsourcing) such as call centres frequent

changes in data structures, business rules and requirements are triggered with

almost every new project. It forced us to look for an appropriate data model-

ling and processing techniques.

There are lots of works related to data warehouse implementation and

design starting with traditional waterfall models with requirements first ap-

proach [9], dedicated agile methods proposed by [2] and [5], or quite opposite

implementation first approaches as proposed by [3]. Although the develop-

ment methodology is not a topic of this paper it is important to mention that

whatever approach you will choose it's highly possible that changes of differ-

ent nature may occur during implementation process, such as:

 changes of source data structures;

 business rules modification;

66 Software Engineering: Improving Practice through Research

 data updates and deletions;

 source systems migrations;

 ETL jobs modifications.

The paper is organized as follows: Section 2 contains an overview of ex-

isting data warehouse models and methodologies. In Section 3 the resistance to

changes within popular models will be discussed. Data Vault automation tech-

niques in introduction will is in the scope of Section 4. Last Section is a short

conclusion of the topics covered in this paper.

2. Background Introduction to Main Architectures

In this section we will introduce main ideas regarding data warehouse

architecture and implementation methodologies. We are going to compare

Data Vault to the models and methodologies from different schools we find it

important to show the basic differences between them.

2.1. Enterprise Data Warehouse (EDW)

Most of the data warehouse architectures consist of few core layers as

presented in Figure 1. Each of them has a different purpose (see Table 1), but

the main area of discussion among mentors such as Kimball, Inmon or

Linstedt concentrates on Enterprise Data Warehouse layer.

Figure 1. Data warehouse multi-layer architecture

 Designing a Data Warehouse for Changes with Data Vault 67

Table 1. Data warehouse layers description

Layer Description

Sources layer Conceptual layer representing all required data

sources such as relational databases, files, APIs, en-

terprise service bus and others.

Staging layer Within this layer raw data from sources is stored for

further processing. It can be treated as preparation

area where data is processed, cleansed and standard-

ized and not available for user queries.

Enterprise Data

Warehouse

Cleansed and integrated data is stored in order to

allow creation of specific subject data structures

within following presentation layer.

Presentation layer This is the final layer in which data is prepared for

specific usage (e.g. for financial department) usually

in multidimensional data marts or recalculated struc-

tures called report ma rts.

There are two main philosophies regarding EDW which mostly differ in

terms of end-user access, design and implementation approach which are de-

scribed briefly in Table 2. The top-down approach recommended by [4, 8] and

gives some overhead connected with the need of loading most of the required

source data into 3NF form which is time-consuming task and then deriving

dimensional data in form of data marts from it, which is quite straightforward

as denoted by Kimball [5]. On the other hand Kimball is an advocate of bot-

tom-up approach [6] and uses the concept of Enterprise Bus Architecture

where data marts are created and loaded in the area of EDW and then during

further implementation they create more and more complement data ware-

house by using conformed dimensions. The third approach represented by

Linstedts Data Vault (DV) [8] may be treated as the hybrid approach because

data is loaded first into EDW layer with lowest available granularity (no ag-

gregates, which are allowed in Kimball's approach) and then loaded into data

marts or report marts. Another interesting thing about DV is that it does not

have 3NF or dimensional model but unique hub and spoke architecture which

will be discussed within next section.

68 Software Engineering: Improving Practice through Research

Table 2. EDW approaches description

Approach User access Data

model/design

Implementation

Top-down End users do not have

access to EDW layer, it

is used for storage of

consistent and normal-

ized/semi-normalized

data.

3NF or Data

Vault model.

Data is loaded with

original granularity

into EDW,

from there it is later

loaded into specialized

data marts.

Bottom-up EDW layer is connected

with Presentation layer.

Data marts as a part of a

complement data ware-

house.

Enterprise

Bus Architec-

ture (dimen-

sional

model).

Data marts are loaded

based on users re-

quirements. Loads of

aggregated data is

acceptable.

2.2. Bottom-up Enterprise Bus approach

Bus Architecture may be treated as a generalization of dimensional data

model. There are two main types of tables, fact and dimension tables. Without

going into details fact tables focused on events and measures connected with

them and dimension tables gives us more descriptive and context information

about entities connected with that fact. With bottom-up approach it is advised

to create data marts (facts and dimension tables covering some business area)

of business required granularity and with help of conformed dimensions (such

as date dimension) these data marts should create complementary data source

as implementation proceeds. The resulting data warehouse will be a set of

connected data marts which is called Enterprise Bus.

2.3. Top-down Data Vault and CIF approach

Opposite to the bottom-up approach there are two popular top-down ap-

proaches. In both of them data is loaded into EDW layer first. It is important to

notice that this layer is generally not available for end-users. There are two

leading data models within this layer which are described in Table 3.

 Designing a Data Warehouse for Changes with Data Vault 69

Data is consumed by analytical applications or query tools after it is loaded

into data marts, known from bottom-up approach.

Table 3. Components of 3NF and DV models

Data model Components

3NF – normalized There are no distinguished components within this

model. Data is stored in the way that minimizes redun-

dancy and required operations during updates and de-

letes.

Data Vault – denormal-

ized

There are 3 main types of tables: hubs (storing informa-

tion about entities business keys/natural keys), satellites

(tables with descriptive attributes concerning exactly

one hub or link table) and links (many to many tables)

denoting relations such as transactions, associations,

hierarchies between two or more entities (hubs).

3. Handling Changes within EDW Layer

In this section, we compare sample solutions when handling mentioned

types of changes in Data Vault 2.0, multidimensional and 3NF data model. For

simplification we only focus on changes within Enterprise Data Warehouse

area, mentioning influence on the presentation layer.

3.1. Data structure changes

To examine different models behaviour when changes in source data

structure appear we define a scenario in which primary key switched from INT

to CHAR, such situation may happen after application upgrade or system mi-

gration as shown on Figure 2. This change may require different modifications

in EDW area. Let us discuss how this change can be handled.

With Data Vault we may decide to change the type of customer_id busi-

ness key from INT to CHAR, as long as integers may be easily casted to char

values. Satellites and link tables are connected with the hub table based on

hub_customer_hkey attribute which is calculated using hash function (e.g.

MD5, SHA) from business key. If not only the type of business key would

70 Software Engineering: Improving Practice through Research

change but the values as well (e.g. ID=234 to ID=AD_33) then the recom-

mended practice would be to create another hub table and leaving the old one

inactive for audit purposes (Figure 3). The same strategy would apply to the

satellite table when new descriptive columns such as the second_name would

be added.

Figure 2. Data warehouse multi-layer architecture

Figure 3. Recommended approaches for key column change with Data Vault

The dimensional model will behave similarly as Data Vault, only one

column would have to change and if the change would also affect values it

would require either overwriting old ones or creating, archiving them or creat-

ing complete new set of facts connected with a new dimension. Normalized

EDW layer will require changing of the key type in every related table what

makes it the most demanding model in this scenario (see Figure 4).

 Designing a Data Warehouse for Changes with Data Vault 71

In this scenario both dimensional and Data Vault models seem to cause

less trouble because only one attribute has to be changed opposite to normal-

ized model. If the change would also affect previous attribute values all the

models would face similar challenges.

Figure 4. Structure changes with dimensional and normalized EDW model

3.2. Business rules modification

When working with data sooner or later one will come across non

atomic attributes such as codes with business meaning. Let's discuss hypo-

thetical change in retail shop category code meaning change which may occur

after company decides to change its profile from food only to general store

(Figure 5).

Figure 5. Category code before and after change

After this transition old product category changes were not only expanded but

completely changed in order to better analyze new business, food type and

expiration types were replaced with a product, brand and margin types. This

72 Software Engineering: Improving Practice through Research

type of change is a revolution not only for the chain owners but also for the

previously designed data warehouse. Required modifications regarding respec-

tive models will be discussed based on Figure 6.

Figure 6. Changes in EDW after business rules modification

Data vault recommended technique is to do nothing as applying busi-

ness rules on EDW layer is inadvisable. The way in which cat_code could be

decomposed into different attributes is by every means a business rule, that is

why aren't present. Satellite decomposed cat_code columns such as food_type

are not the default element and may be added only in a special form of the

model called Business Data Vault.

The dimensional model will require adding a new fields to the product

dimension table. One may consider adding completely new dimension but this

in turn would require modification of related facts, which should be treated as

a drawback as well as a possibility for sqn sequence keys to change after com-

plete dimension reloads, thus would require related facts reloads as well.

When using normalized model product new type tables should be added,

old food and expiry type tables may be removed or left as they were, but new

products will have null values in corresponding food_type_id and exp_type_id

attributes.

 Designing a Data Warehouse for Changes with Data Vault 73

Data Vault proves again to handle changes well as it do not require to

reload any existing data what minimizes risk of serious failure, especially

when historical data is not available. Moreover moving transformations such

as cat_code decomposition into another layer appears to be a future proof

technique.

3.3. Historical data handling

Attribute values change is a frequent event within transactional data-

bases. Discussed models do have proved recommendations for keeping track

of them so we will discuss them in classical case of surname change. This kind

of change may be treated as slow changes as opposed to frequent changes such

as e.g. call centre agent stage.

We can assume that after surname update the value was simply over-

written in the source system. It is usually the data warehouse responsibility to

keep track of these changes what usually happens at reload interval and is con-

nected with the notion of wrinkle-of-time [3]. Standard ways of handling these

changes within EDW layer is demonstrated on Figure 7.

Figure 7. Handling surname change from Kowalski to Nowacki within EDW layer

Data Vaults fundamental demand is to enable changes tracking so that

restoring the sources at a given point in time to be available. That is why this

74 Software Engineering: Improving Practice through Research

model supports versioning in every satellite table similarly to type 2 slowly

changing dimensions in dimensional model. After the change is discovered a

new record with load timestamp is inserted. To make update lookup operation

faster hash column is introduced. Hash can be generated from source data in a

load time and then matched with existing hash eliminating the need for com-

plex join conditions.

With normalized model additional history table might be used and re-

cord state could be tracked after every change with help of change_ts time-

stamp attribute, which stores information about update moment. This approach

is useful if one wants to have a quick access to the current data via employee

table but some historical analysis are also available thanks to employee_history

table.

Dimensional model supports data versioning with several techniques of

which the most popular are slowly changing dimensions (SCD) [6]. In dis-

cussed scenario we may decide to go with SCD type 2 adding a new row

whenever defined attributes changes. In this model no attribute hash was in-

troduced but it may be used as some optimization. Nevertheless there will still

be the requirement for matching facts that appeared at given time with the

dimension state at that time what is doubtlessly time consuming (additional

joins required).

Data Vault proves itself a good model for versioning from both compu-

tational and design perspective. Thanks to use of hash keys in its tables and

satellite attribute hashes it is easy and fast to load.

3.4. Data cleansing and consistency

It can be commonly heard that data in the data warehouse should be

clean and consistent, but such approach may cause some problems when pro-

ject evolves. Firstly Data Vault author spotlights the risk connected with ap-

plying business rules on EDW layer what was discussed in section 3.2. Opera-

tions such as: data standardization (e.g. same format for addresses), formatting

(e.g. upper case names notation), cleansing (e.g. deleting invalid phone num-

bers) are completely ignored by Data Vault. This approach has pros and cons

but it is convincing that using non universal ways of cleaning data may lead to

 Designing a Data Warehouse for Changes with Data Vault 75

such modification that it will be impossible to track the real state of source

systems.

Moreover some data can be incorrectly and irreversibly changed due to

wrong cleansing techniques. Let's examine Figure 8 with example of name

cleansing with fuzzy match, if lookup dictionary won't contain given name e.g.

Leo it could be transformed into Leon and loaded as such into data warehouse.

Such operation would be irreversible in some cases, and as EDW should be a

base for further layers it seems reasonable not to clean data extensively there.

The same applies to the consistency; let's assume that after data load it

appears that the same bill was assigned to two customers which is against ex-

pected source data model. Enforcing one-to-one relationship within EDW area

would require applying business rule for choosing the right assignment, but as

we already know it might not be a good idea. Though Data Vault makes archi-

tects not to do so because link tables that models relationships are many-to-

many tables by default which in turn allows modelling any relationship with-

out having to duplicate bill entity. With dimensional model it would be re-

quired to create two bill fact entries, one for each customer and normalized

model would have to handle two bills with the same business key. Once again

Data Vault approach appears to be a reasonable choice for cleansing and con-

sistency.

Figure 8. Example of incorrect name cleansing

76 Software Engineering: Improving Practice through Research

4. ELT Automation for Faster Changes

Another important elements of data warehouse landscape are the

ETL/ELT processes. Usually when the project starts it is hard to predict the

nature of production environment. Let's consider the impact of the decision

that all new data has to be loaded into the data warehouse directly from dump

files instead of direct insert commands. This example is quite likely to happen

when using services such as Amazon Redshift where inserting new data from

S3 files via COPY command is a recommended technique opposite to inserting

it row by row [1]. Modifying all existing ETL jobs would be a time consuming

and vulnerable to errors. This is why it appears convenient to minimize the

number of jobs what can be achieved by generalizing them. Based on our posi-

tive experience with Data Vault and it's standardized structure we propose a

semi-automatic framework (Figure 9) for loading staging data into Data Vault

EDW area. This framework is based on two general requirements:

 source data is extracted into staging area first;

 staging area tables reside within the same database as Data Vault ta-

bles.

Figure 9. Semi-automated Data Vault loading framework

This framework is capable of loading all Data Vault objects i.e. hubs,

links and satellites. Data is extracted from sources using independent jobs into

the staging area within target database. After loading staging area generic load

mechanisms start to generate required SQL queries in order to perform steps

demonstrated on Figure 10 for each Data Vault's table type i.e.:

 generate queries to fetch staging data;

 Designing a Data Warehouse for Changes with Data Vault 77

 generate and execute insert command using generated queries;

 generate and execute queries deactivating updated or deleted records.

Figure 10. Data Vault generic load process

First step of generating input queries is acquired by using queries and

location metadata provided by developer. This approach enables high level of

flexibility regarding usage of staging data.

Within the insert generation step new rows are identified by computing

and comparing hash keys generated from source business keys (in case of hub

and link tables) against hash keys (hkey) that already exist within Data Vault.

In case of satellite tables hash keys are also computed but apart from them

attribute hash column hash is computed and used for faster change detection,

so if computed hkey and hash do not match any record existing in target satel-

lite new row is inserted.

In the last step updates are acquired by using OLAP LEAD function to

identify if any newer record with the same hkey appeared within specified

satellite table if so the last seen date attribute (lsd column or ledts as used in

our implementation) is set to the current load timestamp as proposed by [7]. If

record has been deleted from the source database the same ledts attribute value

is set but it can be only detected by comparing hash keys present in a Data

Vault and those computed from data source.

The details of meta data tables and their content won't be further dis-

cussed within this paper. It is important though that such framework allows

handling Data Vault load using only 3 generic jobs what have a positive im-

pact on time required to modify and optimize loading mechanisms.

78 Software Engineering: Improving Practice through Research

5. Conclusion

The use of change resistant model and architecture within the Enterprise

Data Warehouse layer has a positive impact on data warehouse maintenance

and development process. Individual elements, case studies and recommenda-

tion presented in this paper were the result of a review of available literature

and the experience gained during the successful commercial deployments.

Positive attributes of Data Vault seen during discussed case studies prove that

it can be treated as a serious competitor to more popular Inmon's and Kimball's

models and methodologies. More detailed paper about successful usage of the

discussed model in a business environment will be covered in a separate paper.

The further work may aim at development on open source tool for Data Vault

automation as well as comparison of the load times of popular EDW models.

References

[1] Amazon Web Services using a copy command to load data – amazon redshift.

http://docs.aws.amazon.com/redshift/latest/dg/t_Loading_tables_with_the_COP

Y_command.html, accessed: April 17, 2016.

[2] R. Hughes. Agile Data Warehousing Project Management: Business Intelligence

Systems Using Scrum. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2013.

[3] W. H. Inmon. Building the Data Warehouse. QED Information Sciences, Inc.,

Wellesley, MA, USA, 1992.

[4] W. H. Inmon, C. Imhoff, and R. Sousa. Corporate Information Factory. John

Wiley & Sons, Inc., New York, NY, USA, 1997.

[5] R. Kimball, L. Reeves, W. Thornthwaite, M. Ross, and W. Thornwaite. The Data

Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing and

Deploying Data Warehouses with CD Rom. John Wiley & Sons, Inc., New York,

NY, USA, 1st edition, 1998.

[6] R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to

Dimensional Modeling. John Wiley & Sons, Inc., New York, NY, USA, 2nd edi-

tion, 2002.
[7] D. Linstedt and K. Graziano. Super Charge Your Data Warehouse: Invaluable

Data Modeling Rules to Implement Your Data Vault. Createspace Independent

Pub, 2011.

[8] D. Linstedt and M. Olschimke. Building a Scalable Data Warehouse with Data

Vault 2.0. Elsevier Science, 2015.

[9] W. W. Royce. Managing the development of large software systems: Concepts

and techniques. In Proceedings of the 9th International Conference on Software

 Designing a Data Warehouse for Changes with Data Vault 79

Engineering, ICSE'87, pp. 328–338, Los Alamitos, CA, USA, 1987. IEEE Com-

puter Society Press.

Chapter 5

Toward Agile Data Warehousing

1. Introduction

Following the digitalization of our environment the amount of data that

can be used to improve processes, services and products increase. It is growing

every year exponentially and according to IDC [1] in 2020 will be 50 times

higher than in 2009 and 4 times higher than in 2015. Analytical needs of en-

terprises and institutions are constantly growing and aim now far beyond the

analysis on aggregated level of data based on some predefined dimensions. It

is desirable to know not only about the sources of existing trends, but also to

predict these trends in the future. To meet the needs of analytical systems,

usually implemented on data warehouses, a must have is a high degree of

flexibility, very short terms of implementation together with low granulation

of data. Those expectations are hard to fulfil without agile data warehousing.

Traditional software development methodology known as waterfall

model is already to a major extent replaced by the agile methodologies. This

trend stems from the fact that the use of a waterfall model is time-consuming

both in the analysis and implementation, which does not allow for a quick

response to the changes. Despite the fact that one of the most popular agile

framework i.e. SCRUM [12] was founded in 1995, the first work on the appli-

cation of these methodologies in data warehouse projects appear only in the

second decade of the new millennium [2, 6, 8].

In the face of these challenges it becomes important to find efficient

project management practices as well as the suitable architecture of data ware-

house. We try to explore both areas with the emphases on chosen elements.

Our main contributions are as follows:

82 Software Engineering: Improving Practice through Research

 We present chosen agile project management techniques that have

proven their robustness in several projects which we had a chance to

take a part in.

 We conduct the survey-based evaluation of the techniques and discuss

the results.

The paper is organized as follows: Section 2 contains a overview of pro-

ject management methodology adopted for data warehouse projects. In Section

3 the idea of Data Vault is presented, as the basis of logical data warehouse

architecture together with best physical architecture practices. Survey-based

evaluation of presented techniques is the scope of the Section 4. Last Section

is a short conclusion of the topics covered in this paper.

2. Agile Project Management

Agile methodologies are popular in software development for many

years effectively replacing waterfall methodology. This is still not the case

with respect to data warehouses. The direct application of agile methodologies

in data warehousing projects often fails due to:

 frequent changes of data sources over time;

 the constantly increasing volume of data;

 long service life of data warehouses;

 requirements for compatibility with existing processes;

 multiple user groups with conflicting requirements and priorities.

In this section we will try to explore the reasons for difficulties in apply-

ing agile methods for data warehousing and describe the methods we are using

successfully in every day work.

2.1. Stakeholders conflicts in requirements

Analysis of business requirements is crucial for both agile and waterfall

methodologies. A correct understanding of the business needs is required to

implement appropriate functionality. Compared with the implementation and

development of transactional applications, the main difference in case of data

warehousing projects is the significant presence of conflicts of interests of

 Toward Agile Data Warehousing 83

individual stakeholders. An good sample would be the approach to data analy-

sis of financial and operational departments regarding projects efficiency. Fi-

nance departments are mostly focused on the analysis of the profitability of

individual projects, which results in erecting requirements for accessing data

with high granularity, but the periods of updating the data are not crucial and

the updates may occur on a weekly or even monthly basis. On the other hand,

for the operating divisions important is the ability to conduct analyses at least

daily and in the case of certain processes even close to real time.

The conflicting requirements together with usually much more complex

architecture with many dependencies between the system components have

significant impact on the effectiveness of the project management methods

giving the agile methods the field to prove their supremacy. The first very

important aspect in proper project segmentation.

2.2. Project segmentation based on processes

Measuring the success of the data warehouse implementation with the

number of cubes in data model is not a great idea. You should focus more on

whether the data model allows for rapid implementation of the new reports and

support improvement regarding decisions made based on the presented infor-

mation. It is advisable to gradually cover the business processes, not focusing

on individual reports and their different variations.

Hughes in the book [2] highlighted the need to formulate additional cri-

teria of business requirements, according to which a top-down approach

should be working, dividing the business needs into independent smaller data

models. The aim of this approach is the development of functional data ware-

house divided into prioritized processes occurring in the enterprise as opposed

to the prioritization of individual stories. Such approach was applied for the

project covered by a survey.

2.3. Data granularity

Another important element allowing increasing the efficiency of the de-

velopment of data warehouse is the right interpretation of the requirements

with respect to granularity of data. When implementing the reporting

84 Software Engineering: Improving Practice through Research

requirements it is always worth analysing the highly possible future demands.

Having for instance the requirement coming from a user story to provide sales

report per projects, it is worth to analyse if in the near future similar tasks may

appear, taking into account more granular data e.g. sales per team, employee

or product.

Starting the development of the data warehouse for particular business

process should focus on analysis of the process with the lowest possible granu-

lation of data. Instead of creating a data mart with aggregated sales data per

project with respect to user story, you should rather create a data model, which

will allow for the subsequent materialized aggregation to the required level of

granularity or even will get the aggregation working at the level of the data-

base query for the report without materializing it.

2.4. Project team

The often underestimated and not carefully taken aspect is the splitting

of project roles between the project team members and external players. In this

subsection we describe our recommended practices for organizing data ware-

house implementation team based on different roles and responsibilities. The

external players like the Business Sponsor play in case of data warehouse pro-

ject similar role like for the other software projects. In case of data warehouse

it is usually easier to gain the attention from higher level management because

results of the project usually address them directly. In case of development

team we advice to split it into front-end (reporting) and back-end (data model-

ling) team in order to gain the proper separation on concerns.

The front-end team will be more evolved in the communication with

end users to build reports or dashboards reflecting end users expectations and

way of working. It should be less involved in building the data model and ETL

processes what will be the domain of back-end team. The front-end team

should have very good knowledge of the business process being supported by

a data warehouse. The introduction of a separate front-end team together with

the usage of self-service tools, as proposed in the next section, provides to far

more user-friendly reporting layer of the application built also in sustainable

less time.

 Toward Agile Data Warehousing 85

The reporting team can consist partly of future key-users of application

from customer side, which gradually learning the reporting tools in develop-

ment phase can then educate end-users being usually a part o the same team.

This saves a lot of time for breaking the mental barriers between software de-

velopers and end users. The leader of the reporting team should cooperate

closely with the Product owner especially regarding the critical decisions

about the implemented functional requirements. Neither the less he should also

support the back-end team in defining the proper data model.

The understandable data model of the data warehouse becomes crucial

for projects strongly relaying on self-service tools. Making the data model

clear for key and end-users is a big challenge, but if successful ensures the

huge reduction of future application maintenance costs. The users understand-

ing the data presented through the data model can and, as our expiration tells,

really are inventive about the possible new reporting and analytical require-

ments that can also to the great extend be implemented directly be the users in

with self-service tools.

The back-end team will have more technical tasks regarding building

the data model in chosen database or data warehousing system and creating the

ETL processes to fill in the data. In the following section we will focus on the

technical architecture of the solution that supports the reduction of implemen-

tation tasks needed to build fully functional data warehouse application. Never

the less the overall success of the data warehousing project is depended on the

results of development. The key problems to be coupled are the development

team are already described like proper project segmentation, coupling with

conflicting requirements and taking into account the data granularity. The

technical tasks of the development team are not much different in case of data

warehouse projects like in other software project whereby the same agile prin-

ciples apply.

2.5. Kanban

The Kanban methodology is the agile project management technique

that was adopted be us for data warehouse projects. The planning in Kanban is

different than the planning process in Scrum methodology where it takes place

before each iteration. In Kanban the planning is more general and can be done

86 Software Engineering: Improving Practice through Research

at intervals of several weeks. Kanban also works better with managing ad-hoc

tasks as it does not require stopping current sprint cycle. During the project

meetings the role of the development team is to inform the Product Owner

about the technical aspects of the planned functionality influencing the project

task. The specific tasks that will go to the product backlog should not be dis-

cussed in detail instead the meeting should be treated as a brainstorming ses-

sion allowing optimally choose the next steps with a balanced perspective for

both technical and business expectations.

Kanban based implementation should be started with creating under-

standable process consisting of clearly described steps. The following table

shows the proposed stages of the implementation based on cooperation be-

tween the reporting and development team. During implementations we

worked out an optimal process described in Table 1.

Table 1. Phases on Kanban board

Phase Name Description

Phase 1 Backlog Tasks in the form of stories commissioned by the Product

Owner. The tasks of the highest priority at the top of the

list.

Phase 2 In progress Tasks in progress. One member of the team can deal with

up to one task at a time.

Phase 3 Review The tasks waiting for the review of correctness and per-

formance in accordance with accepted standards (e.g. Is

the code readable? Are there attached the relevant de-

scriptions?)

Phase 4 Test Performing the functional tests by a dedicated developer

or tester, before passing to verify by the Product Owner

Phase 5 Business

Verification

Product Owner alone or with a reporting team verifies

compliance with the requirements.

Phase 6 Done In this stage are tasks considered to be done, after a de-

fined time they can be archived.

It is worth noting that in the proposed process the verification step is

present two times which is contrary to the Kanban principle of the simplifica-

tion of the process. We suggest however to do it, due to the fact that in case of

errors in the source system the values which for technical persons seem

 Toward Agile Data Warehousing 87

plausible for the business may look abnormal at first glance. Such situation

happened many times in our project and helped to detect discrepancies.

3. Agile Data Warehouse Architecture

The data warehouse architecture can benefit from using modern tech-

nologies at both logical and technical perspectives. We will first discuss the

logical architecture where the data model plays the central role and then move

to the considerations about using self-service and in-memory/columnar data-

bases to reduce the complexity of technical system components.

We tried to compare the nowadays most popular multidimensional

models with the Data Vault model in the face of common challenges occurring

in the development and maintenance of data warehouse. The aim was finding

the best data model for implementation, bearing in mind the fact that the itera-

tive growth of requirements in agile methodologies introduces the risk of fre-

quent changes of requirements.

3.1. Agile data modelling

The already classical approach for multidimensional modelling popular-

ized mostly by Kimball and Inmon [4, 5] and being a part of the Common

Warehouse Metamodel [9] is the de facto standard of data warehouse imple-

mentation. The new propositions like Data Vault [3] have then a tough oppo-

nent to beat and are forced to bear with developers habits. Nevertheless we

advice at least considering of trying to invest some effort in a proof of concept

to collect some experience and have a possibility to look and the data model

from different perspective. We have done it and the change became not only

possible but also profitable.

The Data Vault modelling emphases several aspects of data modelling

which are also addressed by the other methods in different way:

 Data should be traceable i.e. the source of a data needs to be recorded.

 A single version of the facts should be stored i.e. both correct and in-

correct data with respect to business rules and not only the correct and

cleaned so called single version of the truth.

88 Software Engineering: Improving Practice through Research

There are also important non-functional aspects taken into consideration

which are rather out of the scope for the classical models like enabling of par-

allel loading and the guaranty of being resilient to change in the business envi-

ronment.

The Data Vault architecture was developed by Dan Lindstedt [7]. It is a

denormalized model but looking at the sample ERD diagram you get the im-

pression that you see the 3NF model (see Figure 1).

Figure 1. Sample Data Vault model

Dan Linstedt distinguishes three types of tables: hubs (with the names

starting from H on the sample diagram), links (L) and satellites (S), which

have well-defined functions. Currently there are two variants of the model

available: Data Vault (DV) and Data Vault 2.0 (DV 2.0).

Hubs are tables, which in a minimalist way represent objects from the

business environment such as employee, product or store (like dimensions).

The structure of the hub table is based on the object key coming from the

source and is enriched with additional system attributes such as date of load-

ing, data source and a timestamp specifying when the object was last seen in

the source.

Links realize the function of determining the relationships between the

objects represented by the hubs. They represent the relation a many-to-many

 Toward Agile Data Warehousing 89

(like facts) because they indicate that at a certain time relationship between

objects was valid. This dependence can be association, hierarchical relation-

ship or the transaction. An example of the link table may be a table connecting

worker hub and product hub, which can mean that the employee sold the prod-

uct. A link can connect multiple hubs.

In both types of tables already presented there is no space for a descrip-

tive data such as employee name. Here come the satellites tables, whose main

role is to store all descriptive attributes of both hubs and links. Satellites also

perform similar functions as slowly changing dimensions in the dimensional

model with recording the history of attributes.

The Data Vault model is highly resilient to changes what is the crucial

feature in agile data modelling. For sample change where the type of customer

ID has changed the changes needed to other tables are limited to changing the

column type in hub table and creating new satellite with a new set of descrip-

tive fields or adding columns to an existing satellite.

We invite the reader especially interested in the features of Data Vault

model to our separate paper dedicated only for analyses of Data Vault proper-

ties (to appear shortly).

3.2. Agile technical architecture

The technical architecture of the data warehouse can greatly support the

overall agile development process. We would like to emphasize two elements

that had mostly influenced the projects we were working on: in-memo-

ry/columnar databases together with self-serviced tools.

The first originating in columnar data representation proposed by prof.

Stonebraker [11] and widely adopted also by commercial systems [10] allows

the high simplification of data model. The significant performance improve-

ment encourages the elimination of old fashioned physical performance im-

provements like materialized aggregation of data. The maintenance of aggre-

gated data incises highly the complexity of the data model and data loading

processes thus eliminating of aggregates with still better overall performance

is one of the main benefits of using the new columnar/in-memory databases.

The simplification of the data model allows reorganizing of ETL processes

that can afterwards be run more frequently or gather more granular data.

90 Software Engineering: Improving Practice through Research

The idea presented in the second section regarding building separate re-

porting team is extremely important for the implementation of agile process.

The basic functionality of a self-service business intelligence tools is the abil-

ity to define complex data models of tables, views, or aggregated OLAP cubes.

This model is then displayed to the user and allows him to generate reports and

graphs. The useful feature of self-service tools is the ability to combine data

from different sources in a single model and the ability to carry out initial

transformation. Such a system should be able to connect to many database

management systems and define the structure of collected data easy.

The self-service tools increase the awareness of how a data warehouse

was build because users use the data model directly and not only the made-

ready and pre-defined reports. Such a situation makes the user start thinking in

terms of multi-dimensional model, which greatly facilitates the work of the

development team. Thus also the stories are becoming friendlier to the imple-

mentation team and minimize the risk of errors.

Another important benefit of the self-service system is the ability to cre-

ate user’s own reports. This minimizes the distance between the user and the

implemented data warehouse, eliminating the need to build all reports by the

development team. In a short time BI platform becomes the central point of

information for all the key departments in the organization, which eliminates

the risk of remaining with the old practice of reporting and increase the return

on investment of data warehouse project.

4. Survey-Based Evaluation

The agile techniques proposed in this paper where used by the authors in

the several commercial project implemented with stable development and re-

porting team. Before moving toward agile techniques the team was working

basically using waterfall methods. Before the evaluation the team gained sig-

nificant agile experience. The survey was issued after almost two years of

cooperation and three fully completed minor sized projects (about 400 man

days each). The development team consisted of 5 persons and the reporting

team of 6. The survey questions were prepared for evaluating the decisions

made regarding the project management and the system architecture.

 Toward Agile Data Warehousing 91

4.1. Agile Project Management

The questions regarding the agile project management techniques where

both general like the question about the overall opinion about the Kanban

method introduction (Figure 2) and more detail like the question about the

most observable changes in the work space i.e. the Kanban boards (Figure 3).

The positive impact of agile methods is significantly observable regarding the

organization of work. In this case, 55% of persons noticed a slight improve-

ment, with 36% significant. You can deduce that the proposed process requires

the adjustments in order to better fit the development team.

Figure 2. Work organization with Kanban

The quality of delivered artefacts after introducing tools supporting ag-

ile methods like Jira and Kanban boards, was assessed unambiguously posi-

tively. All respondents noticed an improvement of as many as 73% reported a

significant improvement of the quality.

The improvement of communication within the development team as

stated in another question (Figure 4) also supports the overall positive assess-

ment of Kanban implementation. In addition, it is worth mentioning that the

communication of requirements through stories was not working smoothly.

Unfortunately, the requirements were not always provided in a standardized

92 Software Engineering: Improving Practice through Research

way, more dutifulness on this issue would bring the better results. As you can

see the use of Kanban brought improvement in quality, work organization and

communication. It can be considered that this methodology was applied suc-

cessfully for agile data warehouse implementations in this particular team.

Figure 3. The quality of deliverables with Kanban

Figure 4. The quality of communication with Kanban

 Toward Agile Data Warehousing 93

4.2. Agile Data Warehouse architecture

The questions regarding expected improvements in the data warehouse

architecture where concentrated on evaluation of Data Vault model and the

usage of self-service tools as the over proposed improvements like the usage

of in-memory solutions combined with columnar data storage have more tech-

nical nature and the improvement can be measured and evaluated using the

efficiency metrics.

We will present the results only for evaluation of usage the Data Vault

model as it is in our opinion much less popular in data warehouses. As you can

see on the results of question about the overall impact of introducing this

model (Figure 5) the 60% of the members of the development team were giv-

ing the positive grades to the application of this model especially in the context

of resistance to changes in requirements compared to the previously applied

multidimensional model. 20% of the team noticed no change and another 20%

felt the change make the things worse.

Figure 5. The development with Data Vault

The reasons for those results could be traced to the difficulties associ-

ated with having to learn a new data model from scratch and need to adapt to it

the knowledge collected so far about design of data warehouse. The signifi-

cantly positive answers prove the high level of acceptance for innovation in

the development team. The more surprising can be the result on o question

addressed to the reporting team consisted of key-users rather than developers

(Figure 6). The results show clearly that this model was extremely difficult to

94 Software Engineering: Improving Practice through Research

use for only one person in the team. It pictures probably the less conservative

nature of the user perspective to particular technical implementation.

Figure 6. The ease of usage of the Data Vault

The reporting key-users were also asked about their opinion of self-

service tools introduced in the projects. The assessment was unambiguously

positive without any complains among team members. The self-serviced tools

have greatly improved the possibility to reduce the effort of implementation of

small changes in the reporting and give the reporting users the possibility to

adjust the reporting layer according to their way of working.

5. Conclusion

The use of agile methodologies in the implementation of the data ware-

house requires a comprehensive process for the management team, require-

ments analysis, and the use of appropriate technological practice. Individual

elements and recommendations presented in this paper were the result of a

review of available literature and the experience gained during the successful

commercial deployments. The positive ratings of discussed techniques are

supported by an anonymous survey-based evaluation among the development

and reporting team involved in several projects. These projects were successful

in the opinion of the business sponsor and have brought benefits to the enter-

prise, allowing quicker access to the data describing crucial business

 Toward Agile Data Warehousing 95

processes. The further work may aim at development of the complete method-

ology based on the presented elements to form a framework to be applied in

data warehousing projects.

References

[1] J. Gantz and D. Reinsel. The digital universe in 2020: Big data, bigger digital

shadows, and biggest growth in the far east. IDC iView: IDC Analyze the future,

2007:1–16, 2012.

[2] R. Hughes. Agile Data Warehousing Project Management: Business Intelligence

Systems Using Scrum. Newnes, 2012.

[3] H. Hultgren. Modeling the Agile Data Warehouse with Data Vault. New Hamil-

ton, 2012.

[4] W. H. Inmon, D. Strauss, and G. Neushloss. DW2.0: The architecture for the

next generation of data warehousing: The architecture for the next generation of

data warehousing. Morgan Kaufmann, 2010.

[5] R. Kimball and M. Ross. The data warehouse toolkit: the complete guide to di-
mensional modeling. John Wiley & Sons, 2011.

[6] T. Knabke and S. Olbrich. Towards agile bi: applying in-memory technology to

data warehouse architectures. In IMDM, pp. 101–114, 2011.

[7] D. Lindstedt and K. Graziano. Super Charge Your Data Warehouse: Invaluable

Data Modeling Rules to Implement Your Data Vault. CreateSpace, 2011.

[8] M. Muntean and T. Surcel. Agile bi-the future of bi. Informatica Economica,

17(3):114, 2013.

[9] J. Poole, D. Chang, D. Tolbert, and D. Mellor. Common warehouse metamodel,

Vol. 20. John Wiley & Sons, 2002.

[10] V. Sikka, F. Färber, A. Goel, and W. Lehner. Sap hana: The evolution from a

modern main-memory data platform to an enterprise application platform. Pro-
ceedings of the VLDB Endowment, 6(11):1184–1185, 2013.

[11] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E.

Lau, A. Lin, S. Madden, E. O’Neil, et al. C-store: a column-oriented dbms. In

Proceedings of the 31st international conference on Very large data bases, pp.

553–564. VLDB Endowment, 2005.

[12] J. V. Sutherland and K. Schwaber. The scrum methodology. In Business object

design and implementation: OOPSLA workshop, 1995.

Chapter 6

Performance Analysis of Web Application

Using MySQL, MongoDB and Redis Databases

1. Introduction

NoSQL abbreviation means "Not only SQL". It is a term that covers a

wide and constantly growing subject of non-relational databases. It owes its

popularity, among other things, to the growing importance of Big data solu-

tions. Relational databases were becoming difficult to operate and maintain

with the vast amounts of data, whose pattern was subject to frequent changes.

Non-relational databases, thanks to horizontal scalability and high data avail-

ability, proved to be an excellent solution, not offered by relational databases.

They are perfect for real-time web applications and in Big data solutions. Un-

fortunately, the opportunities they offer lead to certain consequences which

must be considered when designing IT solutions.

The most important consequence is the lack of fulfilment of the ACID

principle. In return, the compromise solution known as BASE [1] is offered.

The first element (basically available) determines that the base has high avail-

ability of data in accordance with the CAP theory (BA). A break in the system

operation can lead to non-parallel change of data between nodes. Eventual

consistency (E) is responsible for the re-synchronization when connectivity

between the nodes of the database has been restored. The last element of the

BASE rule is Soft state (S), which is a derivative of E element. It ensures data

synchronization after some time, but it leaves resolving differences, conflicts

related to the change in the database to the implementation of the database

engine.

98 Software Engineering: Improving Practice through Research

Breaking the ACID rule and replacing it with the BASE principle means

that in practice it is much easier to implement transactional systems using rela-

tional databases. The transactional nature of the system is often a very impor-

tant requirement for many applications.

Non-relational databases can typically have lower efficiency compared

to the conventional ones, when the engine is addressed with a large number of

queries that require searching or aggregating.

Unlike relational databases, most of which use dialects of SQL queries,

in NoSQL databases there is no standardization concerned with the query lan-

guage. Each of them has its own methods of data access and working on the

database, often very different from each other.

 An important, but often overlooked aspect is much less support of the

developers' community. This can be seen very well by checking the number of

query results in the Stack Overflow service. For "NoSQL" query only 22,680

entries were found, while for "sql" query as many as 303,515 entries were

located. For non-relational databases, there is still a small number of tools to

work with, despite an ever increasing interest.

Based on the above characteristics it can be easily inferred that NoSQL

databases have their own particular group of applications and prior to imple-

menting them in an application the consequences they bring should be taken

into account.

2. Similar Work

NoSQL Databases are associated mainly with the lowest layer of Big

data application type. This is due to the fact that they scale horizontally very

well. Gandini and others implemented the three most popular NoSQL data-

bases in the Amazon EC2 cloud: Cassandra, MongoDB and HBase and studied

the impact of different configurations on database performance. They showed

that with the help of queuing networks it is possible to model performance

characteristics of the database at high loads [2].

 Schmid, Galicz and Reinhardt analyzed the performance of PostgreSQL

and MongoDB databases for their use in WMS (Web Map Server). In terms of

 Performance Analysis of Web Application Using MySQL ... 99

points MongoDB database was faster than PostgreSQL. As for lines and poly-

gons MongoDB was slower than PostgreSQL [3].

Choi, Jeon and Yoon showed that in the case when efficiency is more

important than reliability, MongoDB database brings significantly better re-

sults than Oracle. The research was carried out on a single entity [4].

Gupta and Narsimha compared the capabilities of MySQL and Cassan-

dra databases. It turned out that when saving data a badly configured Cassan-

dra may be less efficient than MySQL [5].

Barbierato, Gribaudo and Iacono conducted evaluation of the perform-

ance of Big data applications using NoSQL databases. The research was con-

ducted on the MapReduce Apache Hadoop platform. They showed how Big

data application developer can evaluate the performance of applications that

use Hive NoSQL query language [6].

 Freire and others on the basis of 4.2 million records of health care data

from a relational database (MySQL) generated XML and JSON documents

and then imported them to three individual XML database systems (BaseX,

eXistdb and Berkeley DB XML) and to dispersed NoSQL MapReduce

Couchbase database system. XML databases were much slower and required

much more space than Couchbase. NoSQL Couchbase had better response

times than MySQL, especially in the case of larger sets of data [7].

3. MongoDB

3.1. The most important features

MongoDB is a multiplatform database where data is stored in the form

of documents whose style is similar to that used in JSON files. Files are saved

in BSON format which was designed specifically to be able to support addi-

tional data types, coding, and increase the speed of searching their contents.

MongoDB database does not offer data bonds at queries and complex

transactions.

100 Software Engineering: Improving Practice through Research

3.2. Query language

MongoDB, like most non-relational databases, has specially developed

query language to manipulate the database and the data contained therein. It

was designed as a clear and intuitive language for the programmer. Queries

involve sending commands to the database of orders in the following format

[8]:

databaseObject.collectionName.request(

{listOfArguments}).modifier(listOfArguments)

The following example shows a simple query which selects all the documents

from the user collection:

db.user.find()

Commands can be directed to the database using JavaScript programming

language or the API available for a particular programming language on the

part of the server.

3.3. Performance

One of the main objectives of MongoDB is the ease of scaling horizon-

tally and ensuring high productivity at the expense of breaking the ACID prin-

ciple. With the ability to scale horizontally the cost of maintenance of database

servers and their load are considerably reduced. High productivity was con-

firmed by tests of performance. United Software Associates researched the

database operation in the Yahoo's Cloud Serving Benchmark environment.

MongoDB database showed significantly better performance than the

Couchbase Server or Cassandra solutions in all the experiments carried out. In

some cases the database was even 25 times faster [9].

3.4. Data model

MongoDB stores data in the form of documents. They are a set of at-

tributes (keys) and their values. The documents are stored as files in BSON

 Performance Analysis of Web Application Using MySQL ... 101

format. In its structure, it resembles JSON, but it is a highly optimized format,

adapted to store complex data types.

The database structure is divided into four components (consecutive, in-

cluded within the preceding one) [10]:

 database,

 collections (equivalent of a table),

 documents (equivalent of a single record),

 keys and their values (equivalent of columns in a table).

The documents are able to store simple data types, such as: string or int,

but also the complex types, such as objects, tables, other documents (nesting).

MongoDB also provides two methods for mapping relationships be-

tween documents. The first of these are references. Those are links pointing to

a specific document. The other method involves using the opportunities of the

BSON format that is nesting documents. There is the inclusion relationship

and nested documents are always processed in the context of superior docu-

ments. This can significantly reduce the number of queries.

4. Redis

4.1. The most important features

Redis is a non-relational database written in C. It is characterized by

high performance, but at the expense of high demand on storage resources. It

works entirely within the computer's memory (RAM) [11]. To some extent it

has the handling of transactions implemented. They are treated as a method to

perform bulk actions with the option of their cancelling. Most of the basic

operations on the data are of the atomic type. Redis also supports data bonds.

4.2. Query language

Redis, similarly to MongoDB, has its own language used to perform op-

erations on data contained in the database. All activities are performed using

102 Software Engineering: Improving Practice through Research

simple text commands typed at the terminal or remotely transmitted to the

base, according to the format [12]:

OPERATION KeyName Value

The following example shows the assignment of the text "TEST" to the key

"testInscription" in the "inscriptions" group:

SET inscriptions:testInscription "TEST"

4.3. Performance

When the permanence of data is not high priority, Redis as a base func-

tioning in the operating memory is an extremely efficient solution in compari-

son with the solutions that save the result of each operation to the disk. Redis

writes and reads operations performed with symmetrical speed and acts as a

individual, single-threaded process.

4.4. Data model

Redis is a database working on the basis of the key – value data model.

The database may store a limited number of types. These are:

 a list of string variables,

 a collection (set) of string variables,

 an ordered collection (sorted set) of string variables,

 associative hashed arrays (hash),

 bitmaps,

 HyperLogLogs.

The type of value assigned to the key defines a set of methods available

for data manipulation. The key can be any object (string, Java object, etc.).

The key type is not limited while the specification defines that it should not

exceed 1 kB of memory. An additional possibility is setting the validity period

for the key, as in the Cookies mechanism. After a set time the database auto-

matically removes a value.

 Performance Analysis of Web Application Using MySQL ... 103

5. Research position

It was decided that for the research purposes a real application will be

used that helps to support a patient in a medical outpatient clinic, namely the

numbering system used in primary healthcare institutions. In many outpatient

clinics at the time of registration a number that is valid on the day for which

the appointment was made is assigned to a patient. The patient often spends

many hours in the waiting room not to miss their number, because the times of

visits are irregular and the time of entry into the doctor's office cannot be

planned.

The main tasks of the application includes providing basic information

about the clinic, such as name, address, phone number, a list of doctors and the

times of their duties, or the list of additional services. However, its most im-

portant feature is informing patients about the number currently admitted by

the respective doctors.

The implementation of the application functionality requires frequent

queries performing all the basic operations on the data stored in them (CRUD).

When a large number of clinics is registered, high availability of data becomes

an important aspect. Lack of data pattern also allows restricting the disk sur-

face occupied by the base in the event of failure to provide certain data by a

clinic or a user. At the time of implementing the solution on a large scale (clin-

ics from all over the province), the ability to scale the database horizontally

will be very important to be enable handling a large number of queries.

The project was carried out to according to MVC (Model–View–

Controller) pattern. Due to the simplicity of operation and the opportunities

offered, it is now one of the most popular architectural patterns used in modern

web applications. Simple MVC framework used in the application provides

MVC architecture and a number of tools facilitating the development and op-

eration of the program. The passive model is used in the above framework. It

means that it cannot itself change the status of the application without request

from the controller or view. This solution is sufficient for the proper operation

of the whole platform.

104 Software Engineering: Improving Practice through Research

5.1. Database support in the application

A characteristic feature of NoSQL databases is the lack of a common

standard of query language. Each solution provides a set of methods available

within the API database. To be able to perform queries from PHP language

level, installing an appropriate driver to support each database was required.

Communication with the MySQL database is an exception, where queries can

be sent using the inbuilt PHP module PHP Data Objects (PDO).

5.2. Database structures and test data (seed)

Creating a separate database for the time of developing and testing an

application is common practice. On the basis of the existing projects of data-

bases, Seed class was developed in the code responsible for automatic creation

of appropriate storing structures and for inserting test data.

The above class is somewhat different for each database engine. It

builds various structures suitable for each of database, but it enters the same

test data. This allows the application to function using different databases at

the same time having the same data in each version. In the case of both non-

relational databases, data storage objects are created automatically when in-

serting a record or trying to refer to it (if it did not previously exist). The pro-

grammer does not have to build the data pattern in the database first. It is con-

trariwise when developing structures from the code level in a relational data-

base. The first step involves building an appropriate pattern and then records

are entered.

In all databases there were the data required to build the application and

test the correctness of its actions, such as: user accounts with different authori-

zation levels (administrator, physician, patient), clinics, identifiers of currently

admitted patients, links of users and clinics, and the like.

5.3. MySQL

The framework used in the application incorporates a set of methods to

work with MySQL database using PDO mechanism. These methods only al-

low working with the data within the existing data structure, and therefore the

 Performance Analysis of Web Application Using MySQL ... 105

embedded solution was replaced by the Eloquent ORM module [13]. This is an

element derived from the Laravel framework. It has very complex mechanisms

for working with data as well as building the database pattern from the appli-

cation code level. In contrast to the MongoDB and Redis MySQL databases,

structures within the database for storing data needed to be created first. The

physical model of MySQL database is shown in Figure 1.

Figure 1. The physical model of MySQL database

5.4. MongoDB

To query the MongoDB database in an object-oriented way, PHP Mon-

goDB driver was installed [14]. It provides a set of classes that allow connect-

ing to the database, performing data manipulation and handling data types

specific to the database (for example MongoId, MongoDate). To facilitate the

work, the wrap class was developed, supporting CRUD method for the data-

base. Creating collections and documents is performed automatically when

106 Software Engineering: Improving Practice through Research

data is inserted or with a download attempt (even if no data exist in the data-

base).

The model of the database implemented for use in the application is

shown in Figure 2. The dotted lines represent the relationships occurring

among the collections.

Figure 2. The physical model of MongoDB database

5.5. Redis

To operate the Redis database from the PHP language level the installa-

tion of PhpRedis extension was necessary [15]. The project is open source

available within the Github hosting repository. The driver provides a set of

 Performance Analysis of Web Application Using MySQL ... 107

classes that allow connecting to the database and performing operations on it.

The keys are created by assigning data to them.

Figure 3 shows the physical model of Redis database. The dotted lines

represent the relationships occurring among objects. For each hash an extra

key is created that stores the number of objects from the same group. The key

is created according to the formula: HashName:Count.

Figure 3. The physical model of Redis database

6. Experiments and Discussion of Results

The experiments were performed on a computer with an Intel Core i5

2450M (2.5 GHz) and 8 GB of RAM (DDR3), running on Linux Ubuntu.

Apache Benchmark software[16] was used to carry out the experiments. This

is an extension of Apache server that allows you to check the performance of

an application by simulating the set traffic on the server. It is a simple HTTP

client that periodically generates requests to the server for specific resources.

Its effect can be parameterized by calling it from the command line. The syn-

tax of the sample command is as follows:

ab –n 100 –c 10 http://example.com:80/

108 Software Engineering: Improving Practice through Research

where n means the total number of requests to perform, and c is the number

of simultaneous queries (competitiveness).

During the experiments those cases of use were tested that are important

due to the characteristics of each of the applied databases. They were imple-

mented through the following views:

 searching for a clinic,

 currently admitted patients,

 doctor's panel (changes of the number of the patient admitted).

First of all the time to build structures in the databases and insert test

data in them (seed) was measured a hundred times.

Table 1. The summary of seed execution times

 Database MongoDB Redis MySQL

 Time [s] 60.487 38.412 133.59

Table 1 summarizes the durations of the hundredfold time of building

structures and placing test data for each database. In the case of MongoDB and

Redis there is no need to create structures in the database before sending data

to it. In MySQL database it is necessary to create the tables that will store data

first. This is the cause of much shorter duration time of the experiment on

NoSQL databases.

The second stage was a gradual increase in the number of queries about

the above mentioned views. The following issues were taken considered: han-

dling time for a series of requests, the number of requests per unit of time and

the number of queries handled incorrectly.

The load was as follows:

 100 requests (10 users),

 1,000 queries (100 users),

 10,000 requests (1000 users).

The search clinic view was burdened first. The view of currently admit-

ted patients is the critical element from the end-user perspective. It is exposed

to the largest load in the system. The view of changing the number of the cur-

rently admitted patient (doctor's panel) is linked to the previous view. The

change of number in this view takes place within 15 seconds after the number

 Performance Analysis of Web Application Using MySQL ... 109

is changed by a doctor. This view works under considerably less burden than

the previous views.

Figure 4 shows a graph of the experiment duration, depending on the

number of requests sent for each view. Figure 5 presents the average number

of requests handled per second for each view. The graph in Figure 6 shows the

number of requests handled incorrectly, depending on the system load for each

view.

0
.1

0
3

0
.1

1
7

0
.2

9
5

0
.1

0
7

0
.1

2
5

0
.3

4
1

0
.1

9
1

0
.2

2
8

0
.9

7
6

0
.7

6

1
.0

3
8

2
.5

5
4

0
.9

6
2

1
.1

4
1

3
.2

5

1
.7

8
9

2
.1

6
7

9
.5

0
4

1
6

.7
9

7
3

.4
3

2 9
0

.4
1

2
5

.3
4

4

2
2

.0
4

4

8
5

.5
8

7

5
0

.0
2

1

4
3

.0
3

5

1
2

3
.7

3
1

0

20

40

60

80

100

120

140

Search clinic Currently admitted patients Doctor's panel

Time [s] Handling time for a series of requests MongoDB - 100

Redis - 100

MySQL - 100

MongoDB - 1000

Redis - 1000

MySQL - 1000

MongoDB - 10000

Redis - 10000

MySQL - 10000

Figure 4. The chart of handling time for a series of requests depending on the number

of requests sent for individual views

9
7

2

8
5

7

3
3

9

9
3

6

7
9

7

2
9

3

5
2

3

4
3

9

1
0

2

1
3

1
5

9
6

4

3
9

2

1
0

4
0

8
7

7

3
0

8

5
5

9

4
6

2

1
0

5

5
9

6

1
3

6

1
1

1

3
9

5 4
5

4

1
1

72
0

0

2
3

2

8
1

0

200

400

600

800

1000

1200

1400

Search clinic Currently admitted patients Doctor's panel

Frequency [1/s] Average number of requests handled per second MongoDB - 100

Redis - 100

MySQL - 100

MongoDB - 1000

Redis - 1000

MySQL - 1000

MongoDB - 10000

Redis - 10000

MySQL - 10000

Figure 5. The chart of the average number of requests handled per second for individ-

ual views

The measurement results clearly show that the performance of all data-

bases with little or periodically increased traffic is comparable. The differences

are the order of hundredths or tenths of a second. It was only at the time of a

110 Software Engineering: Improving Practice through Research

very large number of simultaneous queries that differences in performance and

proper operation are revealed.

Both the non-relational databases reveal a much higher efficiency of op-

eration in comparison with MySQL. In some cases the processing times are

nearly three times shorter and there are nearly four times more properly han-

dled queries.

0 0 00 0 00 0 00 0 00 0 00 0 0

7
8

6

1
5

9
0

8
6

1

6
1

2

1
7

7
9

2
4

0
6

1
1

4
9

1
0

4
4

2
9

4
6

0

500

1000

1500

2000

2500

3000

3500

Search clinic Currently admitted patients Doctor's panel

Number Number of incorrectly handled requests MongoDB - 100

Redis - 100

MySQL - 100

MongoDB - 1000

Redis - 1000

MySQL - 1000

MongoDB - 10000

Redis - 10000

MySQL - 10000

Figure 6. The chart of the number of incorrectly handled requests for individual views

The weaker results of Redis in comparison with MongoDB are a result

of the database characteristics. Access to elements is carried out only by means

of the primary key. It is not possible to select objects based on the value. This

often creates the need to retrieve all objects and iterate through them to find

the right ones. This feature is considered a great advantage as well as a major

disadvantage of Redis database. Performance improvement can be achieved by

dispersing the database and changing the design of the structure.

The results of MySQL database under heavy traffic applications are

clearly weaker than the results of MongoDB and Redis. However, under nor-

mal system load, the loading time of views is comparable and does not affect

the quality of work with the application.

7. Summary

In order to perform the aforementioned analysis, an application was

built that implemented the same set of tasks based on different database

 Performance Analysis of Web Application Using MySQL ... 111

engines: MongoDB, Redis and MySQL. The application was designed to get

the most out of each of the databases. The aim was also to present the oppor-

tunities and differences in working with NoSQL databases and to show their

advantages and disadvantages. The application was created in PHP, and to

service the databases, special packages (drivers) providing sets of methods to

communicate with databases were used.

The application was built using Simple PHP MVC framework. As a re-

sult the architecture in line with the MVC architectural pattern was provided.

The experiments were performed on a local Apache server in the envi-

ronment of the Linux Ubuntu operating system. The tool used to carry out the

stress test was Apache Benchmark, which generated requests of different in-

tensity to the application. For views which implemented the most important

functionalities experiments were carried out in stages. At each stage the num-

ber of simultaneous requests to the server was increased. Despite the heavy

load, non-relational databases showed high data availability fulfilling all the

queries even three times faster than MySQL.

References

[1] P. Zieliński, Wprowadzenie do NoSQL, część I, Microsoft Developer Network,

https://msdn.microsoft.com/pl-pl/dn912483.aspx.

[2] A. Gandini, M. Gribaudo, W.J. Knottenbelt, R. Osman, P. Piazzolla. Perform-

ance Evaluation of NoSQL Databases, Computer Performance Engineering,

LNCS 8721, pp. 16–29, 2014.
[3] S. Schmid, E. Galicz, W. Reinhardt. WMS performance of selected SQL and

NoSQL databases, Military Technologies (ICMT), IEEE 7153736, pp. 1–6, 2015.

[4] Y. Choi, W. Jeon, S. Yoon, Improving Database System Performance by Apply-

ing NoSQL, Journal of Information Processing Systems, Vol.10, No. 3, pp. 355–

364, 2014.

[5] S. Gupta, N. Narsimha. Performance Evaluation of Nosql-Cassandra over Rela-

tional Data Store-Mysql for Bigdata, International Journal of Technology

6(4):640, pp. 640–649, 2015.

[6] E. Barbierato, M. Gribaudo, M. Iacono. Performance evaluation of NoSQL big-

data applications using multi-formalism models, Future Generation Computer

Systems 37, pp. 345–353, 2014.

[7] S.M. Freire, D. Teodoro, F. Wei-Kleiner, E. Sundvall, D. Karlsson, P. Lambrix.
Comparing the Performance of NoSQL Approaches for Managing Archetype-

Based Electronic Health Record Data, PLoS ONE 11(3), pp. 1–20, 2016.

112 Software Engineering: Improving Practice through Research

[8] The MongoDB Manual, MongoDB Inc., 2015,

https://docs.mongodb.com/manual/

[9] High Performance Benchmarking: MongoDB and NoSQL Systems, United

Software Associates, 2014, http://info-mongodb-com.s3.amazonaws.com/-

High%2BPerformance%2BBenchmark%2B

White%2BPaper_final.pdf

[10] R. Chamot. MongoDB Tutorial, http://student.agh.edu.pl/~chamot/bazy/

[11] M. Boruta. Redis – Wprowadzenie, Silesian Ruby User Group, 2011,

https://srug.pl/assets/miroslaw-boruta-redis-wprowadzenie.pdf

[12] The Redis Documentation, http://redis.io/documentation

[13] T. Otwell. Eloquent ORM, http://laravel.com/docs/5.0/eloquent
[14] PHP Group. MongoDB driver, http://php.net/manual/en/book.mongo.php

[15] M. Grunder, phpredis/phpredis, https://github.com/phpredis/phpredis

[16] B. Skvorc. Stress-test your PHP App with ApacheBench, Sitepoint, 2014

http://www.sitepoint.com/stress-test-php-app-apachebench/

Chapter 7

Merging Textual Representations of Software

Models – a Practical Approach

1. Introduction

Model-driven engineering is becoming increasingly important in soft-

ware engineering. By models in this paper, we refer to graph-based software

models. The most common example for this is the Unified Modelling Lan-

guage (UML [1]), but our focus is on domain-specific modelling (like EMF

[2], GME [3], VMTS [4] etc.).

Displaying and editing these models can be done in several ways: using

a graphical notation, a textual notation or using both simultaneously. The main

difference and advantage of textual notations over graphical notations lies in

the fact that even though a graphical notation is usually easier to understand,

editing the text is often more efficient than editing the model via a graphical

interface. This is especially true in the case of large or complex models. If a

development environment with convenience features (e.g. syntax highlighting,

code completion) is also available, then the efficiency of the editing process is

further increased. There are other papers that further elaborate on the relevance

and the advantages and disadvantages of the textual approach [5].

To coordinate and optimize teamwork in source code-based develop-

ment, version control systems (VCS [6]) are used. The same concept can be

carried over to MDE as well. Texts are easier to compare and merge than the

models themselves [5]. There are no prevalent version control systems yet that

support text-based modelling. The motivation of our research is to create the

foundation for conflict handling in such a VCS.

114 Software Engineering: Improving Practice through Research

There are three main approaches to comparing the textual representa-

tions of models: (1) comparing the raw texts; (2) comparing the abstract syntax

trees (AST-s [7]); (3) creating a specific comparator for the language that de-

scribes the model. The third approach is the most accurate and efficient one,

but it requires a concrete implementation for every language. The first two

approaches are more general, but usually less accurate. In this paper, accuracy

means that the approach identifies as many correct differences and as few in-

correct differences as possible. The formal definition and analysis of accuracy

in the presented method are parts of future work. The second approach is the

main focus of our work. Models are transformed into textual form with the aid

of domain-specific languages (DSL [7]). During the reverse operation, the

parser of the language builds an AST from the text, which can then be easily

parsed in order to get the structure of the model from the text. Using the AST-s

in addition to the raw texts during the comparison achieves more accurate and

easily understandable results.

The goal of our research is to develop a method for comparing and

merging the textual representations of models. The method can be applied to

handle conflicts in a VCS that supports text-based modelling. The inputs of

this method are two textual representations. The output is the merged text that

contains every solved difference between the two texts. Using the AST-s in

addition to the raw texts during the comparison gives more accurate results. In

the examples of this paper, we are using a theoretical language (Simple Model-

ling Language or SMDL for future reference) that describes our sample theo-

retical models. A theoretical model can only contain nodes and the nodes can

only contain typed attributes. Edges and other model elements are handled the

same way, they are excluded for the sake of simplicity. It is also worth men-

tioning that while the examples in this paper are very simple and small in size,

preliminary experiments show that the method can be applied to more complex

models as well. Future work is planned to further study and improve the per-

formance of the method.

The differences between raw text-based and AST-based comparison is

illustrated in the example in Figure 1. When using a traditional text comparing

method [8] to compare the different states of our model, we cannot get any

information on which model elements these changes are related to, whereas

using the abstract syntax trees as basis of the comparison, we can associate the

 Merging Textual Representations of Software Models ... 115

changes with model elements. In our example, the order of nodes A and B are

reversed, and the type of attribute A1 is different. When comparing the raw

texts, we cannot tell which model elements are different, we only see the dif-

ference in text. When comparing the AST-s, the structure of the trees contains

more information and we can determine the elements that were changed. In

this example, the change in the attribute type of A1 can be discovered once we

compare the two texts that belong to the two A1 trees. Therefore, although

traditional text comparison is still needed, AST-based comparison is the core

of the method presented here.

Figure 1. Differences between raw text-based and AST-based comparison

In previous work [9], we have introduced the concept of the previously

described method. The crucial steps of the method were outlined, with the

focus being on applicability and the differences between other, already exist-

ing approaches to model comparing and merging. In this paper, we take a prac-

tical approach and describe the method in greater detail. Following the princi-

ples described in this paper, a concrete implementation of the method can be

realized.

The structure of this paper is organized as follows. In Section 2, we pre-

sent related work and briefly summarize the results of previous work, with the

focus being on the generality of the method, the differences with source code

comparison and the contrasting between other existing approaches. In Section

3, the method is described in detail along with examples for each step. The

116 Software Engineering: Improving Practice through Research

main contribution of this paper can be found in this section. The algorithms

and techniques detailed here do not describe a particular implementation,

rather they are fundamentals that can be expanded to implement the method.

There exists a prototype implementation [10] of the method, which is pre-

sented in more detail in Section 4 along with the evaluation of the applicability

of our method. Finally, in Section 5, we summarize the paper.

2. Background and Related Work

In this section, we summarize the concept described in previous work

[9] in addition to presenting related work. We first take a look at other, already

existing model comparing or merging approaches. After that, we talk about

differences between the method and source code comparison. Finally, we

touch upon the generality of the method.

There are very few existing approaches that can compare or merge

models based on their textual representations. There are methods that special-

ize in comparing UML [1] models [11, 12]. These methods, however, do not

handle textual representations, instead they use the inner structure of the mod-

els as basis of the comparison. Approaches that are prevalent in the industry,

like EMF Diff/Merge [13] also tend to focus on comparing the models based

on their structures instead of using textual representations. TMDIFF [14] is an

algorithm that is used to compare the textual representations of a model. It

uses a reference graph-based matching algorithm and does not focus solely on

the AST that is parsed from the text. This approach is different from our

method as it is more suited for behavioural models and has trouble with moved

elements in the text.

Now we summarize the concept of our method detailed in previous

work. Comparing and merging the textual representations of models is similar,

yet different from source code comparison. The difference lies in the fact that

we can demand that the models, and therefore their textual representations

should be both syntactically and semantically correct, whereas semantic cor-

rectness cannot be decided in the case of a single source code file. This policy

 Merging Textual Representations of Software Models ... 117

is reinforced by the fact that most modelling environments [2, 3, 4] ensure that

models edited through their graphical interface remain semantically correct.

Our method aims to be both accurate and general. As we have seen be-

fore, the accuracy comes from the AST-based comparison. When certain crite-

ria are met, the method can also be used as a general model comparing and

merging method in addition to being the foundation for conflict handling in a

VCS. In our case, generality means that the method can be used with any

modelling environment or language, provided that the parser of the language

delegates certain operations to our method. These operations are the following:

 Parsing the text and building the AST.

 Syntactic and semantic verification of the text.

 Deciding if two trees represent the same element.

 Deciding if the difference between the texts of two trees concerns only

the format.

With the use of these operations, our method is independent of the lan-

guage. Therefore, there is an additional input of our method – the parser of the

language. In addition, since we are using the AST-s as basis of our comparison

instead of the structure of the model (as it was demonstrated in Section 1), our

method can also be applied to any modelling environment. Thus, the method

can be considered general with the added restriction that the parser of the lan-

guage must be modifiable to delegate these operations to our method. It is

worth mentioning that the method is not applicable when the parser of the

language does not support delegating the operations.

3. Contributions

In this section, we present the details of our approach to comparing and

merging the textual representations of models. The goal of the method is to

compare the two textual representations based on the AST-s built from the

texts, and create the merged text that contains solutions to every difference

between the two textual representations of the model. The main steps of this

process are as follows: (1) matching the trees to identify matching elements in

the two texts; (2) discovering the differences between the two texts; (3) solv-

ing the differences and creating the merged text.

118 Software Engineering: Improving Practice through Research

3.1. Tree matching

The first step of the method is comparing the two AST-s that are built

from the textual representations, and matching the trees that represent the same

elements with each other. This is the foundation of the comparison, the later

steps of the method all build upon the result of the matching process. It is

worth mentioning that although in SMDL, every tree is mapped to an actual

model element, this is usually not the case with real languages. In practice, the

AST also contains trees that serve only to represent the syntax of the language.

In addition, a certain model element can also consist of multiple trees at once.

The mapping between the AST and the model is realized by the parser of the

language. Therefore, when we are speaking about model elements and trees, in

reality, those trees are not always mapped to a model element directly, but the

principles of the method stay the same.

The matching of the AST-s is done with the help of the parser of the

language. One of the operations the parser has to delegate to our method is

deciding if two trees represent the same element. Using this operation, we can

easily identify which trees we need to match with each other. These matched

trees are then stored for later use. We also make note of the trees that had no

matching pair in the other AST.

The algorithm that matches the trees is very simple. We try to match the

root trees with each other, and if they match (the parser of the language de-

cides this), then we repeat the process with the children of the root tree in the

first AST. For every child tree in the first AST, we try to match it with every

child tree in the other AST. The process is then repeated for the children of a

matched tree, and so on. At the end of the procedure, we try to match every

tree that does not have a matching pair. Although it is not the focus of our

research, matching the trees in this way instead of comparing every tree with

every other tree in the other AST has substantial performance benefits.

Figure 2 describes the tree matching process in a simple example. In

SMDL, two trees represent the same element if and only if they have the same

name, therefore the parser decides if they are the same based on their names.

The first step of the matching process is to try and match the root tree M,

which is successful. After that, we try to match the nodes A, B and C in the

first AST with B and A in the second one. Nodes A and B are successfully

 Merging Textual Representations of Software Models ... 119

matched, but C is left without a matching pair. Next, the children of A and B

are matched, and both A1 and B1 are matched successfully. Node C in the

right AST is left without a matching pair. Finally, we try to match the un-

matched trees. These are the two C nodes, which have the same name, there-

fore every element is matched successfully in our example. It is worth men-

tioning that in practice, node C being the child of node A in the second AST is

usually a containment relationship.

Figure 2. Tree matching

3.2. Conflict handling

During the comparison of the textual representations, our goal is to find

every difference between the two texts. To discover these difference, we are of

course using the AST-s in addition to the matched tree lists that we got as the

result of the tree matching process. In this paper, one such difference is called

a conflict. Conflicts are assigned to the innermost tree in which they occur. In

the case of SMDL, this means that a conflict between two attributes is as-

signed to the attribute trees instead of the node trees. In this section, we take a

look at the different types of conflicts that can occur between the two textual

representations. These conflict types cover every possible conflict between the

two texts. We also examine how these conflicts can be solved and discovered.

Conflict Solving. In order to create the merged text, we have to solve

every conflict between the two textual representations. We would like to

automate the process as much as possible in order to limit user interaction. We

cannot eliminate user interaction altogether for the same reasons that tradi-

tional version control systems cannot eliminate it either. Solving a conflict

means we assign a solution to it. A solution is a simple text that replaces the

text of the tree associated with the conflict, with the text of the solution.

120 Software Engineering: Improving Practice through Research

Next, we examine the different types of conflicts that can occur. For

each type, we take a look at its description, possible solutions and a way to

discover the conflict.

Different Text Conflict (DTC). This conflict type occurs when two

trees are matched – meaning they represent the same element – but the texts

associated with the trees are different. One of the delegated operations of the

parser tells us if the difference only concerns the format of the text or if the

difference is semantic.

To discover this conflict type, we have to use traditional text comparing

methods to compare the texts of every matching pair of trees. Afterwards, we

have to ask the parser of the language whether the difference concerns only the

format of the text or not.

If the difference is semantic, we cannot decide which solution would be

more suited for automation, since we cannot ask the parser to decide which

one is the better solution. Therefore we cannot automate the solving process in

this case. If the difference concerns only the format of the text, then as a best

practice, the longer text should be chosen as the automatic solution. The rea-

son for this is that in most languages, the longer text usually contains the vari-

ous non-semantic elements, like comments, for example. This, of course is

very much dependent on the particular language, thus there is no correct solu-

tion, best practices can be applied instead.

An example of a DTC is illustrated in Figure 3. The AST-s are omitted

from the figure because in this case, there is no difference between them.

When we compare the texts belonging to the A nodes, we recognize that there

is a conflict. After asking the parser of the language, we know that it only con-

cerns the format of the text as there is a comment in the first text. Therefore,

we can automate the solution of this conflict. We also find another conflict

between the two texts related to the type of attribute B1. This is a semantic

difference, which means that the solution of this conflict cannot be automated.

New Tree Conflict (NTC). This conflict type occurs when there are trees

that are unmatched after the tree matching process. For each unmatched tree,

an NTC is created. This type represents that there is a new tree in one of the

AST-s that is not present in the other one. Discovering NTC-s is rather easy, as

we only have to check if there are any unmatched trees after the tree matching

process.

 Merging Textual Representations of Software Models ... 121

We also have to decide where in the merged text the new tree is placed.

One possible solution is that we insert the new tree at the end of the merged

text. Another solution is that we insert it after its previous tree in the corre-

sponding AST. This requires storing the previous tree.

Figure 3. DTC

There are no universally correct solutions for solving NTC-s. One appli-

cable best practice is that most of the time we would like to see the new tree

appear in the merged text. Therefore, we can automate the solution by auto-

matically inserting the text belonging to the new tree in the merged text.

An example NTC is illustrated in Figure 4. The texts are omitted from the

figure as they are not relevant in this case. In the example, we have 3 trees that

are unmatched after the tree matching process: B2, C and C1. Attribute B2 and

node C both get an NTC associated with them. In the case of C1, however, it is

unnecessary to create a new conflict as C1 is the child of C, because the con-

flict associated with C contains C1 as well.

Figure 4. NTC

Handling the order of elements can be done in a variety of ways, as

there are several best practices, but no universally correct solution. The solu-

tion described here is one such best practice that is based on the fact that cases

122 Software Engineering: Improving Practice through Research

where two or three consecutive elements have their order changed are very

common in practice. In the examples described in this section, we are using a

different notation for the AST-s. The sub trees of the first AST are located on

the left side of the figure, while the sub trees of the second AST are located on

the right side. We examine this solution through an example illustrated in Fig-

ure 5. In this solution for the order problem, we compare the list of trees that

are located after the specific tree in one AST and the ones that are located after

the specific tree in the other AST. For example, node A has B, C, D, E and F

located after it in the first AST and D, F and E in the second. We conclude that

A-B and A-C are conflicts in the order of trees as marked in Figure 5. The

same can be done for the rest of the trees, after which we find out that B-C and

E-F are also conflicts.

Figure 5. Discovering OC-s

We can see that there are two order conflicts in the example: EF FE

and ABC CBA. Therefore, we have to identify which patterns resemble

cases where the order of two or three consecutive trees is different, and handle

the rest of the cases as movement in the text. These patterns are illustrated in

Figure 6.

In textual form, the patterns are the following: (1) A-B; (2) A-B, A-C,

B-C; (3) A-C, B-C; (4) A-B, A-C. Since there is no universally correct solu-

tion as to which order is better and order difference is usually not a semantic

difference in the model, we can automatically solve OC-s with one of the or-

ders. Similarly to new tree conflicts, we have to store the previous trees for

every tree present in the order.

 Merging Textual Representations of Software Models ... 123

Figure 6. Notable OC patterns

3.3. The merging process

The merging process begins after every conflict has been discovered. In

this section, we first take a look at the two phases of the merging process. Af-

ter that, an example is presented, in which we demonstrate the merging proc-

ess and also speak about the interactions the different conflict types can have

with each other. Some details of the merging process are omitted due to the

limits of this paper.

The merging process consists of two phases: the automatic phase and

the incremental phase. During the automatic phase, a merged text is generated

that contains the automatic solution of every conflict. For conflicts that cannot

be solved automatically, placeholder text that is prominent to the user should

be used instead. During the incremental phase, the user can change the solu-

tions assigned to the conflicts, similar to traditional version control systems. In

previous sections, it was mentioned that every conflict is assigned to the in-

nermost tree that it belongs to. Keeping track of the conflicts like this is appli-

cable as using the automatic solutions always provides a syntactically and

semantically correct merged text. However, once the user changes the solution

of a conflict in the incremental phase, we cannot be sure that the resulting text,

and therefore the AST built from it is still correct. This is mostly due to the

fact that it is recommended in practice to allow users to arbitrarily change the

solution of a conflict in order to avoid possible errors. The same situation

arises if a conflict has placeholder text associated with it as a solution. Thus,

tracking the conflicts during the merging process has to be done by maintain-

ing their absolute positions in the merged text.

124 Software Engineering: Improving Practice through Research

Figure 7 depicts the end of the automatic phase of the merging process

in an example. The order conflict (ABC CBA) is automatically solved by

using the left order. The new tree D1 is automatically inserted into the merged

tree, right after node D in the text. The attribute type difference of A1 is a se-

mantic difference, therefore we cannot solve it automatically, and instead we

insert a placeholder into the merged text. The end of the merging process can

only be started by the user once every conflict is solved. At the end of the

process, we have to ensure that the merged text is both syntactically and se-

mantically correct, thus a valid model can be parsed from the text.

Figure 7. The result of the automatic phase of an example merging process

To summarize, we take a look at the interactions between the conflict

types that can affect the tracking of conflicts by their absolute positions in the

text. We examine what happens in our example described in Figure 7 if the

user changes the solution assigned to our order conflict (ABC CBA).

Changing the order conflict also changes the absolute position of the tree of

 Merging Textual Representations of Software Models ... 125

attribute A1, thus the conflict related to A1 also changes its position, which we

have to take into account. Finally, Table 1 summarizes the interactions that the

different conflict types can have on each other. The cells of the table indicate

the objects that need their offset updated when the specific conflict is changed.

Table 1. Interactions between the different conflict types.

 Interacting Conflict Type

Different

Text
New Tree Order

Changed

Conflict

Type

Different

Text
Position

Position and

Previous Tree

Position and

Previous Trees

New Tree Position
Position and

Previous Tree

Position and

Previous Trees

Order Position
Position and

Previous Tree (varies)

Position and

Previous Trees

4. Evaluation of Results and Future Work

The AST-based comparison used by the method is an accurate and gen-

eral comparison that the rest of the method builds upon. Therefore, the method

can not only be used as a foundation of version control systems for the textual

representations of models, it also serves as a general and accurate approach to

comparing and merging models when the discussed criteria are met. These

criteria are as follows: (1) the model must have a formal language that de-

scribes its textual form; (2) the parser of the language has to delegate certain

operations to our method.

Visual Modelling and Transformation System (VMTS [4]) is a graph-

based, domain-specific meta-modelling and model processing framework.

Visual Model Definition Language (VMDL) is a textual language that is used

to textually describe models in VMTS. An integrated development environ-

ment (IDE) with advanced features such as automated code completion and

syntax highlighting is also available for VMDL. There is a prototype imple-

mentation [10] of the method presented in this paper. The prototype is based

on the fundamentals presented in this paper. It was successfully integrated

126 Software Engineering: Improving Practice through Research

with VMTS and VMDL, but it can be integrated with other modelling envi-

ronments, thus generality can be accomplished in practice as well, with the

mentioned restrictions. After loading the textual representations, the applica-

tion matches the AST-s, discovers every conflict and generates the merged text

while automatically solving as many conflicts as possible. The user can then

override the solution of each conflict either manually or choosing from the list

of alternative solutions, and finish the merging process. Practical experience in

using the prototype with VMTS shows that the application can be suitably

used in the case of small and medium-sized models.

The goal of our research was to develop an accurate and general method

for comparing and merging the textual representations of models. Performance

was not the focus during development, but our goal for future work is to opti-

mize the different steps of the method. Testing and measuring the performance

of the prototype implementation is also our goal. We talked about how the

different conflict types presented in this paper cover every difference between

two textual representations. While preliminary experiments lead us to believe

that this is the case, another major topic of future work is to formally prove

this, thus further elaborate on the accuracy of the method.

5. Conclusions

The main motivation behind our research was to create the foundation

for conflict handling in version control systems that work with the textual rep-

resentations of models. Our aim was for the comparison to be as accurate as

possible while also aiming for generality as best we can. The goal of our re-

search was to develop a method for this purpose using the abstract syntax trees

(AST-s) built from the texts in addition to the texts themselves as basis of the

comparison.

In this paper, we presented the method in greater detail. Using the fun-

damentals described here, a concrete implementation of this method can be

realized, with the prototype implementation being proof of this. The method

consists of three main steps. During the tree matching process, AST-based

comparison is used, which is more accurate and general than raw text-based

comparison, thus its results can be efficiently used in the later steps of the

 Merging Textual Representations of Software Models ... 127

method. The conflicts between the two textual representations are categorized

into three different conflict types (DTC, NTC, OC). These types categorize the

differences that can occur during the comparison. Every conflict type has their

own possible solutions and ways of discovery. Every conflict must be discov-

ered in order to start the merging process. The merging process is similar to

traditional version control systems as they both have two distinct phases. Dur-

ing the automatic phase, user involvement is not required as the conflicts are

solved automatically. In the incremental phase, the user can review the auto-

matic process and make changes as they see fit. During the merging process,

we have to handle the interactions that the different conflict types can have

with each other.

We established that in addition to being the foundation for conflict han-

dling in version control systems, the method can also be an accurate and gen-

eral approach to comparing or merging models when the discussed criteria are

met. We also briefly presented a prototype implementation of the method that

was realized using the fundamentals presented in this paper.

References

[1] Unified Modeling Language, http://www.omg.org/spec/UML/

[2] Eclipse Modeling Framework, https://eclipse.org/modeling/emf/

[3] Generic Modeling Environment, http://www.isis.vanderbilt.edu/projects/gme/

[4] Visual Modeling and Transformation System,

https://www.aut.bme.hu/Pages/Research/VMTS/Introduction
[5] H. Grönniger, H. Krahn, R. Bernhard, S. Martin, V. Steven. Text-based Model-

ing, In: Proceedings of the 4th International Workshop on Software Language

Engineering (ateM 2007), Nashville, TN, USA, Informatik-Bericht Nr. 4/2007,

Johannes-Gutenberg-Universität Mainz, 2007.

[6] W. Swierstra, A. Löh. The Semantics of Version Control, In: Proceedings of the

2014 ACM International Symposium on New Ideas, New Paradigms, and Reflec-

tions on Programming & Software, Portland, Oregon, USA, 2014.

[7] M. Fowler. Domain Specific Languages, Addison-Wesley Professional, 2010.

[8] GNU Diff Utils, https://www.gnu.org/software/diffutils/

[9] F. A. Somogyi. Merging textual representations of software models, Multi-

Science – microCAD International Multidisciplinary Scientific Conference, Mi-

skolc, Hungary, 2016.
[10] Prototype implementation of the method,

https://www.aut.bme.hu/Upload/Pages/Research/VMTS/Papers/TextualModelCo

mparer.zip

128 Software Engineering: Improving Practice through Research

[11] Z. Xing, E. Stroulia. UMLDiff: an algorithm for object-oriented design differenc-

ing, In: Proceedings of the 20th IEEE/ACM international Conference on Auto-

mated software engineering (ASE '05). ACM, New York, NY, USA, 2005, 54–

65.

[12] U. Kelter, J. Wehren, J. Niere. A Generic Difference Algorithm for UML Mod-

els, P. Liggesmeyer, K. Pohl & M. Goedicke (eds.), Software Engineering, pp.

105–116: GI. ISBN: 3-88579-393-8, 2005.

[13] EMF Diff/Merge, http://www.eclipse.org/diffmerge/

[14] R. van Rozen, T. van der Storm, Model Differencing for Textual DSLs, BE-

NEVOL 2014-Proceedings of the Belgian-Netherlands Evaluation Workshop,

2014.

II. Software Maintenance

Chapter 8

Software Metrics in Boa Large-Scale Software

Mining Infrastructure: Challenges and Solutions

1. Introduction

Boa is a tool that can be used for data mining repositories of open-

source projects. It contains the full history of a repository—from every revi-

sion’s date and author, data on added, deleted and modified files to the com-

plete state of the repository at the moment of commit. All data can be obtained

by using the dedicated language. Boa provides a set of functions, which can be

used for advanced data filtering [1, 2].

Boa has already been used for a variety of studies, including developers’

willingness to adapt new Java features [3] or the licenses used in open-source

projects [4]. So far they have not been metrics-oriented, even though the tool is

intended to be used this way, as implicated by the inclusion of appropriate

examples in the documentation of Boa [5] (e.g., What are the number of at-

tributes (NOA), per-project and per-type?, What are the number of public

methods (NPM), per-project and per-type?).

In this paper we focus on using Boa infrastructure to answer three re-

search questions:

1) Which of the classic, widely known, software engineering metrics can

be implemented in Boa? The implementation of classic software engi-

neering metrics in Boa and publication of calculation scripts will make

it easier to extend existing small-scale empirical software engineering

research using software metrics, performed usually on a small number

of projects, to a large-scale research.

132 Software Engineering: Improving Practice through Research

2) What new metrics, that take advantage of the Boa’s unique infrastruc-

ture, can be proposed? This paper will serve as a guide, for other re-

searchers and practitioners, who shows how to implement new software

metrics taking into account the unique features, as well as limitations, of

the Boa large-scale software repository mining platform.

3) What is the feasibility of defect prediction models based on large num-

ber of projects data obtained from Boa data sets? According to our

knowledge, this is one of the first attempts (if not the first) to build

large-scale software defect prediction models based on a very large

number of projects. Existing software defect prediction models usually

base on a very limited number of projects.

Presented study refers to state of Boa framework during October 2015 –

January 2016 period – when the source material was gathered.

2. Research methodology

In this section we introduce briefly into the following topics: how we se-

lected projects for further investigation (see Section 2.1), how we implemented

software metric scripts using the Boa language (see Section 2.2), and how we

built software defect prediction models using software metrics from Boa (see

Section 2.3), including also how we obtained data from the Boa output files

(see Section 2.4).

2.1. Projects selection

Boa source code described in this paper has been developed and tested

on two Boa data sets: September 2015 GitHub, and September 2013 Source-

Forge. A special filtering has been applied to select projects passing some

entry criteria. The software projects explored in our study had to pass the fol-

lowing criteria:

1) They have to have a code repository with revisions. The 2013 Sep-

tember/SourceForge data set consists of 700k projects. Our analysis

with Boa queries has shown that 30% of them have no code repository

[6, Section 2.1]. Out of remaining 489k (amount close to this stated by

 Software Metrics in Boa Large-Scale Software ... 133

Boa developers – 494,158 [7]) 4,767 projects have two repositories. Re-

positories in those projects have common history of revisions [6, Sec-

tion 1.1]. In case of projects with multiple repositories, only the first of

them is considered during study to avoid data duplication. Out of 489k

projects with one code repository, 423k of them had no code revisions

(commits) [6, Section 1.2]. It is difficult to determine whatever or not

Boa is missing some data—the data sets have been defined for a given

month in a given year, and current state of the repository might be dif-

ferent. The 2015 September/GitHub data set has 7.83 million projects.

95% of them have no code repository in the Boa framework, even

though the majority of them is available from the GitHub website. They

are active and public, but most of them have had no commits since 2013

[6, Section 1.3]. From 380k projects with repository, only 2486 of them

had commits in 2015 [6, Section 1.4]. Out of the entire GitHub dataset,

4% of projects have code repositories with revisions [6, Section 1.5].

2) They have to have over 100 commits. The projects picked should be

mature enough for metrics calculation. A larger number of commits

usually means a larger number of fixing revisions, which are in turn

used for development of software defect prediction models.

3) They have to be written in Java. Java has been picked for this research

due to being a mature, object-oriented language, popular among devel-

opers. It is also worth mentioning that Boa is written in Java, as well as

provides extra Java-specific options, such as recognizing Java source

files with and without parsing errors.

The Boa language implementation of filters to select projects fulfilling

the above mentioned criteria is presented in Listing 1.

before node: Project -> {

 # They have to be written in Java.

 ifall (i: int; !match(`^java$`,

 lowercase(node.programming_languages[i]))) stop;

 # They have to have a code repository with revisions.

 if(len(node.code_repositories) > 0) {

 visit(node.code_repositories[0]);

134 Software Engineering: Improving Practice through Research

 }

 stop;

}

before node: CodeRepository -> {

 # They have to have over 100 commits.

 if(len(node.revisions) < 100) stop;

 ...

}

Listing 1. Implementation of filters

The final number of projects that passed our entry criteria is presented in

Table 1.

Table 1. Data sets

Dataset All projects Accepted projects

GH small 7,988 29

GH medium 783,982 2485

GH large 7,830,023 25307

SF small 7,029 50

SF medium 69,735 666

SF large 699,331 7407

2.2. Implementation of SE metrics

All of the metrics are calculated for classes. Each of the metric is im-

plemented as a different Boa query, and is run on all Boa data sets mentioned

in Section 2.

Due to long execution time, only data from GH small and SF small data

sets are used for creating prediction models later on.

The output file of a query has to have the following data:

 the ID of the project

 the ID of the class

 the value of the calculated metric or the expected value.

This approach makes it possible to effortlessly merge all values gathered

as the outputs of Boa queries, so they can be used as an input data set for a

prediction model.

 Software Metrics in Boa Large-Scale Software ... 135

2.3. Defect prediction model

Software defect prediction model is aiming to find the classes that cause

the most defects. A simple strategy to find them is searching for the classes

that had been fixed most frequently.

2.3.1. Expected value – NCFIX

The expected value in our defect prediction model is Number of Class

Fixes. Based on Boa’s abilities, it is assumed the class has been fixed, if the

two following conditions have been met:

 the file containing the class has been modified in a revision;

 the revision is marked as a fixing revision by the Boa’s function isfix-

ingrevision [1].

The list of classes and their fixes is obtained by the following algorithm:

1) Create an empty key-value collection for storing respectively: files in

projects, number of fixing revisions for each file.

2) Visit a project’s repository revision.

3) Check if it’s a fixing revision.

4) Investigate the files changed in this revision.

(a) If a file is marked as deleted, remove it from the collection.

(b) If a file is added to the project in the current revision, add it to the

collection:

 i. with a value of 1 if the revision is a fixing one;

ii. with a value of 0 otherwise.

(c) If a file is modified in the current revision, update it in the collection

i. increment the number of fixes by one, if the revision is a fixing one;

ii. leave it otherwise.

5) 5. Repeat steps 2-4 until you reach the most recent revision and there is

no more revisions to check.

6) For all files stored in the collection, select only the ones that declare

classes. Return the identifiers of the classes, and numbers of fixes corre-

sponding to their files as the output.

The algorithm is inspired by the getsnapshot function implemented by

Boa [1], which returns the state of the repository at given time stamp.

136 Software Engineering: Improving Practice through Research

2.4. The use of Boa API and Weka

To allow easy management of Boa jobs and connecting job outputs with

development of defect prediction models, a simple Java program [8] has been

written. The software uses Boa Java API [9] release 0.1.0 to run jobs. Data

from Boa is transformed into .arff file of following format:

 @RELATION classes

 @ATTRIBUTE class ID string

 @ATTRIBUTE M_1 NUMERIC

 . . .

 @ATTRIBUTE M_N NUMERIC

 @ATTRIBUTE fixingRevisions NUMERIC

where classID is an identifier of a studied class; M_1 ... M_N is a vector of

calculated metrics for a class from latest repository SNAPSHOT; fixingRevi-

sions attribute is the expected value described in Section 2.3.1.

3. Results

In this section three kinds of contribution are discussed, related to im-

plementation of classic and new software metrics in Boa, as well as develop-

ment of software defect prediction models on a basis of very large number of

software projects. The latter can be seen as a way to address external validity

threats common for most of the empirical studies focused on software defect

prediction. All metrics’ implementations are available to download via links

provided in appendix [6, Section 3].

3.1. Implementation of classic software engineering metrics

This section presents how to implement scripts to collect some of the

well-known, classic software metrics [10] in Boa. The metrics were chosen

based on their popularity and Boa’s limitations.

 Software Metrics in Boa Large-Scale Software ... 137

3.1.1. Obtaining classes

Using getsnapshot function implemented in Boa, all files available in

the most recent revision of the project are gathered. Then, they are filtered so

that only the files containing classes are taken into consideration. The data

stored in the Declaration [1] and its attributes are used for calculating the

value of a metric.

3.1.2. Inheritance issue

Each declaration (class or interface) node in Boa has its array of parents

[1]. However, those parents are presented only as Types, meaning, they only

have TypeKind (determining if it’s a class, interface, or something else) and

name, without its full package path or any other identifier. If two classes or

interfaces in a project have the same name, but they are in different packages,

it is impossible to determine which one is the ancestor of a given declaration.

Therefore, all metrics using inheritance (such as all of the MOOD metrics

[11], Depth of Inheritance Tree, Number of Children and Coupling between

Object Classes [10]) had to be unfortunately, excluded from the study.

3.1.3. Metrics obtained directly from the Declaration node

Weighted Methods per Class (WMC) in its base version—the sum of

methods in a class, Number of Fields (NoF) and Number of Nested Declara-

tions (NoND), presented in Table 2, have been successfully implemented us-

ing the structure of the Declaration node alone.

Table 2. Declaration attributes and associated metrics

Attribute Metric

methods WMC

fields NoF

nested_declarations NoND

For each of those metrics, the value is a length of the attribute array. The

execution time for those metrics is relatively small, up to 10 minutes for the

138 Software Engineering: Improving Practice through Research

biggest data sets, which clearly shows the advantages of using Boa and the

approach to calculate metrics using the structure of the Declaration node, pre-

sented in this paper.

3.1.4. Response For a Class (RFC)

The RFC metric was implemented as a number of methods in the class,

added to number of remote methods directly called by methods of the class.

The issue with the implementation of this metric is that Boa makes it difficult

to recognize the difference between class’ inner method and method of the

external classes of the same identifier. For example: the method getId() of

class A, called in class B, is seen as the same as method getId() in class B. If

class A called two methods of the same name from different classes (class B

and class C), those would be indistinguishable as well. There is no direct

method that would allow to instantly determine the types of called methods’

arguments [1] as well as the type of instance of variable from which the

method was called [6, Section 1.6]. Such information can be obtained only by

deeper analysis of Boa’s AST tree, to the level of single Statements.

The simplified version of the metric, that ignores this nuance, has been

successfully implemented and ran for both Boa’s data sets.

3.2. Implementation of new software metrics

The metrics presented below have been developed by us upon learning

more about the Boa architecture and its tree structure.

3.2.1. Number of Statements in Methods

The NoSiM metric is calculated as a sum of all statements in class

methods. The nodes calculated are of the Boa type Statement. For studied Java

classes, those nodes are either blocks of code marked by ‘{}’ or single code

expressions. The implementation of this metric is a starting point for imple-

mentation of a Lines of Code (LoC) metric. To achieve the LoC metric, all

class’ fields, number of methods, and such, would have to be added.

 Software Metrics in Boa Large-Scale Software ... 139

3.2.2. Maximum Depth of Declaration Nesting

MDoDN is the maximum level of class nesting in a class. For the fol-

lowing code:

class A {

 class B {

 class C {}

 }

 class D {}

}

the result for class A would be 3 (the depth of C class). The metric is not calcu-

lated for nested classes (in the example: B, C, and D). For implementation of

this metric, Boa’s stack functions are used. Every time the node of a nested

Declaration is entered, it is pushed onto the stack. The metric value is the

stack’s element count.

3.2.3. Number of Anonymous Declarations

NoAD for Java is a sum of all anonymous children classes in the parent

class. To calculate this metric, the Expression Boa node is tested for having a

Declaration with a parameter of ANONYMOUS type.

3.2.4. Cumulative metrics

Metrics NoM, NoF, NoSiM, NoAD and NoND have been also success-

fully implemented in cumulative versions (CNoM [6, Section 1.7], CNoF [6,

Section 1.8], CNoSiM [6, Section 1.9], CNoAD [6, Section 1.10], CNoND [6,

Section 1.11]), where calculated value is a sum of metric for not only a class,

but also all its nested and local classes.

3.3. Defect prediction model

The defect prediction model presented below is a single defect predic-

tion model calculated for a high number of Boa projects. This is different from

140 Software Engineering: Improving Practice through Research

a traditional approach, with a single, or several projects used to develop defect

prediction models.

Data obtained from the Boa output files (described in Section 2.4) is

randomly separated into training set and testing set (in 9:1 proportion). The

fixingRevisions attribute in the testing set is nulled out, so it can be calculated

using prediction model.

We used Random Forest to build defect prediction model. Random For-

est generates a lot of random samples which are the subsets of training data

set. A decision tree is generated for each of the samples [12]. The parameters

listed below have been determined experimentally:

 number of trees: 200,

 max depth: 12,

 number of features: 12,

 cross-validation folds: 10,

 random seed: 1

The results of 10-fold cross-validation are presented in Table 3. Pearson

product-moment correlation coefficient r shows a low correlation between the

results from defect prediction model and real values, with high error ratio.

Those results are further analyzed in Section 4.

Table 3. Results of evaluation of the prediction model

Evaluation attribute GH 2015

(small)

SF 2013

(small)

Correlation coefficient (R) 0.215 0.244

Mean absolute error (MAE) 2.16 0.603

Root mean squared error (RMSE) 9.96 1.32

Relative absolute error (RAE) 102% 93.3%

Root relative squared error (RRSE) 100% 97.8%

3.4. Reference values of software metrics

The subsequent goal was to characterize a large number of open source

projects available from Boa by means of software metrics in order to create

reference values of software metrics. Table 4 presents descriptive statistics for

each of calculated metrics among the data sets.

 Software Metrics in Boa Large-Scale Software ... 141

4. Discussion

The presented prediction model was tested on small data sets, but with

correct resources it can be easily scaled to use full data sets with up to 25k

subjects. This use case would be, to the best of our knowledge, the first at-

tempt to create a large scale defect prediction model, as other examples from

literature show prediction models developed using less than 200 projects [13,

14, 15].

The performance of the prediction model is poor due to the fact that a

majority of classes studied has zero fixing revisions and therefore input data is

highly unbalanced, see Table 5. However, the quality of prediction model and

employing methods to deal with the class imbalance problem are not the main

objectives of the study. Our aim was to show that it is possible to collect all the

data necessary to build a large-scale software defect prediction model using

the Boa platform.

Results from Table 4 show that not for all metrics standard deviation is

lower for filtered datasets. This can be caused by the nature of metrics (such as

NoND, NoAD, MDoDN), which are unlikely to have a high mean value in

majority of projects.

4.1. Further research

It is worth to look at the way the fix in the revision is identified. Boa-

provided function isfixingrevision is based only on the commit message text

analysis. We assume this function is not ideal and integrating Boa API with

outside software, such as bug tracking systems, can be a better solution to de-

termine existing bugs in code revisions.

The data used for building prediction models in our study has big dis-

proportions. Applying different filters and criteria (more mature projects, dif-

ferent languages and so on) could provide better data set for analysis, with

more fixing revisions.

An interesting path of further research are process metrics [15, 16],

which reflect changes over time and are becoming the crucial ingredients of

software defect prediction models.

142 Software Engineering: Improving Practice through Research

Table 4. Mean, median and standard deviation for metrics calculated in the study.

Table 5. Number of classes with zero and more than zero fixes in datasets

Amount of class fixes GH 2015(small) SF 2013 (small)

0 13296 (58.9%) 30244 (80.1%)

>0 9260 (41.1%) 7504 (19.9%)

5. Conclusions

Overall, the goal of the research, as described with research questions –

implementation of software metrics in Boa and collecting data sets from a

large number of projects, e.g., for the sake of prediction models – has been

achieved.

We were able to implement some of the classic software engineering

metrics using Boa, we presented some Boa-specific metrics, and we made an

attempt to create a defect prediction model with the data we gathered. This

proves that Boa can be a useful tool for data mining analysis in this particular

field, as well as for creating sophisticated queries regarding its data sets. How-

ever, Boa is still a new framework that comes with a few disadvantages, and

some of the metrics and operations were impossible to implement at the mo-

ment. In the following sections, the challenges met and our solutions are pre-

sented.

 Software Metrics in Boa Large-Scale Software ... 143

5.1. Challenges

Boa uses visitor pattern – one of Boa’s greatest strengths – which some-

times might provide unexpected results if queries are not written properly.

5.1.1. Local and nested classes

One of the first issues we encountered creating Boa queries was a dif-

ferent size of output jobs. For our metrics, we gathered all classes from all

projects. Therefore, for the same data set, all queries should return the same

number of rows. As it turned out, the difference was caused by the behaviour

of the visitor pattern, used by Boa. When source code contains a local class

(class defined inside one of the methods) or a nested class (a class declared

inside of another class), this class is visited by the visitor pattern before the

analysis of the class containing it ends. Upon returning to the class-container,

some of its metrics and calculations had been assigned to the local or nested

class.

Solution: Boa offers implementation of stacks, which we started using

while visiting local and nested classes. We took advantage of this solution

implementing the Maximum Depth of Declaration Nesting metric described in

Section 3.2.2.

5.1.2. Boa code compilers

Boa uses two different code compilers for SourceForge and GitHub data

sets. As the framework is still in early development, sometimes the same query

acts differently depending on the data set used.

Example: One of Boa sample queries "How many committers are there

for each project?" [17] works fine in SF [6, Section 1.12], but causes compila-

tion error in GH [6, Section 1.13]. In that case, a small change in the code

notation solved the issue [6, Section 1.14]:

 Code resulting with error:

committers [p. code_repositories[i]. revisions[j].

 committer.username] = true;

144 Software Engineering: Improving Practice through Research

 Code resulting with success:

username : string = p. code_repositories[i].

 revisions[j].committer.username ;

 committers[username] = true ;

This example shows that a person creating queries with Boa might run

into different issues depending on the data set picked.

During our research, we often used Boa dictionaries. Dictionaries are

defined by Boa as map[key_type] of [value_type]. Boa returns an error, if int is

used as a value_type. We must have stored our integer values as strings, which

resulted in converting value to integer each time it was used in calculations,

and then back to string to update the map.

5.1.3. Debugging process

The errors reported by Boa are often lacking any sort of description. The

debugging process comes down to commenting out parts of queries to check

which fragments are causing errors. Each code test takes about a minute (and

then some follow-up time to check if the output data is correct), and some-

times multiple tests are required to find the source of an error. There is no way

of tracking the execution of the queries.

Solution: All variables used during the debugging process have to be

initiated, by defining its type and aggregation method, and then returned in the

output file.

5.2. Contribution

The paper describes our experience with using Boa platform for imple-

menting software engineering metrics and defect prediction models. Our find-

ings can be useful for both researchers – with solutions presented in Section

5.1 and provided source codes for metrics we implemented – as well as devel-

oper teams and project managers, providing an example for obtaining large-

scale SE metrics for projects of particular profile (i.e. number of commits,

used programming language and so on). The metric implementations proposed

 Software Metrics in Boa Large-Scale Software ... 145

by us are scalable – calculated for classes, but could be as well implemented

for packages or projects.

Based on our findings, we confirm that Boa can be a powerful data min-

ing tool, which can be used for a variety of research, alone and with usage of

other software, like Weka, as demonstrated in Section 2.4.

References

[1] Iowa State University of Science and Technology: The Boa Programming Guide.

http://boa.cs.iastate.edu/docs/, 2015, accessed: October 18, 2015.

[2] R. Dyer, H. A. Nguyen, H. Rajan, T. N. Nguyen. Boa: A language and infra-

structure for analyzing ultra-large-scale software repositories. In: Proceedings of

the 2013 International Conference on Software Engineering. pp. 422–431, IEEE

Press, 2013.

[3] R. Dyer, H. Rajan, H. A. Nguyen, T. N. Nguyen. Mining billions of fast nodes to

study actual and potential usage of java language features. In: Proceedings of the

36th International Conference on Software Engineering. pp. 779–790, ACM,

2014.

[4] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. German, D.
Poshyvanyk. License usage and changes: A largescale study of java projects on

github. In: The 23rd IEEE International Conference on Program Comprehension,

ICPC, 2015.

[5] Iowa State University of Science and Technology: Example Boa Programs,

http://boa.cs.iastate.edu/examples/, 2015, accessed: October 11, 2015.

[6] A. Patalas, W. Cichowski, M. Malinka, W. Stepniak, P. Mackowiak, L. Madey-

ski. Appendix to Software Metrics in Boa Large-Scale Software Mining Infra-

structure: Challenges and Solutions, 2016, http://madeyski.e-

informatyka.pl/download/PatalasEtAl16Appendix.pdf

[7] Iowa State University of Science and Technology: Boa. Mining Ultra-Large-

Scale Software Repositories. Dataset Statistics, http://boa.cs.iastate.edu/stats/,
2015, accessed: October 18, 2015.

[8] Java research software, source code for metrics and statistical tests,

https://github.com/Aknilam/metrics-research-software

[9] Iowa State University of Science and Technology: Boa. Mining Ultra-Large-

Scale Software Repositories. Client API, http://boa.cs.iastate.edu/api/, 2015, ac-

cessed: October 18, 2015.

[10] S. R. Chidamber, C. F. Kemerer. A metrics suite for object oriented design, IEEE

Transactions on Software Engineering 20(6), pp. 476–493, 1994.

[11] F.B. e Abreu. Design quality metrics for object-oriented software systems. ER-

CIM News 23, 1995.

[12] L. Breiman. Random forests. Machine Learning 45(1), pp. 5–32, 2001.

146 Software Engineering: Improving Practice through Research

[13] M. Jureczko, L. Madeyski. Towards Identifying Software Project Clusters with

Regard to Defect Prediction. In: Proceedings of the 6th International Conference

on Predictive Models in Software Engineering. pp. 9:1–9:10. PROMISE ’10,

ACM, New York, USA, 2010.

[14] M. Jureczko, L. Madeyski. Cross–project defect prediction with respect to code

ownership model: An empirical study. e-Informatica Software Engineering Jour-

nal 9(1), pp. 21–35, 2015.

[15] L. Madeyski, M. Jureczko. Which Process Metrics Can Significantly Improve

Defect Prediction Models? An Empirical Study. Software Quality Journal 23(3),

pp. 393–422, 2015.

[16] M. Jureczko, L. Madeyski. A review of process metrics in defect prediction stud-
ies. Metody Informatyki Stosowanej 30(5), pp. 133–145, 2011.

[17] Iowa State University of Science and Technology: Example Boa Programs,

http://boa.cs.iastate.edu/examples/, 2015, accessed: October 18, 2015.

Chapter 9

How to Improve Linking Between Issues and

Commits for the Sake of Software Defect

Prediction?

1. Introduction

Bug predictions and defect predictions can save a lot of money which

otherwise would be spent on bug fixes. Commit logs and bug reports are very

often not linked with each other [1] although those links can provide very

valuable information which can help in software defect predictions and project

evolution. According to bugs prone – by counting the number of bug reports

that are matched with them. For the project evolution, those links can generate

defect data – for example the number of defects related to various classes in a

project. As a result, it is possible to develop defect prediction models for soft-

ware projects, e.g., [3, 4, 5].

The other problem is misclassification between bugs and non-bugs –

many issues which are classified as ’bugs’ refer to maintenance, refactoring or

enhancements. Regarding to one of the reports regarding how misclassification

impacts bug prediction [1] this problem is very common. Authors of the article

[1] have conducted a manual examination of more than 700 issue reports of

five open source projects. Their result revealed that 33,8% bug reports were

misclassified – being not code fixes, but rather new features, refactorings or

documentation updates. There are many simple approaches in matching links

with issues, mainly based on simple textual matching. However, there are also

three promising approaches (ReLink, MLink and RCLinker) which are based

on repository changes and features extraction from bugs and issue trackers

148 Software Engineering: Improving Practice through Research

metadata. One of the approaches (RCLinker) is based on the machine learning

too which is described in the section below.

In Section 2 we have described those three approaches to link issues

with commits. Defect Prediction in Software Systems (DePress) [6] Extensible

Framework allows building workflows in graphical manner. DePress is based

on the KNIME project. The main aim of the DePress Framework is the support

for empirical software analysis. It allows collecting, combining and analysing

data from various data sources like software repositories or software metrics.

Our work provides the following contributions:

1) We wanted to find a way to link effectively commit logs and bug re-

ports. That is why we have decided to use modified by us RCLinker ap-

proach. To achieve this, we have decided to use Defect Prediction in

Software Systems and implement our approach of the RCLinker algo-

rithm as a new node in the workflow. We used machine learning too.

2) To validate and check our approach we have tested it on the three pro-

jects – two open source projects by Pivotal Software: Spring Data Redis,

Spring OSGi and the proprietary commercial project provided by Cap-

gemini.

3) The RClinker approach uses metadata and textual features. We have

proposed new features based on the JIRA metadata to check if they will

improve the results.

2. Related Work

There are many approaches to linking issues with commit. We have re-

viewed literature using snowball sampling, described by Wohlin in [7]. De-

scriptions of the relevant articles are presented in the subsequent subsections.

2.1. ReLink: recovering links between bugs and changes

ReLink [8] is the simplest algorithm on which we will base our work.

Traditional approaches for linking issues with commits presuppose that devel-

opers are on three properties:

 How to Improve Linking Between Issues and Commits ... 149

1) Time interval – it is a time difference between commit date and issue

modification date. After each fix, developer must update issue in track-

ing system, so the time difference will be small.

2) Issue owner and commit author – if issue owner is the same as commit

author, this issue is probably connected with the commit

3) Text similarity – commit message should be similar to the issue descrip-

tion if they are linked. To normalize text in issue and commit message,

ReLink uses the following techniques: removing stop-words, stemming

and using synonyms – for example, change "additional" to "extra".

ReLink has a "learning" phase. To learn its model we must follow these

steps:

1) Assign a very small value to time interval.

(a) Assign a very small value to the text similarity threshold.

(b) Discover links with traditional heuristics for given time interval and

similarity threshold, then count number of discovered links and then

calculate F-measure using metrics like "Percent of commits that fixes

bugs" (more possibilities are below).

(c) Increase text similarity threshold a little bit

(d) Repeat steps 3 to 4 until we reach a maximum value of threshold

2) Increase time interval a little bit.

3) Repeat steps 3 to 6 until we reach a maximum value of time interval.

4) Choose threshold for two "properties" with the highest F-measure.

5) Return threshold and time interval.

To start discovering new connections, we must run two algorithms to

get proper criteria and then ReLink will "learn" these criteria. After that, Re-

Link checks links that fulfils criteria. After checking all links, ReLink returns

its list.

ReLink discovers up to 26% more links than the traditional approach

[8]. It is often used with the following metrics: percent of commits that fixes

bugs, percent of files with defects and average time of bug fixing.

150 Software Engineering: Improving Practice through Research

2.2. MLink: multi-layered approach for recovering links between bug reports

and Fixes

MLink [9] is a multi-layered approach to automatically recover issue

links. In comparison to ReLink, it is not only based on the terms-linking

method but it checks the changes in the code repository too and tries to link

them with the issues metadata.

MLink uses cascading layers – each layer has a detector with its own set

of textual and code features. The layers’ input is a filtered set of the candidate

links which comes from the previous layer – it means that each detector can be

used as a filter. It reduces the amount of the links and passes the set to the next

layer. Layers which have filters with higher levels of confidence on accurate

detection are applied at earlier levels.

This model consists of six detectors:

1) Pattern-based detector – this is similar to ReLink approach – issues

metadata and commits logs messages are checked if they contain some

typical patterns such as ’fix the issue ...’, ’fix the bug ID...’ etc.

2) Filtering layer – the remaining links from the previous layer are ana-

lyzed if they violate time constraint – it means that the commit time for

the fix must be between open and close time of the corresponding issue.

3) Patch-based detector – it extracts the patch code recommended by the

bug reporters or people who have mentioned it in the issues comments.

4) Name-based detector – it detects if the entities or other components

mentioned in the issue are the same as these which are in the commit

log.

5) Text-based detector – it is similar to the previous layer but extracts

comments in the changed code to and tries to link them with the issue

metadata.

6) Association-based detector – it is the last layer which is used if the text

used in the texts or entities names cannot be matched with the issue (the

texts are not similar). It uses association strengths between the terms in

the issue and the entity names.

MLink is better than ReLink because it checks and compares not only

terms but changes in the code repository too. It achieves high accuracy level:

F-score: 87-93%, recall: 85-90%, precision: 82-97% as outlined in [8].

 How to Improve Linking Between Issues and Commits ... 151

2.3. RCLinker: Automated Linking of Issue Reports and Commits Leverag-

ing Rich Contextual Information

RCLinker’s [2] authors discovered, that many commits are not contain-

ing relevant information in commit messages. It means that if we want to im-

prove linking issues with commits, we must use other contextual information.

RCLinker uses ChangeScribe [10] to generate additional messages

about commits. ChangeScribe adds information in following format (real ex-

ample from [2]):

This change set is mainly composed of:

1. Changes to package org.apache.solr.common.cloud:

(a) Modifications to ClusterState.java:

i. Remove an unused functionality to get shared

Messages, created by ChangeScribe, are then appended to each commit

message. RCLinker also uses other contextual information like commit date,

issue update date, issue comments’ date.

RCLinker uses machine learning – trained Random Forest. Authors de-

fined 9 text features (which are basing mostly on cosine distance between

texts) and 11 metadata features (which are basing mostly on issue, commit and

comments dates). We use this features to train Random Forest.

Usage of RCLinker is divided into two phases:

1) Learn phase – extending commit messages with ChangeScribe, extract-

ing features (T1 – T9 and M1 – M11) and training model with i.e. Weka

implementation of Random Forest.

2) Production phase – extending commit message with ChangeScribe, ex-

tracting features (T1 – T9 and M1 – M11) and using on created model to

choose proper issues for commit.

RCLinker is much better in case of very poor developers’ commit mes-

sages. It has approximately 136 % better results of F-measure than MLink,

however precision is lower than in MLink.

We have also checked articles that are citing [2, 8] or [9]. Most of them

are not related with linking issues with commits.

Empirical Evaluation of Bug Linking [11] is an empirical evaluation

with benchmark of ReLink algorithm. It does not propose any new tool. How-

ever this article shows that usage of ReLink is reasonable.

152 Software Engineering: Improving Practice through Research

In The Missing Links: Bugs and Bug-fix Commits [12] there is an analy-

sis of problems with issue-commit linking. Authors used Linkster tool and

expert knowledge to check 493 commits and link them to issues. Despite this

work did not propose any new tool or algorithm, it is a good article to under-

stand problems in linking issues with commits.

2.4. When do changes induce fixes?

This article [13] describes one of the simplest algorithms which we use

in our approach. In this case it is described how to link bugs from the bug da-

tabase with commits. This method is quite simple – every commit message is

split into a stream of tokens (syntactic analysis). Each token could be one of

the items: bug number (it is based on a simple regex), a plain number, a key-

word such as fixed, defects etc. and a word. After that, the syntactic confi-

dence is being counted – it is always an integer number between values 0 to 2.

This linking method is based on a semantic analysis too. There is also a

score if some of the following conditions were resolved: the bug has been re-

solved as fixed at least once, the bug description is used in the commit mes-

sage, the author of the commits has been assigned to it or one or more files

affected by the commit has been attached to the bug.

In our approach we use pattern matching and semantic analysis too.

3. Experimental Setup

In this section we want to describe why we have decided to use

RCLinker approach. According to MLink article [9], MLink is better than Re-

Link by 6-11% in F-score, 4-13% in recall, and 5-8% in precision. In

RCLinker article [2] authors sustain that RCLinker has gained far much better

results in F-measure by 138.66% in comparison to MLink. That is why we

have decided to use RCLinker approach.

 How to Improve Linking Between Issues and Commits ... 153

3.1. Research questions

 RQ1: How effective RCLinker is in recovering missing links between

issues and commits? In this RQ we will check how effective solutions

from literature are.

 RQ2: Is it possible to pick versatile machine learning settings giving

good effects for all kinds of projects? In this RQ we will check how

RCLinker’s results can be changed when we adjust classifiers’ set-

tings. We will try to check if it is possible to gain better results than

original authors.

 RQ3: Will RCLinker will be effective on projects with various diffi-

culty levels? We will run defect prediction on datasets that vary on

number of issues that could be matched with commit logs.

 RQ4: How to improve RCLinker algorithm? We will add new metrics

based on Jira metadata and evaluate on various machine learning

classifiers.

3.2. Datasets

The research will be performed using two open source projects by Piv-

otal Software: Spring Data Redis, Spring OSGi and the proprietary commer-

cial project provided by Capgemini.

To check commits and issue linking we have looked through Git history

of selected projects to find out if they contain Jira ticket numbers.

Outlined projects were chosen by discovering Spring’s projects cata-

logue. We chose projects which were created recently. The projects were com-

pared with each other minding commits coverage with Jira tags and overall

commits number. This dataset will be split into two parts. First one will be

used as training set, second one will have its Jira tags removed and used for

validation of output.

Spring OSGi will be used as dataset with higher complexity. This data

set is bigger and not fully tagged with Jira issues. Specific thing for Spring

OSGi commit history is tagging multiple commits with the same Jira issue

number. It is two times bigger than Spring Data Redis – consists of over two

thousands commits, while Spring Data Redis of around one thousand.

154 Software Engineering: Improving Practice through Research

Commercial project provided by Capgemini will be used in final devel-

opment of the algorithm. The data set used for the research comes from a sys-

tem produced for one of the biggest automotive companies in Europe and it

covers all aspects of car purchasing. The project is developed using agile

methodologies. Support and bug fixing is hierarchically organised using Kan-

ban technique as described in [14].

3.3. Knime workflow description

Our main goal is to implement a new DePress plugin. To supply data-

sets for the plugin (issues from JIRA and commit logs from GitHub) we

needed to prepare workspace and provide links to JIRA and GitHub reposi-

tory. More detailed information about reproduction (i.e. detailed steps of in-

stallation) can be found in Appendix A.

3.4. Metrics – model input

We will use two categories of metrics: based on commit message and

based on commit metadata. Metrics are similar to those used in RCLinker arti-

cle [2]. We have used them as a model input – independent predictors. As

dependent variable we predict if the given pair commit-issue is a true link or

not. For a list of notations, used in metrics table, please see Table 1. We will

use metrics described in Table 2.

Metrics J1a, J1b, J1c, J1d, J2a, J2b, J3a, J3b, J3c are metrics designed

by us, which are based on JIRA changes and metadata.

Model input consists of two additional indicators: realLink – valued as

1 if given pair of commit-issue exists in golden set, otherwise 0, and under-

sampled RealLink, which is output of undersampling process described in

RCLinker article [2]. Golden set is extracted from version control system re-

pository by traversing all the existing commit descriptions and matching issue

tracking IDs in them. If such ID is found in description of commit, it is consid-

ered as a part of golden set.

During first phase of experiment, we have learned model using Random

Forest. Next, we have tried to improve results using also the following classi-

fiers from Weka library: MultilayerPerceptron, BayesNet, NaiveBayes, SGD,

 How to Improve Linking Between Issues and Commits ... 155

AdaBoostM1, RealAdaBoost and changing default parameters’ values to get

better results. Unfortunately it did not improve the results, so we have decided

to use Random Forest classifier.

Table 1. List of notations used in metrics description

Msg Human-written commit message

Csmsg Commit message generated by ChangeScribe

cmtDate Commit date

summary Summary of an issue

Desc Description of an issue

Prio Priority of an issue

noCom Number of comments in issue

comi Comment (1 <= comi <= noCom)

words(D) Number of distinct words in document D

+ text concatenation

reportedDate Report date of an issue

updatedDate Last update date of an issue

date (commi) Date of ith comment in issue

3.5. Prediction model and measures

During experiment we have used a model to predict if the given issue

should be linked with the given commit. For each pair (issue, commit) we have

analysed if there is a link between them or not.

As an output of program returns a list of linked issues with commits –

pairs (issue, commit). We have evaluated the result in the matter of measures

such as precision, recall and F-measure.

4. Results

In this section are presented results which we have achieved by using

RCLinker approach without the ChangeScribe tool. In the first two tables can

be found results for open source projects, in the last one – for the commercial

Capgemini project.

156 Software Engineering: Improving Practice through Research

Table 2. Used textual and metadata metrics

 How to Improve Linking Between Issues and Commits ... 157

4.1. Spring Data Redis

Results for Spring Data Redis project are presented in Table 3.

Table 3. Spring Data Redis evaluation results

Description Recall Precision F-measure

no cross validation,

2 nearest neighbours

0.63 0.17 0.27

10 iterational cross validation, 10

nearest neighbours

0.52 0.10 0.16

10 iterational cross validation,

2 nearest neighbours

0.48 0.38 0.42

15 iterational cross validation,

2 nearest neighbours

0.46 0.37 0.40

10 iterational cross validation,

1 nearest neighbour

0.41 0.54 0.47

10 iterational cross validation,

0 nearest neighbours

0.38 0.79 0.51

The best achieved results processing Spring Data Redis project were re-

call: 0.38, precision 0.79 giving F-measure at point of 0.51.

During evaluation it turned out that producing nearest neighbours actu-

ally does not impact results in the positive way. It makes recall slightly rise,

but with cost of huge precision drop.

Using cross validation instead of random splitting data set into two

fixed-size subsets improved the result. When no cross validation was used,

with two nearest neighbours generated, there were F-measure equal to 0.27.

With the same nearest neighbour setting and cross validation used, the F-

measure raised to level of 0.42.

Increasing number of cross validation iterations did not bring significant

improvement comparing to extended computation time needed to process data.

Adding 5 iterations enhanced F-measure by 0.02.

4.2. Spring OSGi

Results for Spring OSGi project are presented in Table 4.

158 Software Engineering: Improving Practice through Research

Table 4. Spring OSGi evaluation results

Description Recall Precision F-measure

10 iterational cross validation, 1 near-

est neighbour

0.19 0.22 0.20

10 iterational cross validation, 0 near-

est neighbours

0.17 0.58 0.26

15 iterational cross validation, 0

nearest neighbours

0.19 0.60 0.29

In comparison to Spring Data Redis, Spring OSGi has far more less cor-

rect commits descriptions. While Spring Data Redis has almost all of them

well described, Spring OSGi has more or less 50%. That is why, the results are

much worse. Slightly better result we got by increasing the number of itera-

tions.

4.3. Capgemini project

Results for the commercial Capgemini project are presented in Table 5.

Table 5. Capgemini project evaluation results

Description Recall Precision F-measure

10 iterational cross validation, 2 near-

est neighbours

0.58 0.41 0.48

10 iterational cross validation, 1 near-

est neighbour

0.54 0.56 0.55

15 iterational cross validation, 0 near-

est neighbours

0.49 0.86 0.62

10 iterational cross validation, 0

nearest neighbours

0.49 0.88 0.63

Proprietary commercial project provided by Capgemini has quite good

results. First of all the dataset with commits and issues was not too big – this

was a period of 6 months. The other thing why results are good is caused by

good described commits’ messages – about 95% has good commit description.

 How to Improve Linking Between Issues and Commits ... 159

In comparison to Spring Data Redis – the best results were achieved when

nearest neighbours equalled 0. The recall and F-measure raised significantly:

recall from 0,56 to 0,88 and F-measure from 0,55 to 0,63.

5. Discussion

In this section, we have described why we have not used ChangeScribe

in our implementation of the RCLinker algorithm. ChangeScribe caused many

performance and implementation problems which are described below.

5.1. General discussion

As we can see in the results, RCLinker algorithm performs the best in

Capgemini proprietary project. Also results for the Spring Data Redis are still

quite good, however they are much worse than in the original RCLinker [2]

approach.

5.2. Problems

During implementation of RCLinker algorithm we have encountered

many performance and implementation problems.

First problem was with executing ChangeScribe in non-eclipse envi-

ronment. ChangeScribe was not describing properly all changes. We wrote to

ChangeScribe’s authors and created an issue on the GitHub repository. They

helped us and gave access to special, modified version of ChangeDistiller.

Second problem was memory complexity of ChangeDistiller. We have

tried to run application with various heap sizes, however even 15 GB of RAM

was not enough.

5.3. Validity threats

Golden set is extracted from version control system repository by pat-

tern matching potential issue IDs in commits’ description. This is a threat to

validity since there may be some mistakenly tagged descriptions and the

160 Software Engineering: Improving Practice through Research

golden set acquired this way may not be full. There is no other fully credible

way of achieving such a golden set in projects evaluated by us. Manual crea-

tion of golden set would be extremely time consuming and would not plausi-

bility of it would be arguable as well.

6. Conclusions

Connections between issues and commits are very valuable in defect

prediction. Unfortunately commit logs are often missing clear disclosure of

these links.

Our implementation of RCLinker was able to achieve results with F-

measure equal to 0.62 on the commercial project. This is promising result, but

is not enough for enterprise use of this tool. The result indicates need for fur-

ther development of the algorithm itself.

Due to problems with ChangeScribe results are inconclusive. Compar-

ing to the RCLinker paper our implementation achieves significantly worse

results. There is a possibility, that using ChangeScribe, the results would be

comparable to original RCLinker’s evaluation.

We wanted to check which features are significant and important for the

results. T1, T2 and T3 were good indicators when it comes to textual relevance

between commits and issues. Features T4 and T5 are normalized forms of T1-

T3 respectively and that is why we supposed that they may be not very essen-

tial — we have checked this assumption using different classifiers described

below. Features T6-T7 were used to compute the number of common words

between issue and commit bringing new information to the classifier so they

are relevant for classifier. Because T8 and T9 are the ratio of T6 to the number

of distinct word in issue and commit we consider them as not useful. Metadata

features M9, M10, M11 were based on the comments and dates between them

and did not provide valuable information for machine learning algorithms.

After evaluation we consider JIRA features J1a, J1b, J1c, J1d, J2a, J2b, J3a,

J3b, J3c as not relevant, as they were not improving result of machine learn-

ing.

Concluding the revision we decided to leave significant metrics T1, T2,

T3, T6, T7, M1-M8 and not use features: T4, T5, T8, T9, M9, M10, M11, J1a,

 How to Improve Linking Between Issues and Commits ... 161

J1b, J1c, J1d, J2a, J2b, J3a, J3b, J3c. We have tested it on the Spring Data

Redis dataset. The results were comparable: Recall: 0,36, Precision: 0,79, F-

measure: 0,49. With the previous features set we got: Recall: 0,38, Precision:

0,79 and F-measure: 0,51.

We have also tested our implementation using the following classifiers

from Weka library: MultilayerPerceptron, BayesNet, NaiveBayes, SGD,

AdaBoostM1, RealAdaBoost and Random Forest. However, Random Forest,

used in original paper [2], gave us the best results. We have checked how vari-

ous parameters will change the results. For Random Forest, the best parameter

set is: Max Depth: unlimited, number of trees: 10.

7. Future works

We were not able to gain such a good results as described in the article

about RCLinker [2]. We suppose that a tool which will be similar to

ChangeScribe can improve the results. Additional features which were based

on JIRA metadata did not improve the results. It is likely that a tool which

generates additional messages about commits will give significant information

about changes in the repository code — it will be possible to create a new set

of features. The decision to create a new tool instead of using ChangeScribe is

associated with the problems described in the subsection 5.2.

References

[1] K. Herzig, S. Just, and A. Zeller. It’s Not a Bug, It’s a Feature: How Misclassifi-

cation Impacts Bug Prediction, In: Proceedings of the 2013 International Confer-

ence on Software Engineering, ICSE ’13, Piscataway, NJ, USA, pp. 392–401,

IEEE Press, 2013.

[2] T.-D. B. Le, M. Linares-Vásquez, D. Lo, and D. Poshyvanyk, RCLinker. Auto-

mated Linking of Issue Reports and Commits Leveraging Rich Contextual In-

formation, In: Proceedings of the 2015 IEEE 23rd International Conference on

Program Comprehension, ICPC ’15, Piscataway, NJ, USA, pp. 36–47, IEEE

Press, 2015.

[3] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu. A General Software Defect-

Proneness Prediction Framework, IEEE Transactions in Software Engineering,
Vol. 37, pp. 356–370, 2011.

162 Software Engineering: Improving Practice through Research

[4] L. Madeyski and M. Jureczko. Which Process Metrics Can Significantly Improve

Defect Prediction Models? An Empirical Study, Software Quality Journal, Vol.

23, no. 3, pp. 393–422, 2015.

[5] M. Jureczko and L. Madeyski. Cross–project defect prediction with respect to

code ownership model: An empirical study, e-Informatica Software Engineering

Journal, Vol. 9, no. 1, pp. 21–35, 2015.

[6] L. Madeyski and M. Majchrzak. Software Measurement and Defect Prediction

with De-Press Extensible Framework, Foundations of Computing and Decision

Sciences, Vol. 39, no. 4, pp. 249–270, 2014.

[7] C. Wohlin. Guidelines for Snowballing in Systematic Literature Studies and a

Replication in Software Engineering, In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, EASE ’14,

New York, NY, USA, pp. 38:1–38:10, ACM, 2014.

[8] R.Wu, H. Zhang, S. Kim, and S.-C. Cheung. ReLink: Recovering Links Between

Bugs and Changes, In Proceedings of the 19th ACM SIGSOFT Symposium and

the 13th European Conference on Foundations of Software Engineering,

ESEC/FSE ’11, New York, NY, USA, pp. 15–25, ACM, 2011.

[9] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, Multi-layered

Approach for Recovering Links Between Bug Reports and Fixes, In Proceedings

of the ACM SIGSOFT 20th International Symposium on the Foundations of

Software Engineering, FSE ’12, New York, NY, USA, pp. 63:1–63:11, ACM,

2012.
[10] ChangeScribe, https://github.com/SEMERU-WM/ChangeScribe, 2016.

[11] T. F. Bissyandé, F. Thung, S. Wang, D. Lo, L. Jiang, and L. Réveillère. Empiri-

cal Evaluation of Bug Linking, In: 17th European Conference on Software Main-

tenance and Reengineering (CSMR), pp. 89–98, 2013.

[12] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein. The Missing

Links: Bugs and Bug-fix Commits, In: Proceedings of the Eighteenth ACM SIG-

SOFT International Symposium on Foundations of Software Engineering, FSE

’10, New York, NY, USA, pp. 97–106, ACM, 2010.

[13] J. Sliwerski, T. Zimmermann, and A. Zeller. When Do Changes Induce Fixes?,

In: Proceedings of the 2005 International Workshop on Mining Software Reposi-

tories, MSR ’05, New York, NY, USA, pp. 1–5, ACM, 2005.

[14] M. Majchrzak and L. Stilger. Experience Report: Introducing Kanban Into
Automotive Software Project, From Requirements to Software: Research and

Practice, Scientific Papers of the Polish Information Processing Society Scientific

Council, pp. 15–32, 2015.

Chapter 10

Defect Prediction with Bad Smells in Code

1. Introduction

Among different aspects of software defect prediction process, one of

the key elements is proper selection of metrics for training and verification

dataset preparation. Most popular data is source code metrics [6, 11], but also

different types of metrics are considered effective in term of defect prediction,

such as design metrics [24], change metrics [21], mining metrics [22] or proc-

ess metrics [18, 13].

1.1. Related work and goal

Separate group of design metrics are metrics based on code smells, also

known as bad smells or code bad smells. The term was formulated by Kent

Beck in 2006 [1]. The concept was popularized by Martin Fowler in his book

Refactoring. Improving the structure of existing code [5]. Kent Beck was a co-

author of the chapter on code smells.

Kent Beck on his website explains the idea of code smells [1]:

Note that a Code Smell is a hint that something might be wrong, not a

certainty. A perfectly good idiom may be considered a Code Smell be-

cause it's often misused, or because there's a simpler alternative that

works in most cases. Calling something a Code Smell is not an attack;

it's simply a sign that a closer look is warranted.

Due to nature of code smells described above, there is ongoing discus-

sion if code smells could be used effectively in quality assurance in code

164 Software Engineering: Improving Practice through Research

development [27, 26]. Major motivation for this research was to investigate, if

code smells can improve software defect prediction.

In industrial software development, only Holschuh et al. investigated

code smells metrics effectiveness in defect prediction process for Java pro-

gramming language [7]. No code smells metrics for defect prediction in .NET

oriented industrial software projects are known to authors. Thus, we decided

use long-term defect prediction research project run in Volvo Group [9, 10] as

an occasion for conducting an experiment with introduction of bad smells

based metrics to prediction process and observe the results, if they improved

prediction effectiveness or not:

RQ: How Code Bad Smells based metrics impact defect prediction in

industrial software development project?

1.2. Research environment: Industrial software development project

Project, on which the study was conducted, is a software development

of critical industry system used in Volvo Group vehicle factories called

PROSIT+. It is created based on client-server architecture. The main function-

ality of PROSIT+ system is: programming, testing, calibration and electrical

assembly verification of Electronic Control Units (ECUs) in Volvo's vehicle

production process.

PROSIT+ system consists of few coexisting applications. The most im-

portant one, desktop application “PROSIT Operator”, communicates in real

time with a mobile application, located on palmtop computer used by vehicle

factory workers to transfer all production related information to a local server.

The server is responsible for storage and distribution of configuration-, sys-

tem- and product-related data. Such communication can generate extremely

heavy data transfer loads in large factories, when more than 100 mobile appli-

cations are used. Other application include: “PROSIT Designer”, “PROSIT

Factory Manager” and web application “PROSIT Viewer”. All of them are

also connected to the same server.

Development of each PROSIT+ version lasts one year. After this period

software is released to the end-user. As this period of time is connected to

factory production cycle it cannot be fastened or postponed.

 Defect Prediction with Bad Smells in Code 165

All applications within PROSIT+ system were developed using Micro-

soft .NET technology and Microsoft Visual Studio as the integrated develop-

ment environment. For version control purposes, Microsoft Team Foundation

Server was used. Before release of version 11 of the PROSIT+ system, IBM

ClearQuest was used for software defect management. Until the development

of version 11, Team Foundation Server was used for defect tracking.

Project lacks of bottlenecks described by Hryszko and Madeyski [8],

which could hinder or prevent from applying defect prediction process. How-

ever, we observed relatively high number of naming issues in the project.

Main reason of that situation we consider high maturity of the software system

– over the time, naming conventions have changed. We consider naming is-

sues as negligible problem and we will exclude them from the further investi-

gation.

2. Research Process

Defect prediction was already an ongoing process in investigated pro-

ject. It used SourceMonitor software as metric source and as prediction tool –

KNIME-based DePress Extensible Framework proposed by Madeyski and

Majchrzak [19]. This tool, based on KNIME [17], provides with a wide range

of data-mining techniques, including defects prediction, in various IT projects,

independently of technology and programming language used. We will also

use KNIME/DePress for purpose of our research.

To investigate the possible impact of code-smell metrics on defect pre-

diction, we developed the following plan to follow:

1) Generate metrics from SourceMonitor;

2) Generate code smells metrics from CodeAnalysis;

3) Parse results from CodeAnalysis and merge them with metrics from

Source-Monitor.

4) Link check-ins to defects;

5) Link classes from check-ins to defects (the assumption is that if a class

was changed while fixing a defect, that class was partially or fully re-

sponsible for that defect);

166 Software Engineering: Improving Practice through Research

6) Merge list of classes with merged metrics from CodeAnalysis and Sour-

ceMonitor;

7) Use different software defect prediction approaches combinations to

select optimal prediction set-up for evaluation purposes;

8) Divide PROSIT+ code into 20 sub-modules and run prediction model

training and evaluation using data from each module separately;

9) Collect and interpret the results.

2.1. SourceMonitor as basic metrics source

Defect prediction process in PROSIT+ is based on metrics that are gath-

ered using SourceMonitor tool [12]. That tool performs static computer code

analysis on complete files and extracts 24 different kinds of metrics. Example

metrics extracted are:

 Lines of code,

 Methods per class,

 Percentage of comments,

 Maximum Block Depth,

 Average Block Depth.

2.2. CodeAnalysis tool as code smells metrics source

In our experiment, we decided to use Microsoft CodeAnalysis tool to

gather code smells metrics. Primary deciding factor was cost: CodeAnalysis

tool is delivered as a part of Microsoft Visual Studio software development

suite for .NET based projects. Thus, there were no additional costs of introduc-

tion of this tool into the investigated software development project.

CodeAnalysis for managed code analyzes managed assemblies and re-

ports information about the assemblies, such as violations of the pro-

gramming and design rules set forth in the Microsoft .NET Framework

Design Guidelines [20].

According to documentation, there are approximately two hundred rules

in CodeAnalysis [20], triggering 11 kinds of warnings (Table 1). Tool can be

 Defect Prediction with Bad Smells in Code 167

run from command line and results are then stored in an .xml file, that can be

later parsed and analyzed further.

Table 1. Bad smell warnings in CodeAnalysis

Bad smell warning Area covered

Design Correct library design as specified by the .NET Framework

Design Guidelines

Globalization World-ready libraries and applications

Interoperability Interaction with COM clients

Maintainability Library and application maintenance

Mobility Efficient power usage

Naming Adherence to the naming conventions of the .NET Frame-

work Design Guidelines

Performance High-performance libraries and applications

Portability Portability across different platforms

Reliability Library and application reliability, such as correct memory

and thread usage

Security Safer libraries and applications

Usage Appropriate usage of the .NET Framework

3. Results

We conducted our experiment by following the plan presented in previ-

ous section. Here we present the results.

3.1 Automatically generated code: observed anomaly, cause and solution

After analyzing the relation between numbers of reported code smells

issues and file length metrics for complete software system, in datasets pre-

pared basing on CodeAnalysis and SourceMonitor tools, we observed that

different numbers of issues are reported for the same, large file length values

(Figure 1). As considered software contains only small number of large files,

we interpreted that as an anomaly: different total number of code bad smell

issues were reported for the same files. After investigation, we found that in

investigated system files with more than 1000 lines of code (LOC) are in most

168 Software Engineering: Improving Practice through Research

cases generated automatically and contain more than one class for a file, while

CodeAnalysis tool calculates number of issues metric per class. That discrep-

ancy resulted in abnormal number of issue per file length relation: different

number of issues values were collected for the same LOC values, because

numbers of issues values were calculated for different classes located in the

same files, identified by the same LOC value.

Figure 1. Anomalies in number of issues metric per file length (measured in LOC)

relation, introduced by automatically generated code, later removed from analysis

Figure 2. Number of issues metric per file length (measured in LOC) relation for in-

vestigated software, with automatically generated code removed

 Defect Prediction with Bad Smells in Code 169

As automatically generated code files exist only for installation and de-

ployment purposes and are not covered by tests and are not reachable for end-

users of the system, we decided to consider them as a source of information

noise and we removed them from further analysis. Number of issue per file

length relation improved after that step (Figure 2).

3.2 Metrics breakdown difference: problem and solution

After a thorough investigation of the above problem, we found that dif-

ferent values of issue number metric for the same LOC metric was caused by

the different metrics breakdown used by two tools selected for metric datasets

generation: CodeAnalysis gathers data for every class while SourceMonitor for

every file. When results from two tools were merged into single dataset, Sour-

ceMonitor metrics, fixed for each file, were artificially divided per each class

in the file (Table 2).

Table 2. Example of dataset from first approach: single class per record (SourceMoni-

tor metrics are artificially divided per each class in file)

File Class SourceMonitor LOC CodeAnalysis Issues

File1.cs Class1 33 3

File1.cs Class2 33 20

File1.cs Class3 33 6

File2.cs Class4 30 15

To counteract against metric anomalies described in section 3.1, as well

as against possible introduction of informational noise into the training dataset,

we decided to change the approach and rearrange the datasets into single file

metrics per record layout. To achieve this, metrics gathered by CodeAnalysis

had to be aggregated (added; Table 3).

Table 3. Example of dataset from second approach: single file per record (CodeAnaly-

sis metrics are artificially added)

File Class SourceMonitor LOC Code Analysis Issues

File1.cs Class1...3 100 29

File2.cs Class4 30 15

170 Software Engineering: Improving Practice through Research

3.3 Optimal prediction mechanism selection

To choose optimal prediction mechanism, we decided to test combina-

tion of different classifiers, feature selection and balance algorithms (Table 4)

against two datasets: with- and without code bad smells metrics collected by

CodeAnalysis tool.

Table 4. Combinations of different approaches

Classifier Feature Selection SMOTE Bad smells metrics?

Naive Bayes None With Present

Random Forest Elimination Without Absent

PNN Simulated Annealing

We used SMOTE algorithm [4] to balance classes with defects and

without them.

To select most important metrics from all available, as some of them

should have seemingly little impact on the presence of true software defects,

e.g. Efficient power usage warning (Table 1), we decided to use in our re-

search two feature selection algorithms: KNIME's build-in reversed elimina-

tion greedy algorithm [16] and simulated annealing meta-heuristic algorithm

by Kirkpatrick et al. [15] in form proposed by Brownlee [3].

As classifier, we used popular in defect prediction studies [6, 21, 14, 23]

Naïve Bayes classifier and Probabilistic Neural Network (PNN), as well as

Random Forest [2] classifier.

Results of testing combinations of above machine learning elements in

favour of best prediction results are presented in Table 5. Two datasets – with-

and without code bad smells metrics included, were divided using stratified

sampling method into two equal subsets, for training and evaluation purpose.

Prediction models were evaluated using F-measure [25].

Highest F-measure value (0.9713) was observed for dataset with code

bad smells used, when SMOTE algorithm and reversed elimination feature

selection mechanism was used to select optimal subset for training and evalua-

tion of Random Forest classifier. And such combination was selected for final

evaluation of usage of code smells based metrics in defect prediction process.

 Defect Prediction with Bad Smells in Code 171

Table 5. Results for optimal prediction set-up selection (defect-prone class)

3.4 Datasets evaluation: CodeAnalysis (bad smells metrics) against Sour-

ceMonitor

For final evaluation, if code bad smells-based metrics could be valuable

for defect prediction purposes, we divided all available code, in considered

industrial software development project, into 20 smaller, similar in size sub-

modules (ca. 700 records after SMOTE oversampling). Greater fragmentation

of system's code was not technically possible. For each sub-module we col-

lected metrics using SourceMonitor or/and CodeAnalysis, to create different

datasets:

 20 datasets of SourceMonitor metrics only;

 20 datasets of CodeAnalysis (code smells) metrics only;

 20 datasets of combined metric: SourceMonitor + CodeAnalysis.

Additionally, each kind of datasets we decided to test against feature se-

lection (FS) process. During the evaluation, we collected Accuracy and

Cohen's kappa measures for overall results (Table 6), and F-measure and Re-

call for defect-prone classes (Table 7).

172 Software Engineering: Improving Practice through Research

Table 6. Final results of datasets evaluation

Dataset Measure Mean Std. deviation

SourceMonitor without FS Accuracy 0.9422 0.0187

Cohen's kappa 0.8844 0.0374

CodeAnalysis without FS Accuracy 0.676 0.0451

Cohen's kappa 0.3518 0.0904

SourceMonitor + CodeAnaly-

sis w/o FS

Accuracy 0.9487 0.0226

Cohen's kappa 0.8973 0.0453

SourceMonitor with FS Accuracy 0.97 0.0122

Cohen's kappa 0.9399 0.0245

CodeAnalysis with FS Accuracy 0.8249 0.059

Cohen's kappa 0.6497 0.1180

SourceMonitor + CodeAnaly-

sis with FS

Accuracy 0.9791 0.0135

Cohen's kappa 0.9582 0.027

3.5 Threads to validity

Conclusion validity. In our research, we tested 20 datasets collected

from different software modules. More research using larger data set, collected

from different sources is needed to confirm our findings.

Internal validity. We have used aggregation of CodeAnalysis metrics for

each file, by adding metrics collected for each class. Such solution was intro-

duced to solve metrics breakdown difference problem and make combination

of two metric sources possible, however it could impact the final result of our

research.

External validity. Our research is based only on metrics gathered from

one software development project. Despite the fact, that we were able to col-

lect 34 different metric kinds for 20 different program modules, we were still

constrained by single environment: development team and its programming

habits, programming language, tools used, etc. Because of this fact, more re-

search is needed to verify our findings in other software development envi-

ronments (contexts).

 Defect Prediction with Bad Smells in Code 173

Table 7. Measures for records marked as defect-prone

Dataset Measure Mean Std. deviation

SourceMonitor without FS Recall 0.9608 0.0278

F-measure 0.9433 0.0188

CodeAnalysis without FS Recall 0.666 0.2961

F-measure 0.6447 0.1157

SourceMonitor + CodeAnaly-

sis w/o FS

Recall 0.9637 0.0303

F-measure 0.9494 0.0228

SourceMonitor with FS Recall 0.9824 0.0146

F-measure 0.9704 0.012

CodeAnalysis with FS Recall 0.8424 0.0542

F-measure 0.8286 0.0559

SourceMonitor + CodeAnaly-

sis with FS

Recall 0.9859 0.0206

F-measure 0.9792 0.0136

4. Discussion

When selecting optimal defect prediction set-up for further verification

if code smell-based metrics can improve prediction results, we observed that

best result was achieved for dataset with bad smell metrics included (F-

measure = 0.9713). However, for the same setup, but without code smells met-

rics, F-measure value was only by 0.0059 lower (Table 5) what makes the

difference between SourceMonitor and CodeAnalysis results negligible. Final

results collected from 20 different software sub-modules confirmed that state-

ment: Average accuracy value for prediction based on dataset constructed bas-

ing on both sources was only by 0.0091 better than result for SourceMonitor-

only based metrics (Average F-measure value difference = 0.0088), while

standard deviation value was 0.0136. Worth noticing is drop of CodeAnalysis

– only based prediction results, when feature selection (FS) process was re-

moved from the experimental setup.

Results of our experiment of using code smells metrics in software de-

fect prediction, show irrelevant – in our opinion – impact on effectiveness of

the process, when basic dataset (SourceMonitor-based) was extended by

CodeAnalysis metrics. because even if prediction effectiveness measures are

174 Software Engineering: Improving Practice through Research

slightly higher, the stay within the limits of error. But when only use of Code-

Analysis-based metrics were used for prediction (without basic set of Sour-

ceMonitor-based metrics), such process resulted with high accuracy (0.8249)

and F-measure (0.8286) results.

Thus, answering the research question: How Code Bad Smells based

metrics impact defect prediction in industrial software development project?

We want to state, that in industrial environment, such as PROSIT+ software

development project, impact of code bad smells based metrics is negligibly

small, and usage of CodeAnalysis-based metrics should not be considered

useful, due to fact that additional effort needed for introducing code smell-

based metrics to software defect prediction process is not compensated by

relatively high increase of prediction effectiveness.

However, we observed surprisingly high effectiveness of prediction,

when dataset based on CodeAnalysis only was used. Authors believe, that

code bad smells can be effectively used for defect prediction process espe-

cially there, where other metrics are not available, or computing power is in-

sufficient to handle large sets of different metrics (for example 24 kinds of

metrics for SourceMonitor), while CodeAnalysis metrics set, used in our re-

search, contained only 11 different kinds of metrics. Due these promising re-

sults, aspects of using code bad smells only based metrics in defect prediction

processes should be investigated further.

References

[1] K. Beck. Code Smell (2016), http://c2.com/cgi/wiki?CodeSmell, accessed: May

8, 2016.

[2] L. Breiman. Random Forests. Machine Learning pp. 5–32, 2001.

[3] J. Brownlee. Clever Algorithms. Nature-Inspired Programming Recipes, Jason

Brownlee, 2011.

[4] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer. SMOTE: Synthetic

Minority Over-sampling Technique. Journal of Artificial Intelligence pp. 321–

357, 2002.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts. Refactoring: Improving

the Design of Existing Code. Addison-Wesley Professional, 2006.

[6] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell. A Systematic Literature
Review on Fault Prediction Performance in Software Engineering. IEEE Trans-

actions on Software Engineering 38(6), pp. 1276–1304, 2012.

 Defect Prediction with Bad Smells in Code 175

[7] T. Holschuh, M. Pauser, K. Herzig, T. Zimmermann, R. Premraj, A. Zeller. Pre-

dicting defects in SAP Java code: An experience report. In: ICSE-Companion

2009, 31st International Conference on Software Engineering, pp. 172–181, 2009.

[8] J. Hryszko, L. Madeyski. Bottlenecks in Software Defect Prediction Implementa-

tion in Industrial Projects. Foundations and Computing and Decision Sciences

40(1), pp. 17–33, 2015, http://dx.doi.org/10.1515/fcds-2015-0002

[9] J. Hryszko, L. Madeyski. Assessment of the Software Defect Prediction Cost

Effectiveness in an Industrial Project. Advances in Intelligent Systems and Com-

puting (accepted), 2016.

[10] J. Hryszko, L. Madeyski, R. Samlik. Application of Defect Prediction-Driven

Quality Assurance Methodology in Industrial Software Development Project,
pre-print, 2016

[11] N. Jaechang. Survey on Software Defect Prediction (2014), hKUST PhD Quali-

fying Examination

[12] J.Holmes: SourceMonitor Site, 2016,

http://www.campwoodsw.com/sourcemonitor.html, accessed: 2016.05.06

[13] M. Jureczko, L. Madeyski. A Review of Process Metrics in Defect Prediction

Studies. Metody Informatyki Stosowanej 30(5), pp. 133–145, 2011,

http://madeyski. e-informatyka.pl/download/Madeyski11.pdf

[14] T. M. Khoshgoftaar, A. S. Pandya, D. L. Lanning. Application of Neural Net-

works for Predicting Faults. Annals of Software Engineering 1(1), pp. 141–154,

1995.
[15] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by Simulated Anneal-

ing. Science 220(13), pp. 671–680, 1983.

[16] KNIME.COM AG: Backward Feature Elimination, 2016, https://www.knime.

org/files/nodedetails/_mining_meta_mining_features_Backward_Feature_Elimin

ation_Start_1_1_.html, accessed: June 28, 2016.

[17] KNIME.COM AG: KNIME Framework Documentation, 2016,

https://tech.knime.org/documentation/, accessed: May 6, 2016.

[18] L. Madeyski, M. Jureczko. Which Process Metrics Can Significantly Improve

Defect Prediction Models? An Empirical Study. Software Quality Journal 23(3),

pp. 393–422, 2015, http://dx.doi.org/10.1007/s11219-014-9241-7

[19] L. Madeyski, M. Majchrzak. Software Measurement and Defect Prediction with

Depress Extensible Framework. Foundations of Computing and Decision Sci-
ences, pp. 249–270, 2014.

[20] Microsoft: Code Analysis for Managed Code Overview, 2016,

https://msdn.microsoft.com/en-us/library/3z0aeatx.aspx, accessed: May 6, 2016.

[21] R. Moser, W. Pedrycz, G. Succi. A Comparative Analysis of The Efficiency of

Change Metrics and Static Code Attributes for Defect Prediction. In: Software

Engineering, 2008. ICSE '08. ACM/IEEE 30th International Conference on. pp.

181–190, 2008.

[22] N. Nagappan, T. Ball, A. Zeller. Mining Metrics to Predict Component Failures.

In: Proceedings of the 28th International Conference on Software Engineering.

pp. 452–461, 2006.

176 Software Engineering: Improving Practice through Research

[23] R. W. Selby, A. Porter. Learning from Examples: Generation and Evaluation of

Decision Trees for Software Resource Analysis. IEEE Transactions on Software

Engineering 14(12), pp. 1743–1756, 1988.

[24] G. Succi, W. Pedrycz, M. Stefanovic, J. Miller. Practical Assessment of the

Models for Identification of Defect-Prone Classes in Object-Oriented Commer-

cial Systems Using Design Metrics. Journal of Systems and Software 65(1), pp.

1–12, 2003.

[25] I. H. Witten, E. Frank, M. A. Hall. Data Mining: Practical Machine Learning

Tools and Techniques. Morgan Kaufmann, 2005.

[26] M. Zhang, T. Hall, N. Baddoo. Code Bad Smells: a review of current knowledge.

Journal of Software Maintenance and Evolution: Research and Practice, pp. 179–
202, 2011.

[27] M. Zhang, T. Hall, N. Baddoo, P. Wernick. Do bad smells indicate "trouble" in

code? In: DEFECTS '08 Proceedings of the 2008 workshop on Defects in large

software systems, pp. 43–44, ACM, 2008.

Chapter 11

Postgraduate Studies on Software Testing

in Poland

1. Introduction: Tester as an IT Profession in Poland

IT managers constantly have a problem with testing. They do not know

exactly what testing means, why it is essential in the software lifecycle and

why it is worth to invest in it. Till now some IT people, when thinking about

"testers", have in mind a low educated person who – by more or less randomly

clicking on different fields in applications – tries to find some errors.

In the last few years, however, things become to change. More and more

managers are aware that testing is not "clicking", but a formal, systematic

process based on the mathematical background (see for example [1]). They

understand that testing tries to answer a very important question: what is the

actual risk related to the application under test. Managers start to treat testing

as a technological investigation which allows us to gain some information

about the quality of System Under Test. Technological – because it heavily

relies on methods such as mathematics, graph theory, logic, tools (special pro-

grams), theoretical computer science, models, measuring etc. Investigation –

because testers do it in a formal way.

Observing the market one can find that many organizations in Poland

are looking for qualified testers – mostly in big cities (see Figure 1). It is inter-

esting to observe the requirements for this position (see Figure 2). It is obvious

that employers are looking for persons with good English knowledge (typi-

cally on a B2 knowledge level, standard for graduates in Poland). Most of

these organizations are international, most IT documentation is in English.

Moreover, English nowadays is a lingua franca in the IT world. We can also

178 Software Engineering: Improving Practice through Research

understand that – especially regarding higher positions (Senior Tester, Test

Manager) – employers are interested in some experience, but mostly in basic

testing process, some tools like bug trackers, etc. From the data one can find

that ISTQB certificate is an important basis which confirms the candidate's

testing knowledge.

Figure 1. Demand for testers in different cities in Poland – based on Pracuj.pl portal;

February 2016 (155 job advertisements)

It is very interesting that the minority of employers requires the educa-

tion in technology (computer science, electronics) (38%). In our opinion it is

because the organizations are aware of the fact that graduates with technical

education prefer to work as developers, as they are usually paid much better

than testers. Hence they try to omit this problem, replacing the requirement of

„education” by requirement of “experience”. It may also be a result of – inva-

lid in our opinion – belief that the main task of testers is just to act as a user,

who is not necessarily technically educated. What is also interesting, there is a

relatively small amount of requirements (a bit over 50%) for programming

skills. In our opinion is comes from the fact that people with good program-

ming skills prefer to work as developers than testers.

But computer science graduates may be reluctant in developing their ca-

reers in the quality area also for other reason. Namely, computer science cur-

ricula for undergraduate and graduate studies usually do not pay much atten-

tion to software testing or quality assurance. Much of the hours devoted to

software development focus on programming (programming languages, data

 Postgraduate Studies on Software Testing in Poland 179

structures, and algorithms). Usually there is only one course on software

engineering (typically ca. 15-30 hours) covering all SE areas (requirements,

software development lifecycles, software design, architecture, UX, documen-

tation, IT project management etc.). Therefore, there are only one or two lec-

tures on software testing. In result, the graduates have only a very limited

knowledge on software quality. Their testing skills are usually related to the

developers' tasks (frameworks for unit testing, Test Driven Development, Be-

haviour Driven Development etc.).

 Figure 2. Requirements for tester positions – based on Pracuj.pl, February 2016

(155 job advertisements)

Jagiellonian University in Cracow is the first Polish university that of-

fers – constantly since 2008 – a full, 60h course on software testing for CS

undergrad students (30h lectures + 30h labs). This course is obligatory for

Software Engineering track and elective for other CS tracks. Every year ca.

120 3rd year students are enrolled on the course. The curriculum includes most

topics covered by ISTQB Advanced Level syllabi. Moreover, several lectures

are devoted to software quality assurance.

The similar course – however only as elective – is also offered to stu-

dents at Warsaw University of Technology. Typically, about 15 students each

year are enrolled on the course.

180 Software Engineering: Improving Practice through Research

The common lack of knowledge on software testing is noticeable when

studying the contents of the job positions descriptions. Many employers do not

distinguish between software quality assurance and software testing, which

can be classified as a software quality control activity. Software testing is

therefore a proper subset of QA, but companies looking for testers frequently

call these positions like "Quality assurance engineer", "QA engineer" etc. hav-

ing a tester role in mind.

But even more striking for us are the requirements for tester positions.

We analyzed several job offers for tester positions published on pracuj.pl – the

most popular job seeking portal in Poland. Most of the job descriptions focus

on the skills in test execution automation (that is, some knowledge on tools

and programming languages) or on the knowledge of different SDLCs, Agile

being the most popular. However, almost none of the job descriptions require:

 analytical skills,

 ability to read technical documents as test basis,

 good communication skills,

 inquisitiveness, exactitude, preciseness,

 knowledge on test design techniques,

 knowledge on different test approaches, like risk-based approach,

 skills on effective incident reporting.

Many companies require from the candidate the ability to manually or

automatically executing test scenarios/test scripts. But even if scripts are to be

designed by the candidate herself, there is no requirement about the ability to

effectively design the tests that will be executed by these scripts.

We think that it is more than obvious that there is a great need to pro-

mote professional knowledge on software testing and software quality assur-

ance. In the next sections we present the testing education in Polish universi-

ties, a general characterization of students and the analysis of curricula of sev-

eral postgraduate studies in software testing.

2. Testing Education in Polish Universities

Postgraduate studies are the most specific form of the formal software

testing education in Poland. This idea is specific to Poland and – according to

 Postgraduate Studies on Software Testing in Poland 181

our knowledge – rather uncommon anywhere else
1
. Curricula of regular (un-

dergraduate and graduate) IT studies at Polish universities, technical universi-

ties and colleges typically contain a few hours devoted to software testing,

usually as part of a Software Engineering course. But the postgraduate studies

are becoming noticeably more and more popular. At the moment there are

about 150-170 students taking such postgraduate courses at several colleges

located in the biggest Polish cities (Warsaw, Gdansk, Cracow, and Wroclaw).

What is very interesting, women are the majority of the students, which

is rather unexpected, because typically most of the students in technology area

are men.

Table 1. Basic characteristics of the postgraduate studies in software testing in Poland

University

Total number of

graduated

/women

Number of

students/

woman

Year of

establishing

Copernicus, Wroclaw 91/45 32/25 2010/2011

Gdansk School of Banking 100/56 62/27 2012/2013

Vistula, Warsaw 25/10 25/7 2014/2015

Jagiellonian University,

Cracow
39/20 39/20 2015/2016

3. Students: Their Profile, Experience and Expectations

Students interested in this kind of education can be divided into two

groups. The first one are people familiar with the overall high quality of the IT

jobs (salaries, benefits, work environment) that we sometimes figuratively call

"programmers’ wives". It does not necessarily mean that most of them are

female, but they typically fulfil the following conditions: they believe that

software testing is a good job with rather high salary and with relatively low

technical entry level, among their close relatives or friends there is somebody

working in the IT industry, they have some – typically very basic – knowledge

on programming and advanced computer usage.

1 According to the research program ISTQB Academia survey (internal materials)

182 Software Engineering: Improving Practice through Research

A good example of the student expectation is a quote from the enrol-

ment questionnaire, being an answer to the question about the motivation to

undertake such studies at Jagiellonian University:

"I want to change my job and start to make progress; my expectation is

to gain knowledge that would be enough to start as Junior Quality

Tester."

The second group consists of people who have just started their careers

as Junior Testers and found out that they need some systematized knowledge.

From the same questionnaire:

"I want to learn how to effectively prepare tests, how to test software

manually and with the usage of tools."

Candidates of the first edition of studies at Jagiellonian University filled

out a questionnaire about their experience in software testing and IT in gen-

eral. This data was used to split the students into two groups: less advanced

and more advanced, but the results of this survey also shed some light on who

is interested in this kind of studies and what background these people have.

The results of the survey are presented in Tab. 2. Students were to perform a

self-assessment in the following areas:

 knowledge on Windows systems,

 knowledge on Linux systems,

 knowledge on computer networks,

 knowledge on databases,

 knowledge on script programming,

 knowledge on C++,

 knowledge on Java,

 knowledge on C#.

Each skill was assessed with the 0-5 scale, where 0 means "absolutely

no knowledge" and 5 means "I have an advanced knowledge in this area". The

students might add other possessed skills. We also asked them about their ex-

pectations related to the studies. We received 56 answers.

Students also mentioned other skills, such as: HTML/HTML5/

XML/CSS (7), Python (5), Selenium (2), AutoCAD/CAD systems (2), MS

Office (2), Javascript (1), php (1), Matlab (1), MathCAD (1), jQuery (1), GIT

 Postgraduate Studies on Software Testing in Poland 183

(1), Robot Framework (1), JMeter (1), JUnit (1), TestNG (1), SVN (1), DOS

(1).

Table 2. Survey among Jagiellonian postgraduate studies candidates

Skill
Number of responses for a given grade

Mean
0 1 2 3 4 5

Windows systems 5 3 10 10 22 6 3.1

Linux systems 33 8 11 1 3 0 0.8

Networks 18 19 7 7 5 0 1.3

Databases 22 12 12 9 1 0 1.2

Script programming 32 12 7 4 1 0 0.8

Programming language

(C++)
37 11 5 3 0 0 0.5

JAVA 34 8 9 4 1 0 0.8

C# 44 7 4 1 0 0 0.3

22 out of 56 persons indicated an IT company as their place of work. As

for the expectations, two main groups are clearly visible: 24 said that they

want to change their career path (so probably they have little or no initial

knowledge on testing), 25 responded that they want to develop their careers in

the field of software testing. 2 persons wanted to undertake the studies to pre-

pare for the ISTQB Foundation Level exam.

23 responders indicated that during the studies they want to become fa-

miliar with widely understood automation (test automation tools like Sele-

nium, script languages, programming languages), 6 wanted to gain more ex-

perience in test management, 5 wanted to learn about the test design tech-

niques.

4. Curricula of Postgraduate Studies in Software Testing

The curriculum of software testing studies must take into account the

two above-mentioned groups of students and their expectations. There are

some differences between locations and universities, but basically the pro-

grams are more or less consistent with the ISTQB syllabi (CTFL and – par-

tially – Agile). There are also some basic and levelling courses such as:

184 Software Engineering: Improving Practice through Research

 programming (rather very basic), focusing mostly on writing simple

scripts to solve problems automatically and on writing code for popu-

lar test automation frameworks,

 database systems, to allow for effective testing of software that uses

them,

 Internet technologies that are used for websites and webservices,

 some introduction to operating systems, with special focus on

Unix/Linux because they are widely used in the industry.

Curricula of Cracow, Gdansk, Warsaw and Wroclaw programs are pre-

sented in Table 3.

During the lectures related directly to software testing the main ideas

from ISTQB CTFL syllabus are presented. Lecturers at postgraduate studies

are mostly professionals with a rich IT industry experience, hence the empha-

sis on a practical and real-life approach; also many references to real-life pro-

jects and situations are given:

 although models are good to define, not all organizations follow them

strictly,

 extensive planning is a good idea, but in many projects tester needs to

manage her/his project with a limited plan; some hints are presented,

 because of popularity of Agile, the ideas related to the tester’s role and

the way of cooperation in the Agile environment are presented.

Because the test automation is on the top nowadays, much attention is

put on the testing tools. As it can be observed in Table 3, about 20-25% of the

curricula is devoted to test automation. At the moment typically the following

tools are discussed:

 Selenium: IDE, Webdriver and Grid,

 some tools from the xUnit family,

 JMeter as a tool for performance testing,

 SoapUI for testing API & webservices,

 Robotium as a tool for mobile testing.

Students have an opportunity to use these tools during the workshops in

laboratories. They also test previously prepared programs with some defects

injected.

 Postgraduate Studies on Software Testing in Poland 185

Table 3. Programs of the postgraduate studies in software testing

 Number of hours

Subject

Jagiellonian

University

(Cracow)

Gdansk

School of

Banking

Vistula

(Warsaw)

Copernicus

(Wroclaw)

Software testing

foundations, test

design techniques

40 26 40 35

Test methodology 25

Test automation 40

50

50 50

Test management,

test documentation
30 30 25

Networks 20

82

20

55
Databases 20 20

Programming 30

Operating systems 20 20

Preparation to the

ISTQB Foundation

Level exam

 20

Soft skills in testing 14 10

Project seminar,

additional trainings
 28

Total 200 200 200 200

Stowarzyszenie Jakości Systemów Informatycznych (Society for Qual-

ity of Information Systems, SJSI) supports these studies. Most of the lecturers

are the members of SJSI, they are ISTQB certified testers and they try to share

their knowledge with students studying in different locations. At the moment a

new ISTQB portfolio is presented to the students to explain possible paths of

their careers in software testing.

Students have an opportunity to take the ISTQB CTFL exams on special

prices, much less than the market prices. Authors of the best graduate projects

have this opportunity for free; they also have a possibility to present their pa-

pers on Testwarez – the biggest testing conference in Poland (about 300

186 Software Engineering: Improving Practice through Research

participants each year) as guests of SJSI. All these opportunities aim to pro-

mote software testing studies in Poland.

5. Conclusions

In this paper we described the current state of the software testing post-

graduate studies in Poland. We presented and analyzed the curricula and the

candidates' profiles, experience and expectations. Some students attending

software testing studies have an IT background, but most of them come from

completely different fields. At present, salaries for software developers are

usually higher than for testers or QA engineers. This is because quality assur-

ance and quality control, in the employers’ view, are still underrated. How-

ever, recently this trend has started to change. We believe that in a few years

the quality assurance and quality control in Poland will become a mature and

respected field of software development. Therefore, the salary disparity will

start to vanish as one can observe in west European countries
2
. As there will be

a need for more experts in the field, postgraduate studies on software testing

run at mathematics and computer science faculties are a big necessity. Such

initiatives will have a direct influence on the quality of the software developed

in Poland.

References

[1] 2016 State of Testing Report, PractiTest & Tea Time with Testers, 2016,

http://qablog.practitest.com/wp-content/uploads/2016/04/StateofTesting2016.pdf

2 Private communication with senior testers from ISTQB German & French Testing Boards.

Chapter 12

Data Flow Analysis for Code Change Propagation

in Java Programs

1. Introduction

The paper considers building a tool, based on well investigated the con-

trol and the data flow problems, which would take two versions of a program

code and identifies operations which may produce different result. It is de-

voted to creating a model which allows comparing operations of two programs

by the result they produce.

The tool requirement comes from the need of a maintenance of produc-

tion systems which involves modification of its source code. Based on the

scope of the change adequate testing is applied to maintain the designed soft-

ware quality. Testing costs should balance between full, regression testing, and

underestimated, selective testing. Any overestimation of testing increases the

costs of software development. Performing a full regression tests on every

program code change is often unacceptably expensive. On the other hand,

underestimation of testing scope is even worse, introduces the risk of inconsis-

tency of logic and data flow, degradation of safety, as well as performance,

security breaches, etc. what translates to a number of bugs.

A proper code change scope estimation is essential from the quality and

the cost point of view of a software project management. It determines busi-

ness decisions: increasing the budget, rejecting the code change, selecting dif-

ferent solution, discovering workarounds, etc.

It is not a rare situation that a mission critical software in production for

years requires relatively small change, but which is not applied because of a

risk of introducing a bug which would involve serious consequences.

188 Software Engineering: Improving Practice through Research

The planned budget for the change may directly impact the coding

phase decisions: how many classes are going to be modified, how generic the

implementation is going to be, which tools and libraries shall be used, etc.

When a change is implemented the situation is not much better, the

scope of the change is still only estimation – a human error prone factor.

Issue tracking systems usually introduce severity, a characteristic to es-

timate the scope of change. However, grades like tweak, minor, major, critical

are often confused by business users with priority and thus only occasionally

used to report a change request and even more rarely used to manage or com-

municate the scope to the end user.

There is a need to formalize specification of how the code change can

propagate through an application body. When the scope of change could be

automatically generated the benefits would concern a coding process (greater

awareness of the change consequences), a testing process (precise tests selec-

tion), a customer verification (limited end user verification effort to reduce

risks of discrepancies), and so on.

The general idea of the paper is to create a tool which takes as an input

two versions of a program code and outputs places of a program code which

may behave differently between versions. The result of the tool should be

comparable to an analysis performed by a programmer not knowing a specific

domain. The paper demonstrates the capability of creating a tool but does not

conclude practical results.

Section 2 extends the model proposed in [3]. Proposed model is oriented

on comparison of operation results: a data flow technique is eliminated (opera-

tional stack, local variable, object’s field) but operations through data flows

are maintained.

The changed program code generates different responses which are

propagated to other (not changed) parts of the program and they respond dif-

ferently causing the change to be propagated. Changes can be populated ex-

plicitly – direct influence on a result, or implicitly – when a change approaches

conditional statements with predicate that can influence control flow selection

and, because of it, change the produced result. In particular, a notation is pro-

posed in Section 3. Defining stack transformations and operations for manipu-

lating local variables and objects’ fields in terms of an abstract set of data flow

relations is described in Section 4 to eliminate data propagation technique

 Data Flow Analysis for Code Change Propagation ... 189

selection impact (e.g. passing the value through the local variable, object’s

field or through the stack does not impact an expression result).

Section 5 shows how to deal with programming constructs like condi-

tions, loops, exceptions, it is supported by a case study presented in section 6.

The paper is summarized with a short review of the related work in section 7.

2. Code Change Propagation

This section describes how a tool could compare two program codes to

identify operations which may produce different result.

The code change of a program implies some of its operations to produce

different responses during execution. Such changed response flows to other,

not-changed operations of a program and cause them to respond differently.

The changed fragment of a program code propagates the change through the

program body along its data flow paths. Deterministic operations may produce

different results when they differs (e.g. operation IADD is changed into opera-

tion IMUL) and/or when data flowing to them differs.

Change Propagation Model. A propagation of a change is represented

by a data flow model. A program body is converted into a data flow relation

set. Two programs operations may be compared by appearance of the same

elements in both sets. When all data which flow into certain operation are the

same for two programs then it can be deducted that such operation responds

the same result. Otherwise, a change is introduced, and its flow along data

flow graph is observed (an operation which receives changed data as an input

produces different result on an output).

Data definition and data usage operations are paired as data flow rela-

tions. Reading stack, using local variable, getting object’s field value are con-

nected to the corresponding push stack, assign local variable and setting ob-

ject’s field value operations. In the result, possible program code changes:

moving part of a code to a method, or the opposite inlining the method body

where it is used, extracting expression to a variable and field (or the opposite)

may be automatically eliminated, as they do not introduce a change.

Precision of qualifying a change as substantial determines false-positive

change propagation results. The paper is limited to comparing machine (byte-

190 Software Engineering: Improving Practice through Research

code) operations but the model can accept more sophisticated comparison

methods like resolving expressions or loops.

3. Notation Proposal

Data flow is preceded by control flow analysis. The control flow is de-

fined as predecessor operation and successor operation relation set.

Each successor of a conditional operation (like if, switch, etc.) has a

statically known value of the selection assigned to it. For example, it is known,

for conditional operation IF_ICMPEQ L1 (comparison of two integer values)

that if the condition is true (two integer values are the same) then a jump to the

operation labelled by L1 is performed. When the result is false, control flow is

passed to the operation next to it. Let’s introduce several useful notations.

Control Flow Relations. Control flow is defined as set Fc of control

flow relations, represented by symbol ’→’: relation f1 → f2 denotes processing

of operation f1 passes the control flow to operation f2 (operation f1 is a prede-

cessor of operation f2). Sequence f1 → f2 → f3 implies f1 → f2; f2 → f3 and is

called a path.

Data Flow Relations. Data flow is defined as set Fd of data flow rela-

tions, represented by symbol ’ ’: relation (f1) fα denotes that result of f1

operation flows into fα, where fα is one argument operation (e.g. IFNULL, IFNE,

INEG, I2B); relation (f1; f2) fβ denotes that results data of operations f1 and f2

flow into operation fβ, where fβ is two argument operation (e.g. IMUL, IADD,

AALOAD, IF_ICMPEQ).

Conditional Data Flow. Relations Conditional data flow is modelled by

suffixing a control flow relation with conditional symbol ’ ’ followed by con-

dition selection set. Condition selection is a conditional operation (e.g. IFNE,

IF_ICMPGE, TABLESWITCH) and statically known value (e.g. true, false) as-

signed to the control flow path selection.

Data flow relation (f1; f2) fβ {fc : v} denotes that results of opera-

tions f1 and f2 flow into operation fβ only if the result of operation fc is v. (Data

Flow Relation is a particular case of Conditional Data Flow Relation where the

condition selection set is empty).

 Data Flow Analysis for Code Change Propagation ... 191

4. Data Flow Considerations

A method for transforming the program data manipulation operations

into the data flow relation set is proposed below.

4.1. Defining operations

Local variable value definition (value assignment) is handled in the

bytecode by operations of the form xSTORE l (depending on data type there

may be: ISTORE for an integer, LSTORE for a long, ASTORE for a pointer data

type) for l-th variable. We say that a defining operation survives when there is

no other defining operation on the control flow path. Otherwise, we say that it

is killed (or does not survive).

An object’s field value is defined by operation PUTFIELD <field name>.

An array’s element value is assigned by operations of form xASTORE (depend-

ing on data type: IASTORE for an integer, LASTORE for a long, AASTORE for

a pointer data type, etc.).

Function P specified by Eq. (1) returns subset of defining operations set

F which survives at operation fα along their control flow path. In other words,

P returns such operations of F from which there is a path to fα and none of

operations on the path is an element of F.

 P(fα; F; Fc) = {fx, fx F { fx → f1; …, fn → fα} Fc { f1; …, fn } F = } (1)

Let’s consider control flow relation set Fc = { f1 → f3; f2 → f3; f3 → f4}.

For defining operations set F1 = {f1; f2; f3} operation f3 survives at operation f4:

P(f4;F1;Fc) = {f3} (operations f1 and f2 are killed by operation f3). But if we

consider defining operations set F2 = { f1; f2} then both of defining operations

survive: P(f4; F2; Fc) = { f1; f2}

4.2. Stack manipulation operations

The operational stack analysis relies on the fact that it is statically

known for structured programs [3]. When a Java source code statement is fin-

ished the operational stack is empty. It is deducted that the operational stack

192 Software Engineering: Improving Practice through Research

manipulation operations are not forked (since the first element is pushed till

the last stack element is popped). This rule is not confirmed by a non-

declarative exception throwing (see section 5.4). However, as the stack content

is not accessible for an exception handler, this scenario is not required to be

handled by the analyzer.

Analysis of the stack operations is performed in a similar way to how

they are processed during execution on a machine. When operation type of

push is analyzed then a result of it is pushed on the analyzer stack. For opera-

tions of statically known result like ICONST_0, ICONST_1, BIPUSH 10 the

values pushed on the stack are 0, 1, 10 accordingly. When operation type of

pop is analyzed a value/s is/are popped from the analyzer stack and a data flow

relation (between popped value/s and analyzed operation) is created. For ar-

ithmetical operations like IADD, INEG attribute values are popped from the

analyzer stack, a data flow relation is created and the operations themselves

are pushed on the stack.

Figure 1 demonstrates the analyzer stack for bytecode operations:

BIPUSH 101, ICONST_42, IMUL3, ISTORE 24 (corresponding to int x = 10 * 2; in

Java). Analysis starts with empty stack – S0. Operation BIPUSH 101 pushes

value 10 on the stack – S1 and ICONST_42 pushes constant values 4 on the

stack – S3. Operation IMUL3 pops two values from the analyzer stack, the data

flow relation (101;42) IMUL3 is created and the operation itself is pushed on the

analyzer stack – S3. Operation ISTORE 24 pops the value from the stack – S4

and creates data flow relation element (IMUL3) ISTORE 24.

Figure 1. The analyzer stack operations example

 Data Flow Analysis for Code Change Propagation ... 193

4.3. Local variables

Local variable data flow analysis is that the analyzer resolves a local

variable definition operation when a local variable usage operation is analyzed.

Let’s introduce function ldef (l; Fc) which returns all define operations

of l-indexed local variable, such as: ISTORE l, ASTORE l, DSTORE l, FSTORE

l, LSTORE l, etc.

Function lval specified by Eq. (2) defines a set of all possible l-th vari-

able values at operation fα. Possible values of the l-th variable are operations

which flow into survived at operation fα defining operations of that variable.

lval(fα; l; Fc) = { v; (v) f f P(f ; ldef (l; Fc); Fc) } (2)

Let’s consider an example of assigning 0-th variable the result of sum of

integers and its usage further down the control flow: Fc = {IADDn → ISTORE

0n+1;…;opern+k → ILOAD 0n+k+1} (operations between n+2 and n+k are not

killing the 0-th variable). A value of the 0-th variable used in the ILOAD 0n+k+1

operation is determined as single operation IADDn: lval (ILOAD

0n+k+1;{ISTORE 0n+1}; Fc) = {IADDn}.

Java compiler guarantees that a local variable must be explicitly given a

value before it is used, by either initialization or assignment, in a way that can

be verified using the rules for definite assignment [8]. It means that for every

local variable usage operation (type of xLOAD l) the corresponding variable

value definition operation (type of xSTORE l) exists and is identified by lval

function.

4.4. Object’s identification

The analyzer identifies objects by operation NEW k (k is a class name).

A reference to an object (a local variable or object’s field) may point to object

creation operation NEW k or null operation: ACONST_NULL. Inline method

substitution causes that the same method called from different places is

uniquely identified (NEW k operation is identified by the call stack).

194 Software Engineering: Improving Practice through Research

4.5. Object’s fields

An object’s field value (a result of operation GETFIELD field_name) is

determined by a corresponding defining field value operation PUTFIELD

field_name. Let’s introduce function fdef (field_name; Fc) which returns all

define operations of field field_name (all PUTFIELD field_name operations).

Function fval specified by Eq. (3) defines a set of all possible field_name

values of object’s reference re f at operation fα. It consists of values flowing

into field defining operations.

 fval(fα; ref ; field; Fc) = {v; (ref ;v) f f P(fα; fdef(field; Fc); Fc)} (3)

For operations from Listing 1 (corresponding to the source code: A a =

new A(); a.field = null; if(a.field == a)) the following data flow relations are cre-

ated: relation (NEW A1) ASTORE 14 defines value assignment of the 1st

variable, relation (NEW A1;ACONST_NULL6) PUTFIELD A.field7 assigns

null to field A.field of object identified by operation NEW A1), and relation

(ACONST_NULL6;NEW A1) IF_ACMPNE11 which shows that values null and

NEW are flowing into the comparison operation.

1 NEW A

2 DUP

3 INVOKESPECIAL A.<init>

4 ASTORE 1

5 ALOAD 1

6 ACONST_NULL

7 PUTFIELD A.field

8 ALOAD 1

9 GETFIELD A.field

10 ALOAD 1

11 IF_ACMPNE ...

Listing 1. Java bytecode object definition example

The analyzer should be aware of missing Java object’s fields definition

requirement, since object’s field value does not need to be explicitly defined

[8]. In consequence, defining operation may not be found.

5. Implementation Considerations

Below we provide examples demonstrating how the proposed notation

can be used to describe such programming constructs as conditional state-

ments, loops, exceptions, method invocations; examples are based on the case

study included further in the paper.

 Data Flow Analysis for Code Change Propagation ... 195

5.1. Conditional statements

Conditional operations of type IF like IF_ICMPEQ (comparison of inte-

ger values equality), IF_DCMPGT (comparison of double values, checks if the

first value is bigger than the second), or type SWITCH like TABLESWITCH,

LOOKUPSWITCH are represented as forks in a control flow graph.

Data flow analysis of conditional operations is performed in the same

way like other operations. However, their possible results are attached to data

flow relations as conditions.

1 ILOAD 0

2 IFEQ L6

3 ICONST_1

4 ISTORE 1

5 GOTO L8

6 ICONST_2

7 ISTORE 1

8 ILOAD 1

9 ISTORE 2

Listing 2. Bytecode IF statement example

Operations from Listing 2 are reflecting the source code: if (l0) l1 = 1;

else l1 = 2; l2 = l1; (operations are referenced in text by index: e.g. operation 1

is typed as ILOAD 01 or f1). The control flow relations set is Fc = {f1 → f2 → f3

→ f4 → f8, f2 → f6 → f7 → f8}, the 1st variable definitions at operation ILOAD 18

are ldef (f8;1;Fc) = {ISTORE 14;ISTORE 17}. As both of them survive the possi-

ble values for the 1st variable are lval(f8;1;Fc) = {13 {IFEQ2 : false};26

{IFEQ2 : true}}. Unconditional operation ISTORE 29 inherits conditions from

the data flowing to it, and the final data flow relations are {(13) ISTORE 29

 {IFEQ2 : false}; (26) ISTORE 29 {IFEQ2 : true}.

5.2. Loops

The sequence of processing operations by the analyzer does not affect

the result of the analysis. However, it is reasonable to do data flow analysis

according to control flow graph. To determine possible values of data (a stack,

a local variable, a field, an array’s element) at a certain operation it is required

to have calculated data flow to that operation back in the control flow graph.

Instead of considering every possible control flow path, the analyzer would

make usage of the knowledge that the program is structured and analyze struc-

tures one by one. For example, if-else statement is considered as analyzed

196 Software Engineering: Improving Practice through Research

when all its control flow paths (for condition operation result true and false)

are analyzed.

Loop analysis implies that the body of loop operations are visited many

times by the analyzer. In the paper we use simple criteria of considering a loop

as analyzed: when the next iteration of a loop body does not identify any new

data flow relations. During the first analyzing iteration of the common loop:

for (int i = 0; i < n; i++) initial value of local variable i is defined, data flow rela-

tions from that initial value to comparison i < n and to increment i++ are cre-

ated. During the second analyzing iteration the next relations are created: from

the increment operation to the comparison and to the increment operation. The

third analyzing iteration does not identify new relations, analysis of the loop is

finished.

5.3. Arrays

An array is supported in the same way as object’s field with one differ-

ence, object’s field name is statically known. When array’s element is used

(operations of type xALOAD) the analyzer pops two elements from the ana-

lyzer stack: reference to an array definition and array’s element index and lo-

cates corresponding, defining operations (operations of type xASTORE). If an

array definition (operation NEWARRAY) and element’s index are statically

know then the element definition is precisely selected. Otherwise, all array’s

elements are returned as a potential value.

5.4. Exception handling

Exceptions may be thrown declaratively by operation ATHROW. Java

virtual machine can additionally create and throw a deterministic exception

during execution of some bytecode operations, namely NullPointerException –

during execution of operations INVOKEVIRTUAL, AALOAD, PUTFIELD when

reference on which the operation is performed is null, ArrayIndexOutOfBounds-

Exception – during execution operations of type xASTORE, xALOAD when

index argument exceeds the size of an array and ClassCastException – during

execution of operation CHECKCAST when type of the 1
st
 argument reference

cannot be cast to the 2
nd

 argument type. The analyzer treats exception

 Data Flow Analysis for Code Change Propagation ... 197

vulnerable operations like conditional statements, namely if an exception con-

dition is met then an exception is thrown. Otherwise, control flow is passed to

the operation.

For throw exception operations the target catch block operations are

identified as a control flow next operation (like for operations GOTO). If ex-

ception type is not statically known then the control flow may be passed to

more catch blocks. For structured programs throwing exception may be con-

sidered as an exit point of multiple structures like: a loop, an if-else statement,

a method, a try-catch block of a different exception type, etc.

5.5. Target of a virtual method

A data flow graph depends on data flow analysis and vice versa. The lo-

cal control flow relation set (method scope) is built based on the method code.

A virtual method call operation targets are selected based on data types of

objects flown to invoke operation (on which the method call is invoked). Then

operation INVOKEVIRTUAL is replaced with if-else statement of IN-

VOKESPECIAL operations (based on class hierarchy analysis [2]).

5.6. Weak typed language

Java is a strong typed language, the presented approach does not make

usage of this feature and may be adopted to weak typed languages like

JavaScript, Python as well. The type of a local variable is not derived from the

method signature but from the data definition (defining operation) flowing into

that method.

6. Case Study

Data flow relation set building process is demonstrated on source code

of Action class from Listing 3. The comments /*L*/ in Java source code points

corresponding byte code operations of Listing 4. The result of the analysis,

creation of data flow relations upon bytecode operations is presented in Table

1. Within this section operations are represented by indexes of bytecode

198 Software Engineering: Improving Practice through Research

operations of Listing 4, e.g. 1, 2, 67, or by full names suffixed with this index:

ICONST_01, STORE 22, ANEWARRAY Action67 accordingly.

public abstract class Action<P>{

 static Action[] actions = new Action[] {

 new Action<Integer>() {

 int execute(Integer param) {

 return result +/*L57*/ param.intValue() +

 /*L59*/ 1/*L58*/;

 }

 }, new Action<String>() {

 int execute(String param) {

 return param.length() +/*L64*/ 2/*L63*/;

 }

 } };

 int result = 0/*L83*/;

 abstract int execute(P param);

 void process(P param) {

 result = execute(param);

 }

 public static void main(String[] p) {

 int res;

 try {

 for (int i = 0/*L1*/, j; (j = i +/*L5*/ 1/*L4*/) </*L10*/

 p.length/*L9*/; i += 2/*L30*/) {

 switch (i %/*L13*/ 2/*L12*/)/*L14*/ {

 case 0:

 actions[0].process(new Integer(j));

 case 1:

 actions[1].process(p[j]);

 }

 }

 res = actions[0].result;

 } catch (NullPointerException e) {

 res = actions[1].result;

 } catch (IndexOutOfBoundsException e) {

 res = actions[2].result;

 }

 System.exit(res/*45*/);

 }

}

Listing 3. Action class source code

Listing 4. Action class bytecode

Bytecode in Listing 4 represents Java source code in Listing 3. Analysis

of the Action.main method starts from static constructor Action.<clinit> which is

called by Java virtual machine when the class is loaded, before the control

flow is passed to method Action.main. The first two operations, ICONST_266

 Data Flow Analysis for Code Change Propagation ... 199

and ANEWARRAY Action67 of method Action.<clinit> causes creation data flow

relation (ICONST_266) ANEWARRAY Action67, represent instantiation of a

new array of type Action with size 2. It can be denoted alternatively as (66)

67 or 266 67. Method Action.<clinit> analysis yields the following set of rela-

tions: {66 67; (70;83) 84; (67;69;70) 73; (76;83) 84; (67;75;76)

 79; (67) 80}.

Table 1. Bytecode Action class analysis

Analysis of method Action.main is shown in Table 1. Operation 1

(ICONST_01) is pushed on the analyzer stack. Operation 2 (ISTORE 22) pops

the element from the analyzer stack and data flow relation (1) 2 is created.

Operation 3 pushes operation 1 on the analyzer’s stack. The alternate source of

local variable (operation 30) is not known at this stage of the analysis (de-

scribed below).

Below we describe in more detail the respective aspects of the analysis.

200 Software Engineering: Improving Practice through Research

Conditional statements. Operation 10 is the control flow fork opera-

tion. Data flow relations created under operations directly following the condi-

tional operation 10 are marked with the necessary condition {10 : false}.

Operation 14 represents LOOKUPSWITCH control flow fork operation. There

are three possible control flow branches: for value 0, 1 and default (other). As

there are no break statements then operation 23 (target of case 1) is also reach-

able for value 0. Operation 30 (target of a default jump) is reachable uncondi-

tionally. By taking into account conditional operations 10 and 14 it is known

that operations 11-14 are executed under condition: {10 : false}, operations

15-22: {10 : false;14 : 0}, operations 23-29: {10 : false;14 : 0} or {10 :

false;14 : 1}, operation 30: {10 : false}.

Figure 2. Action class data flow

Exception handling. Operations 9, 28, 97, 98 manipulate the Ac-

tion.main method’s 1st argument p and may cause throwing an exception. They

can be handled as regular conditional statements, e.g. when data flowing to

operation 9 ((p) ARRAYLENGTH9) is null then control flow is passed to

operation 38 (catch block). The condition can be denoted as {p: null}. In

consequence operations 9-35 are executed only when the opposite condition is

met: {p :!null}. Operation 28 ((p;5) AALOAD28 {p :!null;10: false; …})

would throw NullPointerException when p is null, but it is known from the con-

ditions that p is not. Operation 28 would also throw ArrayIndexOutOfBoundsEx-

ception when result of operation 5 is greater or equal p.length. It also does not

occur as it is known that operation 28 is executed only when the mentioned

 Data Flow Analysis for Code Change Propagation ... 201

condition is not met: (5; p ARRAYLENGTH9) IF_ICMPGE10 : false. Op-

erations 97 and 98 may throw NullPointerException and operation 98 ArrayIn-

dexOutOfBoundsException.

Loop handling. Operation 31 (GOTO L331) unconditional jump back in

the code stands for the loop structure of operations 3-30. (Conditional opera-

tion 10 for value true becomes the loop exit condition). The analyzer follows

that control flow relation as many times until no new data flow relation is cre-

ated. During the second iteration analysis of loop 3-30 the value of local vari-

able 2 comes additionally from operation 30 and new data flow relations are

created (operations subscripted with 2 in Table 1). When operation 3 is visited

the third time no new data flow relation is created, the analyzer leaves the loop

analysis and continues with operation 32 (which is the target of loop exit con-

dition 10: true).

Data flow handling. Operation GETSTATIC Action.actions15 loads on the

analyzer stack defining operation PUTSTATIC Action.actions: the only candi-

date is operation 80. According to Action.<clinit> data flow analysis result the

data flowing to operation 80 is operation 67, what causes that operation 15

pushes operation 67 on the analyzer stack. Operation AALOAD17 looks for

defining operation AASTORE which takes as a first argument reference created

by the operation 67 and indexed by ICONST_016 and finds relation (67;

ICONST_069;70) AASTORE73. The result of AALOAD17 analysis is operation

70 pushed on the analyzer stack.

Method invocation handling. Operation INVOKEVIRTUAL Ac-

tion.process22 pops two elements from the analyzer stack: operations 70 and 18.

Operation 70 (NEW Action$170) is an object definition on which the Ac-

tion.process method is invoked (and it is 0-th argument of this method call).

Operation 18 is the 1st argument of this method call. As class Action$1 is not

overriding method Action.process, so the analysis is passed to method process

of class Action. Afterwards, operation INVOKEVIRTUAL Action.execute50 takes

two elements from the analyzer stack: NEW Action$170 and 18. As method

Action.execute is overridden by Action$1 class then the analysis is passed to it.

Change Propagation. Results of the analysis specified in Table 1 are

presented graphically at Figure 2. Consider, for example, changing operation

83 (representing the source code of int result = 0;) to a different value (e.g. int

result = 1;). It can be seen that the change is propagated to operations: 57, 59,

202 Software Engineering: Improving Practice through Research

45. It implies that the change does not affect loop exit condition operation 10,

does not impact on switch statement nor exception throwing. Let’s consider

this time changing operation 12 (representing number 2 in switch (i % 2)). This

change has direct influence on operation 13 which impacts operation 14.

Changed operation 14 implies the possible changes in control flow decisions,

indirectly impacts operations: 28, 97, 98, 64, 57, 59, 45.

7. Related Work

The above exercise demonstrates the scope of analysis of a potential

implementation. It may be seen from the above that a program code change

analysis can be automated. Such an analyzer is currently under development

by the author. It is intended to expand the analysis of data flow compared to

the existing solutions characterized below.

In [1, 2] it is assumed that a target of a virtual call depends on a Class

Hierarchy Analysis. A virtual call operation is replaced with if-else statement

of static method bindings. This approximation is proper but inaccurate – note

that resolving virtual call of Object.toString() in Java would involve all classes

implementing this method! In the presented paper the class candidates are

significantly limited only to classes which come from data flow analysis.

This paper approach is similar to [3] but extends the basic concept of

data flow by specifying operations that the latter goes though. Additionally, it

extends the accuracy of data sharing by distinguishing the statically known

object instances.

Similarly to [9] the presented approach is context sensitive. However,

methods are not preliminarily analyzed (implying preliminary assumption that

method parameters do not share). The methods are inlined with the analyzed

parameter possible values what introduces better precision at the expense of

the computation complexity of the analysis.

It may be shown that for invocation sh1.expand(sh1.next); of the Sharing

Example from [9] the analyzed loop exit condition while(cursor != null) is never

fulfilled, as the data flow into variable cursor never gets null value.

 Data Flow Analysis for Code Change Propagation ... 203

Sharing Analysis, Reachability Analysis, Cyclicity Analysis [7, 6, 4, 5]

can be easily derived from the data flow analysis result as a presence of data

flow relations.

References

[1] D. Bacon and P. Sweeney. Fast static analysis of C++ virtual function calls, In:

Proceeding OOPSLA ’96 Proceedings of the 11th ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications, pp. 324–

341, ISBN: 0-89791-788-X, 1996.

[2] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs

using static class hierarchy analysis, In: Proceeding ECOOP ’95 Proceedings of

the 9th European Conference on Object-Oriented Programming, pp. 77–101,

ISBN: 3-540-60160-0, 1995.

[3] S. Genaim and F. Spoto. Information Flow Analysis for Java Bytecode, In: Pro-

ceeding VMCAI’05 Proceedings of the 6th international conference on Verifica-

tion, Model Checking, and Abstract Interpretation, pp. 346–362, ISBN: 3-540-
24297-X 978-3-540-24297-0, 2005.

[4] S. Genaim and D. Zanardini, Reachability-based acyclicity analysis by Abstract

Interpretation, Theoretical Computer Science 474, pp. 60–79, 2013, doi:

10.1016/j.tcs.2012.12.018.

[5] D. Nikolić and F. Spoto. Definite Expression Aliasing Analysis for Java Byte-

code, Theoretical Aspects of Computing – ICTAC 2012 7521, pp. 74–89, 2012.

[6] D. Nikolić and F. Spoto. Reachability analysis of program variables, ACM

Transactions on Programming Languages and Systems (TOPLAS) 35, Iss. 4,

2013, doi: 10.1145/2529990.

[7] S. Secci and F. Spoto. Pair-sharing analysis of object-oriented programs, In:

SAS’05 Proceedings of the 12th international conference on Static Analysis, pp.
320–335, ISBN: 3-540-28584-9 978-3-540-28584-7, 2005.

[8] The Java Language Specication, Java SE 7 Edition, 2011, URL:

http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf, accessed: February 20, 2016.

[9] F. Spoto, F. Mesnard, and É . Payed. A Termination Analyser for Java Bytecode

Based on Path-Length, ACM Transactions on Programming Languages and Sys-

tems (TOPLAS), Vol. 32, Iss. 3, 2010, doi: 10.1145/1709093.1709095.

III. Agile Transformations

Chapter 13

Trigger-based Model to Assess the Readiness

of IT Organizations to Agile Transformation

1. Introduction

The agile manifesto, announced in 2001 was the pivotal event to pro-

mote the idea of agile approach in IT projects. Starting this year, the popularity

of methodologies such as Scrum, XP or Kanban is continuously increasing [1]

among the persons responsible for managing projects and also members of IT

teams.

At the core of the agility idea is ability to adapt to customer expecta-

tions. Based on this statement, agility in IT projects should be understood as

the ability of supplier to provide products (systems and services) consistent

with the client’s business needs.

This approach caused a shift from supplying ready-made, complex sys-

tems to products consistent with client’s needs, changed the way of realization

of IT projects over the last years. Created methodologies (frameworks) and

techniques, which increase the supplier’s ability to adapt to client’s expecta-

tions begin to displace old, waterfall management models. Focus on the itera-

tive and increment delivery dominated the earlier approach to the projects

realization, based on baseline plan and providing product in accordance with

requirements set out in the initial phase of projects [9].

Thanks to the popularity of agile methodologies and techniques, agile

project management become so popular that either small or the world’s biggest

companies of the IT industry decided to change the management method to the

agile. This popularity of agile approaches compels the IT organizations to

change the way they operate – from the traditional, based on processes and

208 Software Engineering: Improving Practice through Research

plans to agile – based on involvement the customer and supplier in the project.

The process of changes caused a transition from the waterfall model of deliv-

ering to the iterative and incremental delivering methods called Agile Trans-

formation (AT).

Nowadays the "agile transformation" becomes the key word, which de-

scribes the transition from waterfall method of software delivering to the new

way – agile. However, whether the use by the supplier several agile techniques

(e.g. daily meetings) may be sufficient to define supplier as agile organization?

In this article authors attempt to determine the factors, which are important

during the agile transformation processes. These factors were defined as a

triggers or events giving rise to the decision to abandon classic, waterfall pro-

ject management methods [6].

Due to the fact that agile transformation increasingly becomes more

popular in IT industry, it seems it is reasonable to attempt to classify key con-

cepts and to identify key factors, which contribute to the success of agile trans-

formation.

 This article consists of five main sections. The first one is the introduc-

tion to the agile transformation concept. Second point is the description of

model of assessment of the IT organizations’ concept. Third point contains the

description of study method and obtained results. In point four authors de-

scribed modified model, which was complemented by key elements. The last

point is the summary of research.

2. Model to Assess the Readiness of IT Organization to Agile Trans-

formation

Observations of agile transformations in IT organizations allowed to

conclude that the level of readiness of organization for this change determines

extent the probability of success of this process. IT organizations, which intend

to change the project realization methods from classic, waterfall to agile

should be properly prepared for this change.

Readiness of the organization to initiate transformation process can be

described as a state, in which after evaluation, a chance to implement agile

approaches with success is high. Starting agile transformation without prior

 Trigger-based Model to Assess the Readiness of IT Organizations ... 209

analysis and assessments of the organization makes these processes uncontrol-

lable. In the initial phase of research, authors assumed that process of trans-

formation must be considered from the perspective of Project – Supplier –

Client [2]. During the described in this article research this approach has been

changed to approach in which transformation process must be considered from

the four perspectives. The next section describes these four perspectives.

2.1. Perspectives of agile transformation

Agile transformation process can be under consideration from the four,

following perspectives:

 Project perspective – the scope of this perspective includes changes in

project management methods and adaptation of agile methodologies

and techniques.

 Processes perspective – the scope of this perspective includes changes

in the functioning of the organization and internal procedures.

 Organizational culture perspective – the scope of this perspective

includes changes in the mentality of people who manage of the or-

ganization and team members.

 Technology perspective – the scope of this perspective includes

changes in technology use and the need to adapt to new working tech-

nologies.

Perspectives are the logical areas of functioning of organization, which

change project management method from classic to agile. Between perspec-

tives are some dependencies, i.e. project and processes perspective should be

analysed before technology perspective. On the other hand, organizational

culture perspective, due to its immeasurable character, should be subjected to

transformation slowly, gradually and probably only after the full implementa-

tion of agile methodologies and techniques. Perspectives and relations between

them are represented in the Figure 1.

Agile transformation perspectives allow for separation of the areas that

should be assessed. At this stage of research, we focus on the detailed descrip-

tion of only one perspective – the processes. In the next subsection authors

present a proposal for a model for assessing organizational readiness for AT

210 Software Engineering: Improving Practice through Research

from processes perspectives. State of readiness and evaluation method is de-

scribed in the next section of this article.

Figure 1. Agile transformation perspectives

2.2. Stages of agile transformation

In the processes of agile transformation, there are three following

stages:

 Before AT (initiation and planning stages) this is the stage, where

the organization is preparing for the transformation processes. Evalua-

tion and activities to ensure that the point of readiness is achieved oc-

curs in this phase. At this stage, decision is made and this is the reason

why it is so important to determine whether the organization is at the

point of readiness.

 Agile transformation (execution stage) – this is the stage where the

agile transformation processes have been started. AT can be revolution

for organization, which is characterized by the sudden abandonment of

existing methods or it can be evolution for organization, where transi-

tion to agile takes place gradually.

 After AT (improvement stage) – this is the stage, where organization

already achieves the end point of agile transformation process, which

 Trigger-based Model to Assess the Readiness of IT Organizations ... 211

means that classical methods have been abandoned but transformation

process still goes one, in particular the evolution of processes and ad-

aptation new agile processes.

Figure 2 presents stages of agile transformation.

Figure 2. The stages of agile transformation

Evaluation process occurs in first phase and the key element is to iden-

tify if start point has been achieved. In the assessment process we can distin-

guish two states:

 The point of readiness has not been achieved (Figure 3) – this is the

state in which decision has been taken prematurely and the risk of fail-

ure of agile transformation is high. Organizations, which not reach

point of readiness, should analyse themselves and improve processes.

Figure 3.. The point of readiness has not been achieved

 The point of readiness has been achieved (Figure 4) – this is the

state in which decision has been taken in proper time and the risk of

failure of agile transformation is limited. The organization is in the

start point of agile transformation.

Organization
The result of assessment

212 Software Engineering: Improving Practice through Research

Figure 4. The point of readiness has been achieved

During the research, authors defined the two states of readiness, but in

reality it happens those IT organizations, which have not reached the point of

readiness, begin the transformation process.

2.3. Model to assess the readiness of IT organization to agile transformation

Figure 5 presents a proposal for model to assess the readiness of IT or-

ganization to agile transformation. Described model consist of three main lay-

ers:

 Input – input to the model is the measure instrument, which means the

tool for evaluating IT organization. Measuring instrument consist of

the questions about organization’s characteristic and the occurrence

and level of processes (levels definitions in accordance with CMMI

[7]) in organization. Depending on the type of company (product-

based or service-based company) questions are suitably selected.

 Inference layer – the key element of this layer is the inference tech-

nology. It uses processes described in two standards – Information

Technology Infrastructure Library (ITIL) – 26 processes for service-

based companies and Capability Maturity Model Integration (CMMI)

– 22 processes [3] for product-based companies. In initial phase of re-

search authors decided to use ready-made standards, however the list

of processes will be extending during further research. In inference

layer occurs selection process of relevant organization’s characteris-

tics. The next step is to assess the level of processes in organization

Organization
The result of assessment

 Trigger-based Model to Assess the Readiness of IT Organizations ... 213

and to map processes to agile transformation processes (processes of

target methodology) [1].

 Output (results) – at the output occurs an evaluation of organization’s

readiness to AT and as result the list of processes needed to improve

or reorganization.

The layers and components of the model are illustrated in Figure 5.

Figure 5. The layers and components of the model

3. Verification of the Concept Model

Presented in Figure 5 model contains introductory assumptions, which

were verified during research of IT organizations. The method of research,

obtained results and impact of results on model has been described in the next

section of this paper. The structure of model presented in Figure 5 is based on

the preliminary own observations and on the data from the ISBSG database.

ISBSG – The International Software Benchmarking Standards Group Limited

is database, which contains 1582 records [4], each record is the description of

one project. Based on the analysis of 1582 cases and author’s own

214 Software Engineering: Improving Practice through Research

observations the preliminary concept model was developed (Figure 5). In fur-

ther research authors prepare the questionnaire in order to verify the correct-

ness of concept model. The questionnaire was directed to the members of the

boards, directors, managers, team leaders and members of development teams.

The study consisted of two parts: quantitative research, which was the online

survey and qualitative research which were the standardized interviews with

managers and team leaders. The last element of the research was to comple-

ment the concept model with new elements. Figure 6 present the flow of the

research.

Figure 6. Flow of the research

The key element of the research was the qualitative and quantitative

study, which allows for the compliment the concept model with new elements.

Detailed description of qualitative and quantitative research is presented in the

next subsection of this publication.

3.1. Quantitative research

The scope of the quantitative research includes the preparation of pre-

liminary questionnaire and directs it to the members of the boards, directors,

managers, team leaders and members of development team. The survey was

divided into seven main sections:

 Organization – this section includes questions about characteristics of

organization i.e. structure, size, geographic spread, number and size of

development team, work environment and also customer type.

 Processes in the organization – this section includes the questions

about the level of descriptions of the processes in organization,

whether there are processes definitions (is yes, at what level – general

or specific), frequency and method of audits and also the level of

processes standardization.

 Trigger-based Model to Assess the Readiness of IT Organizations ... 215

 Type of organization – the purpose of this section was to determine

what is the type of organization, whether is product-based or service-

based. Depending of the type of organization, in the next section were

used respectively CMMI [7] or ITIL.

 Processes – in this section authors verified the level of implemented

processes. The questions were about CMMI for product-based organi-

zations [5] and about ITIL for service-based organizations. For each of

process definition used a four point scale: processes are not defined,

processes are defined but are not implemented, processes are defined

and partially implemented, processes are defined and fully imple-

mented.

 Used methodology – this section includes questions about the meth-

odologies used in organization and about the state of agile transforma-

tion. Depending on the answer, respondent was directed to another

section about agile transformation. In this section were distinguished

six states of agile transformation: organization uses a classic method-

ology and does not plan to change it for agile, organization uses a clas-

sic methodology but plans to change it for agile, organization is during

the agile transformation, the organization completed agile transforma-

tion but after a while returned to the state before transformation, the

organization completed agile transformation but agile methodology is

not implemented as intended (not in 100% according to the assump-

tion of methodology), the organization completed agile transformation

and agile methodology is implemented as intended.

 Agile transformation – this section contains questions about chosen

agile methodology, the key factors in the transformation processes,

about problems and about processes, which needed to be implemented

or reorganized. This section includes also questions about the decision

to change old methodologies for agile.

 Demographics – this section includes questions about respondent –

age, job title and experience.

The survey shown that only 33% of IT organizations, before agile trans-

formation, analysed the compatibility of processes with the chosen methodol-

ogy, only 17% prepared a recovery plan in case of failure. As also shown 50%

of organizations had to implement new processes for agile transformation,

216 Software Engineering: Improving Practice through Research

33% defined already exist processes and only 17% did not have to organize

and implement processes. The greatest problems during the agile transforma-

tion were the reluctance of team members (100% of respondents) and the lack

of definition of processes (100%). These results showed how important is to

assess the organization and accurate preparation to the agile transformation.

3.2. Qualitative research

Qualitative research in its scope included standardized interviews with

project managers and team leaders. Questions concerned the key aspects in the

evaluation of an organization’s readiness to agile transformation. The result of

interviews was to determine perspectives of agile transformation (Table 1) and

key factors, which was important during the decision-make process.

Table 1 includes perspectives of agile transformation with defined key

factors. The second key element in assessment of the organization is transfor-

mation triggers, which are described in the next section of article.

4. Transformation Triggers and Evolution of Concept Model

Factors that lead to the decision (e.g. by the members of the board) to

change current, waterfall approach for agile approaches are called transforma-

tion triggers.

It is worth noting that the reasons for undertaking the decision to trans-

formational change can vary substantially. Transformational change may in-

deed result from a desire to improve, but can also result from other causes, less

related to the parameters of the project and more aspects of human.

Below are results of an attempt to classify the reasons for taking the de-

cision to agile transformation. Such a classification is dictated observations on

a dozen teams that have undergone a process of agile transformation and can

be extended to other categories during the further research.

Depending on the observed reasons for the decision to agile transforma-

tion, four categories of triggers were isolated, presenting alongside examples

 Trigger-based Model to Assess the Readiness of IT Organizations ... 217

of events that lead to the decision to implement the changes. Categories of

agile transformation triggers are summarized below.

Table 1. Perspectives of agile transformation

Processes perspective - level of implemented processes

- audits methods

- compatibility between processes in organization with

chosen methodology

- ability to change existing processes

- cost of changes of processes

Project perspective - complexity and innovation of projects

- client’s characteristic

- maturity level of customer

- type of projects

- typical duration of projects

Organizational cul-

ture perspective

- transformation triggers

- size of organization

- size of project teams

- level of involvement of employees / management

- geographical dispersion

- level of knowledge of chosen methodology

- competences of team members

Technology

perspective

- required tools

- cost of licences

- cost and possibility of abandoning the existing tools

 Effectiveness triggers – this are the factors, which can be measured

directly in the project. Project management methodologies distinguish

[10] six of these aspects by including: schedule, budget, scope, quality,

risk and benefits. In the case of these triggers we can talk about the

need for agile transformation just to improve performance of effi-

ciency in projects. Organizations decide to change their current way of

working for agile so that to improve the performance of their projects

(increase timely delivery, improve the quality of the delivered system,

etc.). It should be noted that the parameters of efficiency can be early

218 Software Engineering: Improving Practice through Research

warning signals – if the organization observes low efficiency, can in

the early stages of start preparing for transformational change.

 Forcing triggers – this are the factors not resulting directly from the

situation of supplier's organizations, but are dictated by other consid-

erations. They can arise from i.e. adaptation to the customer's organi-

zation, which expects organizations to deliver products in frequent and

incremental way. It can also mean a situation in which supplier during

realization of the project interacts with other entities cooperating for

the benefit of the customer and must adapt to a mode other entities.

 Project triggers – such internal factors of the project, which force or-

ganizations to use agile approaches and thus the transformation. If or-

ganization decides to implement i.e. research and development pro-

grams may find that the specificity of such projects will not allow the

use of a waterfall approach. Hence, the use of agile approaches will

somehow naturally, inherently inscribe in the specifics of the project.

The premise of the merits may also be the level of information (en-

tropy project) possessed at the time of starting the project as well as

the state of maturity of customer. Each of these factors can influence

decisions about the use of agile approaches. It is important that agile

transformation can be scalable – involve only one team, program and

the whole organization (depending on the substantive scope of the pro-

jects, orders, etc.).

 Motivational triggers – such outside non-formal factors that lead or-

ganization to decide on the agile transformation. In some situations,

organizations decide to implement agile methodologies adapting to

market trends and certain expectations of employees. Due to the fact

that today there is a great worker's need for "Space" and freedom of

action and the need for self-realization, self-organization in place of

the rules imposed from above, agile transformation can meet these ex-

pectations. Motivational factors cause the need for change may also be

due to the low morale of the teams working in the classical ap-

proaches. Motivational Triggers arise from the need to raise the syn-

ergy of teams, providing conditions for the conceptual, creative think-

ing and thus to teamwork.

 Trigger-based Model to Assess the Readiness of IT Organizations ... 219

It is important to keep in mind that agile transformation triggers are fac-

tors, which force the decision. The decisions to agile transformation are taken

mostly on the level of company management. Of course, there exist cases of

grassroots initiatives (as was the case in several companies where employees

expect to change the way of work), but it is an example of specific triggers –

motivational. The decision to change, however, takes, in most of cases, com-

pany's board. Making decision about transformation in the situation when the

organization is not ready for it, may involve certain negative consequences and

contribute to failure of transformational changes or at least to achieve a

smaller benefit than expected as a result of the transformation. That is why it is

important to possess tools to evaluate the organization and its readiness to

agile transformation. As a result of research authors decided to add triggers to

the model to assess the readiness of agile transformation. Transformation trig-

gers prove to be an element with a high level of significance, for the assess-

ment process. It is also important that there has been a change in assumptions.

It has been shown that processes perspective is only one of the four, which

should be reviewed. Model with the new elements is presented in Figure 7.

Figure 7. Based on triggers model to assess the readiness of IT organization to agile

transformation

220 Software Engineering: Improving Practice through Research

The result of the research is to complement the model for assessing

readiness to agile transformation by the triggers. In the assessment process, in

addition to assessing the level of processes and their level of adjustment to

target methodology, must also be considered transformations triggers. During

organization's assessment it is important to determine what factors were deci-

sive in the decision-making process and this factors should be mapped to proc-

esses of agile transformation. This approach ensures inclusion of two key as-

pects – level of compatibility of processes and key factors that affect agile

transformation.

5. Summary

This article presents concept of a model for assessing an organization's

readiness for agile transformation. As a result of research demonstrated that

the processes of transformation should be considered not as initially expected

from perspective of Customer – Supplier – Project but from four perspectives:

process, technology, people and organizational culture. Due to the complexity

of each of the prospects the decision was made to embed of proposed model

within the perspective of processes. In addition, four groups of transformation

triggers were defined: effectiveness, forcing, project and motivational. During

the study also demonstrated need to build such models, because only 33% of

surveyed organizations made analyse their own processes for their compatibil-

ity with the chosen methodology, and only 17% had prepared a recovery plan

in case of failure. As also shown 50% of organizations, which complete the

agile transformation had to introduce a completely new processes, 33% had to

reorganize processes already exist, and only 17% there was no need for them

to reorganize. It should be noted that although this article presents a concept of

model for assessing readiness to agile transformation, this does not mean that

positive result of the evaluation is a guarantee of success. Agile transformation

consists of four perspectives, which should be assessed. This article is part of a

whole research on agile transformation and includes description of only one

perspective. In the next stages of research on agile transformation authors

wanted to build concept models for other perspectives and subjected it in to

verification by means of quantitative and qualitative research. The result of the

 Trigger-based Model to Assess the Readiness of IT Organizations ... 221

research is to build a model to assess the readiness of agile transformation,

taking into account all four perspectives.

References

[1] C. Orlowski, T. Deregowski, M. Kurzawski, K. Ossowska, A. Ziolkowski. Wy-

korzystanie miar złożoności projektu do oceny stanu ewolucji organizacji infor-

matycznej, Innowacje w zarządzaniu i inżynierii produkcji Tom 2, Oficyna Wy-

dawnicza PTZP, Opole, 2016.

[2] Z. Kowalczuk, C. Orlowski. Advance Moddeling of Management Processes in
Information Technology, Pomorskie Wydawnictwo Naukowo – Techniczne,

2012.

[3] T. Deregowski, A. Ziolkowski, Hybrid approach in project management – mixing

capability maturity model integration model with agile practices, Social Science

(Socialiniai Mokslai), Nr. 3 (85), 2014.

[4] ISBSG Database, Release 12, February 2013.

[5] C. Orlowski, T. Deregowski, M. Kurzawski, A. Ziolkowski. Model służący

kształtowaniu procesu zarządzania projektem informatycznym dla podniesienia

gotowości do zwinnej transformacji organizacji informatycznej, Innowacje w za-

rządzaniu i inżynierii produkcji, Tom 2, Oficyna Wydawnicza PTZP, Opole,

2016.

[6] M. B. Chrissis, M. Konrad, S. Shrum. CMMI for Development: guidelines
for process integration and product improvement, Third Edition, Pearson Educa-

tion, p. 289, 2007.

[7] CMMI Product Team, CMMI for Acquisition, Version 1.3, Carnegie Mellon

University, p. 171, 2013.

[8] D. Longstreet. Fundamentals of Function Point Analysis, Longstreet Consulting

Inc., 2005.

[9] The International Function Point Users Group, Function Point Counting Practices

Manual, Release 4.1.1., 2000.

[10] K. Koteswara Rao, G. S. V. P. Raju, T. V. Madhusudhana Rao. Effort Estima-

tions Based on Lines of Code and Function Point in Software Project Manage-

ment, International Journal of Computer Science and Network Security, Vol. 8
No.6, 2008.

[11] Great Britain: Office of Government Commerce, Managing Successful Projects

with Prince2, TSO, Norwich, United Kingdom, 2009.

Chapter 14

The Reference Model of Tools Adaptation

in the Perspective of Technological Agile

Transformation in IT Organizations

1. Introduction

The growing importance of project management in the computer indus-

try organizations implies a number of changes in the functioning of these or-

ganizations. The classic approach in the management of these organizations,

based on specialization of functions of individual departments persists more

and more orientation on projects. It means, therefore, that the objectives of

these organizations and their main business processes is not due to the efficient

functioning of these departments, but to the effectiveness of various design

programs and individual projects.

The evolution of the IT organization from the silo to the project is dic-

tated by both the high dynamics of the macro-environment (changes in the

law, the need to adapt to global trends, opportunities and expectations for

tools) as well as the environment closer to these organizations (the intensity of

competition in the markets, the need for faster introduction of new products,

match up to customer expectations, increase of the importance of dedicated

services – "special services").

The processes of evolution of the organization of information from the

silo to the project (and service) enables these organizations to better adapt to

the market changes, but also cause a number of internal problems resulting

from this evolution [1]. Regular reports Standish Group [13, 14] showing that

the percentage of completed projects with problems (delays, overruns, incom-

plete range) is still relatively high. It means that the evolution of the

224 Software Engineering: Improving Practice through Research

organization to the project from silo-structure is still not a guarantee of suc-

cess. It turns out that classically projects, based on the planning, specification

of requirements and financial framework (called cascade) and assuming pro-

viding business value to the customer only after the completion of the project,

do not meet customer expectations.

That problems connected to the classic approach to project management

and the need of immediately delivery of business value (e.g. an efficient func-

tionality of the system) have caused increase of the importance of "agile"

approach in project management [2]. The foundation of this trend is to engage

the customer to design work in such a way that the value of the business

should be delivered as soon as possible, preferably in short cycles of develop-

ing based on incremental building system. Processes of change in the function-

ing of the PM organizations and industry of IT services are called agile trans-

formation for at least 15 years. It means that organizations abandon cascade

and start to use agile methodologies [9].

The phenomenon of agile transformation connected to a number of or-

ganizational changes in IT companies is a relatively new phenomenon which

requires constant analysis and deep research. IT industry treats this phenome-

non as a part of evolution, but the experience of many organizations shows

that transformation processes can be uncontrolled and contribute to increase

the level of project risk. Therefore, it is necessary to study the agile transfor-

mation processes to a better understanding of their impact on the functioning

of the organization of the IT industry [10].

Current research conducted by the authors point to the need to analyze

the agile transformation processes in several parallel areas called perspectives

of agile transformation. Long-term observations of phenomena possible to

separate such perspectives as: the perspective of projects, processes perspec-

tive, the perspective of tools and the perspective of organizational culture.

Analysis of these key perspectives allows to better understand the processes of

transformation, their importance for the functioning of the IT organization and

manage of these processes in a way to minimize the risk arising from trans-

formation changes and increase the effectiveness of projects in IT organiza-

tions.

The purpose of this paper is to demonstrate the possibility of use copy-

right model of technology selection in one of the identified agile

 The Reference Model of Tools Adaptation ... 225

transformation’s perspective. The selection of technologies reference model –

developed to adapt the functionality to the needs of organizations implement-

ing specific technologies – seems to be consistent with the assumptions of the

management based on agile methods and tools aligned to the needs of the or-

ganization and project teams. This article presents the possibility of usage of

that model in the perspective of the technological organization implementing

the agile transformation.

2. Agile Transformation Perspectives

Implementation of agile transformation by the IT organization may face

certain obstacles that can significantly prevent the implementation of agile

processes. Publications which concern experience gained with the implementa-

tion of agile approach indicate mainly to the challenges of existing organiza-

tional structure, reluctance of people to make changes and processes restric-

tions. These issues are the primary constraint to the organizations which start

the process of transformation or consider use of agile methodologies. Latest

report [3] concerning the state of implementation of agile methodologies, pub-

lished by the organization VersionOne, confirms observations documented in

the literature. The report based on study [3] involves 3 880 organizations. 24%

of organizations had more than 20 000 employees. The report mainly shows

limitations of possibilities for introducing changes in the organization as the

main barrier to the implementation of agile methodologies: because of cultural

(55%), structure of the organization (42%). The following places were the lack

of experience of the team (39%), lack of management support (38%) and the

limitations resulting from the usage of the market regulatory compliance and

standards (13%).

Processes of agile transformation entail a number of changes in the

functioning of the IT organization and project teams in these organizations [4].

Necessity (in a relation to agile manifest) to provide contacts between people

over process approach and tools and technology will shift the functioning of

these organizations into new directions. Agile transformation means the neces-

sity of another (new) method of verification of the progress of the projects,

creation of conditions for cooperation with the customer and enable customer

226 Software Engineering: Improving Practice through Research

to project teams and requires from project teams to being ready (maturity) to

carry out work in a self-organizing, transparent and based on continuous im-

provement.

However, application of the principles of agile project management (ag-

ile projects), means that changes are not only in the organization but also in the

technologies which are used by organization. So that, the readiness of the or-

ganization to agile transformation and forecasting the transformation process’

course should be considered on the level of 4 perspectives. They are logical

areas of the organization passing processes of agile transformation.

Figure 1. Perspectives of agile transformation

As indicated in the figure, between the perspectives it is possible to

point at some time dependences. It means that the perspective of projects and

processes should be analyzed before technologic perspective. On the other

hand, the perspective of organizational culture, due to its immeasurable char-

acter, should be transformed slowly, gradually, and probably only after the full

implementation of agile methodologies and technologies in support of agile

work mode. However, in order to thoroughly study of the agile transformation,

it can be needed to conduct independent studies about every perspective to

define influence of each of the 4 areas on the success of agile transformation

processes.

 The Reference Model of Tools Adaptation ... 227

In this article authors focus on the perspective of technology, where or-

ganization which transforms itself should take into account the adaptation of

appropriate tools, consistent with new principles of agile projects in the or-

ganization which implements the transformation processes [11].

2.1. Technologic perspective of agile transformation

One of the key actions in the technological perspective of agile trans-

formation is to prepare the tool environment, which will support the chosen

agile methodology or a set of good practices on the selected stage of the trans-

formation process. The report clearly indicates the critical importance of tech-

nology for scaling agile methodologies to the needs of the organization which

have a corporate nature. Consistency of process, tools, and practices (43 % of

organizations [3]) and implementation of tools supporting the work of the

teams are key factors for success in scaling agile approach to IT organizations.

Transformational changes in the technological perspective force gener-

ally change technology (in organization), which is used to support project

management or the management of the developing process. In the case of a

small single team, the choice of tools used is not important because of the low

level of complexity of the project and direct communication in the team, which

is promoted as a basis for effective work team. So that, organizations indicate

on simple tools that are able to meet their need for the implementation of sim-

ple projects. There are a few which are mentioned most often: Microsoft Excel

(60%), Atlassian JIRA (51%), Google Docs (18%) and Bugzilla (10%), what

confirm the small scale and low complexity of projects which are implement-

ing.

According to the studies [3, 14], organizations see a need to change

these tools when they start the adaptation of methodologies tailored to the

scale of their organization. It directly results from a discrepancy between tools

listed as used with a list of recommended tools for professional use. The au-

thors indicate here the lack of recommendations from the sites of popular

processes (Scrum [5], XP [6], SAFe [12]) concerning the use of tools and

functionality that they should have. Similar behaviour can be seen from the

organization of developing them as Scrum.org, Scrum Alliance or IAS, which

are not associated with any of the technologies.

228 Software Engineering: Improving Practice through Research

Observed factors allow to the conclusion that the process of technology

selection in organizations which are agile transforming play and will play an

increasingly more important role [7]. Especially interesting seems to be match-

ing the technology to the needs of the organization based on its expectations

for the functionality of the tools or compliance of chosen methodology used by

organization. The authors suggest the use of reference models as one of the

possible solutions that can be adjusted to support the selection of the technol-

ogy due to the needs and scale of the organization.

3. Selection of Technologies Reference Model for IT Organizations

which Implement Process of Agile Transformation

In order to explore and deepen knowledge about technology's support

for agile processes of transformation and selection tools for projects, authors

conducted an analysis of the available literature and knowledge. The result of

the study was to put forward the thesis that the processes of agile transforma-

tion should be supported by a properly chosen technology for the entire or-

ganization in the way to achieve specified at the beginning of the transforma-

tion of business goals.

For this purpose, the authors have created a concept of reference model

according to the selection of tools for the execution of processes in projects

and IT services. Model, according to the guidelines, should enable the selec-

tion of such tools, which fit to the developing processes implemented in IT

organizations. Below there is discussed logical construction and usage of exist-

ing implementation of the model to the needs of technology selection. Such a

model survey is crucial to demonstrate its role in the perspective of organiza-

tions implementing technological agile transformation processes.

3.1. The construction of the ALMRef reference model for IT organizations

which implements process of agile transformation

The knowledge base constructed in accordance with this concept was

supplemented with information about Open Source solutions (ex. Jenkins,

Subversion, Selenium IDE, Eclipse, JMeter and many others) to make it more

 The Reference Model of Tools Adaptation ... 229

independent from IBM and more complete. Authors considered and recom-

mend including other vendors from the market including Atlassian, Versio-

nOne or Rally Software. Due to complexity of the model structure those ven-

dors were not included in early version on the model. The authors carried out

their task by functional and non-functional mapping onto the reference tool.

The decomposition was achieved by a detailed analysis of the tools the au-

thors, and direct contact with those responsible for the products (Product Man-

ager) from IBM. The functional analysis of the selected tools revealed the

limitations of the model at the very beginning of the study. Relying only on the

functional decomposition of tools, it becomes impossible to assess their influ-

ence on an organization, in terms of implementation, thus overlooking a sig-

nificant argument influencing both the effort and cost. The developed concept

allows the tools’ function to be separated from the established formal or agile

process. On the one hand, the model can be applied to methodologies with a

high level of formalism by choosing a larger pool of functionality, or on the

other hand, it can head towards the Scrum and eXtreme Programming [15]

methodologies, by selecting only the required elements. This separation from

established processes allows the universal application of the model. It can be

used in any organization regardless of the implemented process, with only

expectations towards development in mind.

After analyzing best practices, the authors decided to apply the concept

of architectural views which was already used earlier for modelling IT sys-

tems. The use of perspectives allows for easier management of a multi-

dimensional structure, such as the reference model, while at the same time

providing relevant information to the interested parties. The concept developed

by P. Kruchten introduces five perspectives [8] (4+1 Architectural View

Model), which affect different layers and aspects of the constructed system.

These include functionality, business processes, logic, infrastructure and the

internal structure of the solution. The model approach to modelling the archi-

tecture of IT systems allows the collaboration of many interested parties of a

project on those elements which are most important to them, at the appropriate

level of abstraction.

The authors are adapting this approach to embed it in the reference

model for software life cycle management tools. The structure of this reference

model includes the functionality of the tools, the infrastructure for

230 Software Engineering: Improving Practice through Research

implementation and integration, the life cycle disciplines with best practices,

and the roles involved in the project. The model structure is dynamic and al-

lows for the arbitrary selection of perspectives, so that a more or less detailed

information model can be achieved.

Figure 2. Reference model with inference engine for determining the technology
aspects of Agile Transformation strategy

To specify the suggested perspectives in the reference model, elements

of UML 2.4 were applied in the form of diagrams of use cases, implementa-

tion, packages and components. These diagrams fully support the concept of

perspectives developed by P. Kruchten and they allow the structural descrip-

tion of this model. Reference model is supplied by information about popular

tools that are used in processes of IT project management. This was helpful to

define main areas of reference model that are presented on Figure 3.

 The Reference Model of Tools Adaptation ... 231

Figure 3. Structure of designed reference model for supporting technology

determination in agile transformation projects

Functional perspective is basic architectural view allowing the

analysis of functionalities associated with a particular branch of software engi-

neering or a group of tools. The perspective shows the relationship between

the functionalities provided in the form of use cases and the relationships be-

tween them. Logical perspective showing the relationship between the areas

of developing processes proposed in the functional perspective and the rela-

tionship between Open Source and IBM tools which support those relation-

ships. Roles and responsibilities perspective presenting relationships be-

tween the project roles and the functionalities assigned to them in tools and

their functions in projects. The view makes it possible to verify which inter-

ested parties should be involved in the implementation of chosen software and

who will be its target user. Physical perspective presents integration or its

possibility between Open Source tools and IBM Rational. The perspective

shows the already existing built-in data flows and indicates how much work

must be done to combine the tools, if they are not yet integrated. An example

of such a connection might be integration between the requirements manage-

ment tools and the architecture management area.

232 Software Engineering: Improving Practice through Research

4. Verification of ALMRef Reference Model in an Environment of

Real IT Organization

Research on the developed reference model is verified on the basis of

experiments (business cases) in the target environment of the IT project’s cus-

tomer, who plans to use a specific set of tools. The carried out research process

includes verification of the model in both environments: the agile companies

undergoing transformation and those that do not pass agile transformation, but

they need the tools to adapt to the processes of software development. Verifi-

cation in the first environment checks the application of organizational (man-

agement) of model. In the second environment it checks the importance of

implementing and serves on tuning the model. Both verification environments

are important for the technological perspective of agile transformation of IT

organizations. Figure 4 shows the research process, from the construction of

the model through its verification of corrective and improving actions.

Research on the developed reference model is verified on the basis of

experiments (business cases) in the target environment of the IT project’s cus-

tomer, who plans to use a specific set of tools. The carried out research process

includes verification of the model in both environments: the agile companies

undergoing transformation and those that do not pass agile transformation, but

they need the tools to adapt to the processes of software development. Verifi-

cation in the first environment checks the application of organizational (man-

agement) of model. In the second environment it checks the importance of

implementing and serves on tuning the model. Both verification environments

are important for the technological perspective of agile transformation of IT

organizations. Figure 4 shows the research process, from the construction of

the model through its verification of corrective and improving actions.

Figure 4. Process of the constructing the reference model

 The Reference Model of Tools Adaptation ... 233

In order to verify the model there were chosen 2 environments of ex-

periment. One of them concerned the organization which doesn’t pass through

the processes of agile transformation, but is very conscious of technological

needs. So, according to verification, it is possible to check the correctness of

the implementation of the model and prepare scenarios of its use in practice.

On the other hand, in a second experiment, there was conducted research for

organizations already passing agile transformation in order to verify if the

reference model can help IT organizations in the technological perspective.

Both the organizations had been selected from a list of organizations,

where the authors previously led advisory services and implemented a tech-

nology solution. Due to the time-consuming research and confidentiality of

key processes of the organization, the conduct of research in an environment

with limited access to information or resources would not be possible. Before

carrying out the verification, there was a series of interviews made with the

organizations in a way to prepare the research team to the verification process,

the assessment of the maturity of the organization and severity in relation to

agile transformation. Conducting research before starting research work was

also aimed on selecting the scenario research, which will be best suited to the

needs of the organization studied. According to the assumptions of the plan,

information collected during the verification should evaluate the usefulness of

the model in the real organization and be the basis for its modification or fur-

ther improvement.

The environment of the first study was the project of implementing IBM

Rational Collaborative Lifecycle Management (CLM) at the Chamber of Duty

in Torun. As part of the program e-Customs, there are projects which will

build the test environment in addition to the production environment of the

system. Hence – that arose the need to standardize and improve the testing

process SI SC by providing technical tools, organizational solutions and gather

technical knowledge in the field of testing systems SI SC. In order to that

tasks, there was appointed Project TestReg It includes e.g. project, realization,

delivery, implementation and support for system TestReg maintenance. The

context of the project and its completion at the Chamber of Duty in Torun has

created ideal conditions for the verification of the created selection of the

technologies reference model in the area of software development. Usefulness

of model and its accuracy in the selection of tools under the previously defined

234 Software Engineering: Improving Practice through Research

requirements and the compliance of the results of actually effected selection

tool in the project were verified during conducted research. The result of the

audit was to gather comments on its further improvement and development.

The end of the first study and the introduction of the comments gathered dur-

ing its implementation allowed to be ready to conduct further research in pro-

jects of greater complexity and scale. During the advisory work for one of the

clients of IBM, there has been observed that it is the environment for the veri-

fication of the model and its support for the selection of technologies for

adapting agile methodologies. In this case, the research environment was the

organization of the public sector, which implemented the Scrum methodology,

and wondered about the implementation of the SAFe approach. As the organi-

zation has invested in a set of tools to support the processes of software devel-

opment, it wanted to assess whether currently held set of technologies will

support their new choice – agile approach. The issue was a challenge for the

organization both in the technology and further business development. The

study was conducted to analyze existing research environment in relation to

agile processes for which the organization wishes to migrate. Then there were

compared the results obtained from the analysis of the consultants, which was

carried out in parallel. The use of the model allowed to achieve results over-

lapped with the results obtained by a group of consultants, but in a much

shorter time and with less work and required expertise of employees. The rest

of this article presents the details of each of the studied business case.

4.1. Research experiment in the IT organization before starting the agile

transformation process

Verification of reference model for the selection of the technology con-

ducted in the framework of the project TestReg implemented for the Chamber

of Duty was based on a survey shading level of maturity to carry out verifica-

tion of business scenarios using the model. The study was aimed at selecting

all potential business scenarios built in model which can be applied during the

selection of technology in IT projects in the House of Customs. The conducted

survey has allowed to the emergence of two scenarios: a selection of tools

based on the fulfilment of functional requirements and the second – the state-

ment of the tools which fully meet the activity of selected processes of

 The Reference Model of Tools Adaptation ... 235

software development. The most time was devoted to the study of technology

selection scenario based on the fulfilment of functional requirements, because

in the opinion of the audited organization, it was best to show the reality of the

implementation of previous projects. As part of the verification scenario, there

introduced to the application all the functional requirements which have been

defined in terms of the tools in the project TestReg. The experience was to

check whether the application to verify the reference model will give the same

recommendations for the selected tools. A set of studied tools narrowed there

to the commercial products, which was compatible with the facts specified in

the terms of reference.

Organizational requirements for tools published in the Terms of Refer-

ence (ToR) were the basis for the verification scenario. There is a need to in-

troduce them into the application realizing business scenarios basing to refer-

ence model in a way to designation a set of tools that suits specific needs. In

the case of the functionality defined by the Chamber of Duty, there was re-

quired mapping functionality for entries ToR collected in the reference model.

The result was the coverage requirements for a set of features of the reference

model in a one-to-one or one-to-many. There was conducted an analysis of

selected features and then designated both a set of tools available to Open

Source and commercial solutions. At the stage of application development for

the analysis of the reference model there assumed that the solutions which

meet at least 60% coverage requirements are recommended as a tool to im-

plement. Chamber of Duty noted that in the case of the public sector, meeting

the requirements must be close to 100%, and at 90-100% is acceptable. It high-

lighted that the parameter of acceptability should be a default with the possi-

bility of modification at the stage of the analysis in the application. The results

of the survey were summarized by the next survey, which assessed both pre-

pared reference model and its application to the analysis. In the opinion of the

Customs model usefulness is high and results are consistent with reality.

Chamber of Duty pointed to the possibility of obtaining significant savings of

time needed to analyze the areas for which tools are selected by using knowl-

edge of the reference model and analysis applications. Important – from the

perspective of the organization studied – was the possibility of the quick selec-

tion tool with specific features without the need to analyze the entire market

available to suppliers. The completed surveys indicated a potential risk of

236 Software Engineering: Improving Practice through Research

impact tool supplier for the content of data provided in the model and have

influence on the generated recommendations. Significant from the point of

view of the customer was to change the structure of the model to a more hier-

archical, what allows to select functionality more easily. After the end of first

of the scenarios, there was conducted similar research for other scenario,

which was to prepare using a reference model compilation tools fully meet the

activity of selected processes of software development implemented in the

Chamber of Duty.

4.2. Research experiment in the IT organization passing agile transforma-

tion process

Another research experiment resulted directly from earlier research on

reference model for the selection of technology in the organization. The or-

ganization has already used model to evaluate its usefulness in the simple case

of selection tools based on the specified functionality. Trust to the reference

model built thanks to the experience created in the organization interest in

using the model in the process of evaluation of the currently existing tools

supporting developing processes to support the currently implemented method

SAFe (Scaled Agile Framework). Reference model created with the requesting

application supports common methodology for the work of the team as Scrum

and Extreme Programming, but at a stage when studies were conducted has not

supported the methodology SAFe. As part of the experience there were created

two groups of consultants, which were aimed at assessing the suitability of

currently held tools (by the client), which were available in the context of sup-

port for the SAFe. The first group, in this case, used the model and the other

based solely on their own experiences. In the case of the first groups, addi-

tional work was to complement in the reference model elements which were

missing (in SAFE methodology that works at the level of teams is a process

based on Scrum, already available in the model). As part of the experience in

daily cycles, there were collected information from the teams’ knowledge, the

progress of the process of customer environmental analysis utility and readi-

ness to issue a recommendation regarding support for the environmental tool

from chosen by the customer methodology. The whole process of study was

limited at the outset by the time up to 14 days and was not suppressible. For

 The Reference Model of Tools Adaptation ... 237

the first group, which worked with the reference model, first week of work

was dedicated to complement the reference model of the missing elements

associated with the chosen by customer methodology. The level of progress on

the evaluation of environmental utility and customer readiness to issue rec-

ommendations remained at very low levels. People working in this group

clearly identified on the summary of the first week of work that in these areas

have not made any progress. The second group working without a model, after

the first week established the level of work on the analysis and assessment of

the readiness issue as moderately severe and presented a much higher level of

progress in relation to the first group. In the second week of the research, first

group (because of the supplement has all the missing elements of the method-

ology Scaled Agile Framework) was able within the first two days of the week

to reach the state of the second group at the end of the first week. Groups dedi-

cated the next days to further analysis and preparation of recommendations.

The results indicated and evaluated in much the same way the current status of

held by the client tools and allow unequivocally make appropriate decisions

related to the apply or not apply currently existing technologies. A significant

difference between the prepared analysis was based on their level of detail and

consultants’ conviction for their confidence. The second group pointed to the

low level of confidence, due to limited time and a small number of verified

functionality. Group working with the model indicated a high level of cer-

tainty, due to the large number of functionality of the tools evaluated for com-

pliance with the SAFE.

The experience made with the customer allowed to evaluate the use of

the model in the process of agile transformation with additional adaptation of

the model, which consisted of the introduction of the new methodology. Re-

search of model for the designated by organization business scenario shown

that it is possible to shorten the time required for the analysis of about 50 % at

a time when the model is complete. Another important element identified by

the organization is a significant higher level of assurance in the analyzes re-

ceived, due to the amount of the assessed tools and functionality.

The audited organization has expressed interest in the possibility of us-

ing the model in other organization’s agile transformation projects. Addition-

ally, the studied organization pointed to a new path of development, which can

help in the commercialization of the solution.

238 Software Engineering: Improving Practice through Research

5. Changes to the Model Resulting from the Verification Process

Research conducted also at the Chamber of Duty in Torun clearly indi-

cated the usefulness of the created reference model for the selection of tech-

nologies for both organizations undergoing transformation processes of agile,

but also those still working in a more formalized way. In both cases, the refer-

ence model showed a significant benefit of reducing the time and improves the

accuracy associated with the selection of technology for the organization.

During the study organizations drew attention to the need for continuous

improvement model for its update to the current standing of available com-

mercial products on the market and the changing trends in the world of agile

methodologies. According to the surveyed organizations could represent a

challenge for the project, which has a scientific nature. Another important

element reported during the evaluation of the model was its independence

from suppliers of technology, which is an important issue for organizations,

which in Poland are subject to the processes of public procurement. The or-

ganizations reported concern in this case, that the model can be manipulated in

such a way as to point to a specific provider of technology.

Figure 5. Structure of extended ALMRef reference model after applying outcomes

of verification process

 The Reference Model of Tools Adaptation ... 239

Both organizations indicated, even after additional analysis, that the

openness of the model and its expansion can be a guarantee of its independ-

ence. Another element that was raised both the Chamber of Duty and the other

of the surveyed organizations, was the potential to extend the model to other

areas of technology selection, which went to the scope of processes of soft-

ware development and also took into account the areas of project management,

enterprise architecture and construction and maintenance services in based on

the concepts of ITIL (Information Technology Infrastructure Library).

All of the identified areas of model development were analyzed by the

authors and are valuable suggestions for the next steps of research and re-

search directions for both the development of reference models, and the proc-

esses of agile transformation. The authors of the publication here draw atten-

tion to the wide interest in the organization of business character of this area of

research as well as their active participation in the processes of verification

and assessment of the current state of research. This allows to say that this area

is not only an interesting research issue, but also a big business problem which

IT organizations have not been able to cope yet. Conducted as part experi-

ments studies confirmed posed at the beginning of the research thesis and al-

lowed for complete verification of the reference model by using all available

perspectives and available business scenarios provided for agile methodolo-

gies. Conducted experiments allow you to clearly determine the suitability of

the created reference model in the processes of agile transformation on the

basis of the results obtained.

References

[1] R. Ryan Nelson. IT Project Management: Infamous Failures, Classic Mistakes,

and Best Practises, MIS Quarterly Executive, Vol. 6 No. 2, University of Vir-

ginia, 2007.

[2] R. Pichler. Agile Product Management with Scrum. Creating Products that Cus-

tomers Love, Addison-Wesley Professional, 2010.

[3] VersionOne, VersionOne The 10th annual State of Agile Report, 2016,

http://stateofagile.versionone.com/

[4] R. C. Martin. Agile Software Development: Principles, Patterns and Practices. s.

l, Prentice Hall, 2002.

[5] K. Schwaber, M. Beedle. Agile Software Development with Scrum, Prentice

Hall, 2001.

http://stateofagile.versionone.com/

240 Software Engineering: Improving Practice through Research

[6] K. Beck. Extreme Programming Explained: Embrace Change, s. 1, Addison-

Wesley, 1999.

[7] B. Chrabski. Integration and Dependency in Software Lifecycle based on Jazz

platform, Problems of Dependability and Modelling. Monographs of System De-

pendability, red. J. Mazurkiewicz, J. Sugier, T. Walkowiak, K. Michalska, Ofi-

cyna Wydawnicza Politechniki Wrocławskiej. Wrocław, 2011.

[8] P. Kruchten. Architectural Blueprints – The “4+1” View Model of Software

Achitecture, IEEE Software 12 (6), 1995.

[9] C. Orlowski, T. Deregowski, M. Kurzawski, K. Ossowska, A. Ziolkowski. Wy-

korzystanie miar złożoności projektu do oceny stanu ewolucji organizacji infor-

matycznej, Innowacje w zarządzaniu i inżynierii produkcji, Tom 2, Oficyna Wy-
dawnicza PTZP, Opole, 2016.

[10] Z. Kowalczuk, C. Orlowski. Advance Moddeling of Management Processes in

Information Technology, Pomorskie Wydawnictwo Naukowo – Techniczne,

2012

[11] T. Deregowski, A. Ziolkowski. Hybrid approach in project management – mixing

capability maturity model integration model with agile practices, Social Science

(Socialiniai Mokslai), Nr. 3 (85), 2014.

[12] D. Leffingwell. Scaling Software Agility: Best Practices for Large Enterprises,

Addison-Wesley Professional, 2007.

[13] http://standishgroup.com/, accessed: May 28, 2016.

[14] Standish Group 2015 Chaos Report – Q&A with Jennifer Lynch,
https://www.infoq.com/articles/standish-chaos-2015, accessed: May 28, 2016.

[15] K. Beck, C. Andres. Extreme Programming Explained: Embrace Change, Addi-

son-Wesley, 2004.

Chapter 15

Building Project and Project Team Characteristic

For Creating Hybrid Management Processes

1. Introduction

To be able to manage constantly changing requirements and to deal with

constantly changing environment IT organizations need to go through Agile

Transformation process. Agile Transformation is understood as applying Agile

mindset, which is not the same as using Agile Software Development Method-

ologies. Agile mindset is understood as constant adaptation to changing re-

quirements, circumstances and environment.

Adaptation process should happen on various different levels. One of it

is the choice of adequate project management processes and software devel-

opment methodology for each project, which is about to start. Within the same

organization there could be a need to deliver various projects, which differ on

important aspects such as the amount of budget, project duration, number of

team members, client specific and business domain in which client organiza-

tion operates. Each of the projects requires dedicated set of processes and

software development methodology adapted to its unique characteristic and

needs, which will enable directing project work in a way, which increases the

probability of project success.

Over the past few decades dozens of different standards and methodolo-

gies for supporting software development processes were developed. Many

process improvement models, such as Capability Maturity Model Integration

(CMMI) [5] have been developed. They define in details the full life cycle of

software development project, from collecting requirements through design,

development, testing, up to delivery and support. They are tools and methods

242 Software Engineering: Improving Practice through Research

agnostic; they concentrate on what and why should be done, not defining how

it should be done. In addition to models, they are many different project man-

agement methodologies, grouped in two main categories: Agile and Waterfall.

Traditional approaches, often called Waterfall after their graphical representa-

tion, contain of several independent phases such as requirements gathering,

design, implementation or testing. Each phase is performed indecently; transi-

tion to the next phase is possible only if previous phase was completed. In

opposition to traditional approaches, Agile methodologies use incremental and

iterative approach. Project is divided into phases called Sprints. Each Sprint

usually lasts two weeks. During single Sprit project team performs activities

related to design, testing and coding. Each Sprint ends with increment of func-

tionalities, which can be released and presented to the client. Agile method-

ologies were formed in opposition to traditional, sequential model. They are

very informal and simple. In Agile methodologies practitioners make most of

important decision during the project.

Described standards and methodologies, both Agile and Waterfall, were

used to manage many different software development projects. They are many

examples, where projects were managed with Agile methodologies and they

succeeded. In many other cases projects failed despite using Agile approach.

Similar situation is with waterfall methodologies, many projects, which used

Waterfall approach succeed. They are also many examples of projects, which

were managed with Waterfall approach and failed. It doesn’t say anything

about methodologies, models and their effectiveness. Project failure or success

is a consequence of choosing proper methodology to manage project with par-

ticular specific.

The choice of Software Development Methodology is a key decision,

which could change project result. Unfortunately existing knowledge does not

provide method, which could help IT organizations with selecting proper, ad-

justed to project specific, methodology. There is no method which lets analyze

project, client and delivery organization specific and basing on analysis results

suggest the most adequate software development methodology.

This paper is an attempt to fill this gap. It contains a description of

method, which allows building multifaceted project, client and delivery char-

acteristic. Such characteristic can be used for many different purposes, includ-

ing selecting adequate methodology for the project.

 Building Project and Project Team Characteristic ... 243

2. Client Characteristics in the Context of Model for Designing Hy-

brid Management Processes (DHMP)

Authors of this paper, in the course of their daily work related to project

management, spotted a problem associated to lack of tools and methods, which

allow choosing adequate, processes and methodologies, adjusted to unique

needs of the project. This problem was described in one of earlier publications

“Model for building Project Management processes as a way of increasing

organization readiness for Agile transformation” [3]. Proposed in this article

Model for Designing Hybrid Management Processes (DHMP) defines concept

of building custom project management processes, which are adjusted to

unique project needs. Processes are based on results of project, client and de-

livery organization analysis and they try to fill all the gaps in existing proc-

esses and address specific needs resulting from project characteristic.

Module, which is responsible for building the characteristic of project,

client and delivery organization, is a key element of DHMP Model. Based on

project characteristic generated with this module, DHMP Model is able to

define which processes, project management methodologies, engineering and

process optimization techniques are most suitable to the needs of analyzed

project. In the last phase DHMP Model combines all selected processes and

tools into consistent project management process.

Project management processes, created with help of DHMP Model, are

recommended as most adequate and suitable process for managing particular,

process, which could significantly increase the probability of project success.

Figure 1 presents an approach, which was used to build project charac-

teristic.

Figure 1. Characteristics of the client in the context of DHMP Model

244 Software Engineering: Improving Practice through Research

In order to verify DHMP Model a survey was created. Survey is an inte-

gral part of DHMP Model and is responsible for creating project characteristic.

Analyzed in the survey aspects include, among others, project team, manage-

ment processes and tools used to support software development processes.

Survey allows evaluation of multifaceted complexity of the project and project

team. Project characteristic build with survey will be used as a source of data

for Knowledge Base. Knowledge Base is another integral element of DHMP

Model and is used to store information on completed projects. Based on in-

formation included in Knowledge Base, organization will be able to build a set

of recommendations for new projects, which are about to start.

Preparing survey and conducting pilot study allowed identification of

projects’ key accepts which are crucial for the selection of software develop-

ment methodologies. It also allowed refining and verifying DHMP Model.

Survey contains of two parts. First part is about analyzing the specific of

project and project team. Second part is used to build characteristics of proc-

esses, methodologies and tools used by delivery organization. Survey and find-

ings from pilot study are presented in later sections of this paper.

3. Study of IT Organizations with DHMP Model

Pilot study was carried out in a software development company. The

company has more than 4,000 employees, distributed among different localiza-

tions such as United States, South America, Australia, Asia and Europe, in-

cluding Poland. Solutions and products provided by company are related to

multichannel marketing [1], data mining [15] and Big Data [11].

Pilot study had two main objectives. First goal was to verify survey, it’s

structure, aspects it measures and usefulness of collected data in preparing the

characteristic of project and project team. Second goal was to verify DHMP

Model, check if when provided with data collected through survey, it can be

used to draw useful conclusions about projects and processes.

During pilot study six projects were analyzed. Projects have varied on

size, budget, length and project phase. All projects were for different clients.

One of the projects was for a client form publishing business, two projects

were for clients from automotive industry, one for Tobacco Company. The last

 Building Project and Project Team Characteristic ... 245

two projects were about creating standard products, which were sold to differ-

ent clients from different business sectors.

4. Analysis of the Project and Project Team

In the first part of the survey, three aspect of the project are examined.

First of them is project, second is project team (delivery), third one is the result

of the project. Each aspect is described with series of parameters; each pa-

rameter is examined through a series of questions. Answers to questions de-

termine the complexity of each parameter. The complexity of the individual

parameters builds up the complexity of related aspect. Complexity of parame-

ter can be low, medium and high.

The structure of the questionnaire for building project and project team

characteristic has been presented on Figure 2.

Figure 2. Aspects examined as a part of building project and project

team characteristics

246 Software Engineering: Improving Practice through Research

4.1. Project complexity

The complexity of the project is determined on the basis of six parame-

ters: budget, schedule, requirements, technology, quality and risk. As was

mentioned before, complexity of each parameter is evaluated through series of

questions. Structure of questionnaire and factors, which determine parameters

complexity, are described in this section.

The first of analyzed parameters is budget. Fact, if budget has been or

has been not defined, has the biggest impact on budget complexity. If the

budget was formulated, survey checks what is the total project cost (less than

$250k, between $250K and $750K, over $750K). Higher costs mean higher

complexity. Last factor, which determines project complexity and is measured

though survey is an experience has in delivering projects with similar budgets.

Second aspect of the project, which is assessed as a part of determining

project complexity, is schedule. At first survey checks if schedule for the pro-

ject was defined. If answer to this question is yes, survey checks project length

(it could be 6 months, between 6 an 12 months and over 12 months). The

longer project last, the higher schedule complexity is. Last factor related to

schedule complexity, which is measured by the survey, is how important ana-

lyzed project is for the delivery organization. If project has key meaning for

delivery organization, it can be assumed that all necessary resources will be

secured and provided. If project has medium priority, it means that it will need

to compete about resources with other projects, with higher or the same prior-

ity. Finally, if project has low priority, there is a huge risk that common re-

sources, which are shared with other projects, will be delivered only if other

projects won’t need them. In last two cases there is a significant risk that pro-

ject will be delayed due to lack of important resources.

Next aspect, which has an impact on project complexity, is require-

ments. First and foremost it needs to be determined whether requirements for

the project were defined. If they were, survey checks how flexible they are and

what’s the risk that they will change during the project. Requirements com-

plexity is low, if they are well documented and formal process of managing

requirements exists. It’s even better for requirements complexity, if changes in

requirements require contract renegotiation. In such case, it can be assumed

that changes in requirements won’t happen too often. Requirements complex-

 Building Project and Project Team Characteristic ... 247

ity will grow if they were defined, but delivery and client teams assume that

they can be easily modified. The most complex situation with requirements is

when they were defined on very basic level and assumption was made, that

client will discover his needs during the project and requirements will be de-

fined on the go.

The next aspect, which can significantly influence project complexity, is

technology. One of the key factors, which could significantly increate techno-

logical complexity, is the need of integration with external systems, especially

if team members don’t have much experience in this area. The number of

technologies used in the project will also shape technological complexity.

Level of technological complexity will grow together with the number of tech-

nologies used in the project. Even single technology used in development pro-

ject can be very complex. When there is a need to use many different tech-

nologies, when they start interacting with each other, level of complexity

grows significantly. Another aspects related to technology, which needs to be

taken into consideration, when analyzing project complexity, is knowledge and

experience team members have with each technology used in the project.

Another aspect, which shapes project complexity, is quality. Survey

checks if quality assurance is implemented in the project and in which project

phases. It’s crucial for project quality, whether the mechanisms of securing it

exist on each project level or only during test phase. It’s also important if pro-

ject team uses well-known standard tools and techniques for increasing quality

of the code during whole project lifecycle. Mentioned techniques are Continu-

ous Integration [7], Unit Testing [2], Code Reviews [2], Static Code Analysis

[4], Continuous Delivery [9] and Continuous Deployment [9].

The last project aspect, which is taken into consideration when evaluat-

ing project complexity, is risk. Survey checks if during the project risks are

actively managed. Risk impact on project complexity is much lower when

risks are identified and prioritized during the project and risks mitigation plan

is created and maintained. It’s also important if risk mitigation plan is part of

project plan. Risk also depends on team experience in delivering projects of

similar scale.

248 Software Engineering: Improving Practice through Research

4.2. Project team complexity

Main factors, which determine Project Team Complexity and are evalu-

ated as a part of survey, are: size of the team, its structure, experience and dis-

tribution.

Complexity of project team grows together with the number of team

members. That is why survey measure the number of team members. Another

important factor, which impacts team complexity is team structure. The ex-

perience of authors of the study and its participants suggests the team com-

plexity is lower if team is build from client and delivery representatives. Com-

plexity grows when team consists of delivery organization representatives and

doesn’t contain any client representatives. The most complex situation is when

team contains external suppliers who act as contractors.

Another important factor, which shapes team complexity, is experience

team members have in working together. The higher common experience is,

the lover impact on team complexity.

The last factor, which has an impact on team complexity, is geographi-

cal distribution of the team. If team members are grouped in one localization,

impact on project complexity is low. It grows, when team members are dis-

tributed but they work in similar time zones. Geographical distribution has

highest impact on the project when time differences are greater than six hours.

In case, when time overlap is two hours or less, work, as one team becomes a

real challenge. I such case additional effort related to documentation and good

collaboration tools are required.

4.3. Project result

The last factor, which is evaluated as a part of survey, is project result.

As mentioned earlier in this paper, survey can be used to examine projects,

which have ended, and these, which are about to start. In case of projects,

which have ended, survey evaluates they result and factors, which decided

about it.

Survey tries to determine main factors of project success or failure. In-

terviewed person is asked to provide four most important factors, which de-

 Building Project and Project Team Characteristic ... 249

cided about project result. List of possible factors is based on Processes Areas

defined in CMMI for Development (CMMI-DEV) [5].

CMMI is a process improvement method, which integrates all process

and procedures existing in an organization and identifies potential gaps.

CMMI model is often used to assess maturity of process implemented in the

organization. CMMI provides holistic approach, it does not concentrate on

specific methodologies and tolls, it is method and tool agnostic. CMMI defines

which process should be implemented in an organization and why, but it

doesn’t define how they should be implemented. Thanks to that it can be used

with all types of methodologies, models and techniques, both Agile and tradi-

tional. Within the CMMI-DEV model 22 process areas are defined. Each proc-

ess areas describe key aspects related to particular area of software develop-

ment process.

In survey only 18 from 22 Process Areas are be used. Remaining four

Process Areas concentrate on measuring and improving processes on organiza-

tion, not project, level and that is why they have been omitted.

Interviewed person, when choosing key indicators which determined

project results, can choose from the following factors:

 Configuration Management

 Measurement and Analysis

 Project Monitoring and Control

 Project Planning

 Process and Product Quality Assurance

 Requirements Management

 Supplier Agreement Management

 Decision Analysis and Resolution

 Integrated Project Management

 Product Integration

 Requirements Development

 Risk Management

 Technical Solution

 Validation

 Verification

Defining factors, which determined project result, is crucial for building

recommendations for new projects. Basing on historical data, which contains

250 Software Engineering: Improving Practice through Research

information on project characteristic, project result and key factors which de-

termined result, decision makers in delivery organization can gain knowledge

on which processes are really important for projects with particular character-

istic. They will know what needs to change in project management processes,

which processes needs to be added and which needs to be removed, to signifi-

cantly increase the probability of project success.

5. Analysis of Processes, Methodologies and Software Development

Standards

The second part of survey focuses on the project management method-

ologies, processes and standards. Survey can be used to research projects,

which have ended and those, which are about to start. Studies on finished pro-

jects focus on processes and standards, which were used to manage them. For

projects, which are about to start, survey concentrates on processes and stan-

dards, which project team is going to use to manage the project.

They are two main goals of this part of survey. First goal is to determine

which areas were (project completed) or will be (projects which are about to

start) formally managed. Second aspect of processes, which is examined, is

level of their capability. Capability level is determined by four factors: level of

project documentation, information on trainings, which were performed in the

past, the fact if processes and their products are audited and how well proc-

esses are standardized on project and organizational level.

Survey also examines which Software Development Methodologies,

Engineering Practices and Optimizations Techniques were (will be) used to

support the implementation of the project.

The structure of the second part of the survey, which was described in

this section is shown in Figure 3.

The main goal of this part of survey is to determined, which processes

were (will be) formally managed, as a part of official project management

process.

Processes for which it is checked whether they are a part of software

development process or not and what is their capability level, are identical to

the CMMI-DEV processes described in section 3.1.3 (Configuration

 Building Project and Project Team Characteristic ... 251

Management, Measurement and Analysis, Project Monitoring and Control,

Project Planning, Process and Product Quality Assurance, Requirements Man-

agement, Supplier Agreement Management, Decision Analysis and Resolu-

tion, Integrated Project Management, Product Integration, Requirements De-

velopment, Risk Management, Technical Solution, Validation, Verification).

Figure 3. Process aspects examined as a part of building project and project

 team characteristic

As it was mentioned earlier in this section, apart from checking which

processes are managed in a formal manner, survey also measures the level of

their formalization. Level of process formalization depends on documentation,

trainings, process audits and standardization level.

Processes and procedures used to manage project can be documented in

details, briefly documented, or not documented at all. Apart from level of

documentation, also the way in which processes were established may differ.

Process could be introduced in a very formal manner, which includes trainings

and workshops, supported by detailed documentation. Introducing new proc-

esses could be also limited to providing documentation. In the worst case

process can be introduced without any organizational support.

As a part of survey it is also checked which processes are audited and

how often audits are performed. The last factor, which is associated with proc-

ess capability and is measured in the survey, is how well process is established

in organization. In general, processes can be established on project level, or-

ganizational level or not established at all.

252 Software Engineering: Improving Practice through Research

The last part of the survey allows determining which methods, engineer-

ing techniques, process improvements techniques and other IT standards were

used (will be used) as a part of project management processes. Survey contains

the following potential answers: PMBOK [10], CMMI [5], SixSigma [8],

PRINCE2 [6], Scrum [14], Lean Development [13], Kanban [12], and XP [2].

Apart from information on which standards were incorporated, it’s also

important to know how well these standards are known to project team. Level

of knowledge is determined by two factors: theoretical knowledge and practi-

cal experience (how long most of the team uses particular technology in their

everyday work). Both factors are measured as a part of survey.

6. Impact of Pilot Study on DHMP Model

As a result of pilot study, the range of survey was reduced. Scope of

survey was limited to these project and project team parameters that are crucial

for building project characteristic. At the same time some new questions and

sections were added to the survey. After changes survey concentrates more on

these aspects of project and project team, which are crucial for the choice of

right methodology for the project. Aspects, which don’t influence the choice of

processes supporting the management of the project, were eliminated from the

survey.

Number of aspects, which are measured by the survey and level of de-

tails, is a compromise between the need of precise and detailed data and time

needed to fill out questionnaire. Too general questionnaire won’t deliver useful

information. Too detailed questionnaire could significantly reduce the number

of entities willing to take a part in survey.

Initial version of survey contained of sixty-two question and time re-

quired to fill it out was more than 90 minutes. After pilot study, number of

questions and time needed to fill out questionnaire, were reduced by a half.

One of the main changes was removing a section related to building cli-

ent characteristic. Client aspects, which are important for building require-

ments for project management processes, are analyzed as a part Project Team.

According to feedback received from survey participants, client and delivery

 Building Project and Project Team Characteristic ... 253

should be examined as a part of the same entity: Project Team. Client

shouldn’t be analyzed in isolation from delivery.

From survey they were also removed questions that explored the state of

client and delivery organizations. It was recognized that it is better to focus on

individual projects than on whole organizations. Lessons from previous pro-

jects are more important for constructing project management process, then

information on how the whole company is functioning.

Another effect of pilot study was changes in selection of project and

project team key factors. In initial version of model, an assumption was made

that there is a need to measure project and project team, but key parameters

weren’t specified. That has changed after pilot study. Basing on feedback re-

ceived from study participants, key factors that will be used in the future stud-

ies to build project characteristic were designated. For project team these fac-

tors are: team cardinality, team composition and team experience. For project

key aspects are schedule, budget, requirements, technology, quality and risk.

Each aspect is measured with series of questions.

Another modification that was introduced as a consequence of pilot

study, was adding section for measuring capability of software development

methodologies, engineering practices, optimization techniques and support

processes. Capability level defines how well each process and technique is

established in an organization. Survey measures that by checking how well

each processes, methodology and technique are documented, what types of

trainings were performed in the past, if processes are regularly audited and if

they are standardized on project and organizational level.

Important changes were also introduced in survey structure. Questions

were grouped into logical section, which concentrate on key project aspects

such as processes, methodologies and standards, project, project team and

project result.

Modified DHMP Model structure is presented on Figure 4.

Changes in the type of the collected data and its structure impacted

DHMP Model. In consequence of pilot study the need of storing and process-

ing survey results was identified. To address it, new concepts of Knowledge

Base and Rule Engine were introduced. The aim of knowledge base is to store

survey results in a way, which enables analyzing organizations and its proc-

esses. Rules Engine is going to be a main tool used to analyze historical data

254 Software Engineering: Improving Practice through Research

and to build set of recommendations for new projects. Both concepts will be

developed in the course of further research.

Figure 4. Evolution of DHMP Model and its module for building delivery

characteristics

7. Conclusions

Ability to build custom management processes, which are tailored to the

unique project needs, may be crucial for the success of IT organization. Such

tailored, bespoke process needs to be based on data, which in details describes

the needs of organization and its projects. Survey described in this paper is an

attempt to introduce new method for collecting data on IT organizations, their

clients and projects. Basing on survey results analysis the set of recommenda-

tions can be build. Recommendations could include suggestions on most ade-

quate to project needs software development methodology, engineering tech-

niques and processes and optimization standards.

In this paper authors focused on collecting data on projects, they spe-

cific and processes. In their future work they want to continue studies in this

area but concentrate more on methods of analyzing collected data, drawing

conclusions and building sets of recommendations. They intend to develop two

concepts, which were introduced in this paper, the concept of Knowledge Base

and Rule Engine. As a part of further work more IT organizations and projects

will be examined with presented survey. Valuable recommendations need to

be built on wider set of data.

 Building Project and Project Team Characteristic ... 255

References

[1] A. Arikan. Multichannel Marketing: Metrics and Methods for On and Offline

Success. Sybex, 2008.

[2] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,

1999.

[3] C. Orlowski, T. Deregowski, M. Kurzawski, A. Ziolkowski. Model służący
kształtowaniu procesu zarządzania projektem informatycznym dla podniesienia

gotowości do zwinnej transformacji organizacji informatycznej, Innowacje w za-

rządzaniu i inżynierii produkcji, Tom 2, Oficyna Wydawnicza PTZP, Opole,

2016.

[4] B. Chess. Secure Programming with Static Analysis. Addison-Wesley

Professional, 2007.

[5] M. B. Chrissis, M. Konrad, and S. Shrum. CMMI for Development: Guidelines

for Process Integration and Product Improvement. Addison-Wesley Professional,

2011.

[6] O. Commerce. Managing Successful Projects with PRINCE2. The Stationery

Office, 2009.

[7] P. M. Duvall. Continuous Integration. Improving Software Quality and Reducing
Risk. Pearson Education, 2007.

[8] S. L. Furterer. Lean Six Sigma in Service. Applications and Case Studies. CRC

Press, 2009.

[9] J. F. Humble,. Continuous Delivery. Reliable Software Releases through Build,

Test, and Deployment Automation. Pearson Education, 2010.

[10] A Guide to the Project Management Body of Knowledge: PMBOK(R) Guide 5th

Edition. Project Management Institute, 2013.

[11] N. Marz. Big Data: Principles and best practices of scalable realtime data

systems. Manning Publications, 2015.

[12] T. Ohno. The Toyota Production System: Beyond Large-Scale Production.

Productivity Press, 1988.
[13] M. P. Poppendieck. Lean Software Development: An Agile Toolkit. Addison-

Wesley, 2003.

[14] K. B. Schwaber. Agile Software Development with Scrum. Prentice Hall, 2001.

[15] I. H. Witten. Data Mining: Practical Machine Learning Tools and Techniques.

Morgan Kaufmann, 2011.

Chapter 16

Experience Report: Process of Introduction

of DevOps into Production System

1. Introduction

The term DevOps (an acronym for Development and Operations) has

gained much importance in the world of information processing in the recent

years. DevOps lacks a formal definition but can be commonly understood as

means to exchange feedback between developers and operations engineers to

improve the software itself, the processes that all parties are following and the

environment where the application is hosted.

The focus on automation and synergies that emerge from merging dif-

ferent IT aspects drives more and more business value to the customers and

helps to save costs for the software houses. The aim of DevOps is to create a

living and transparent ecosystem, where every phase of the software develop-

ment follows each other quickly and automatically [16]. The main reason for

applying DevOps in the development process is the enabled hyper-

productivity, because of the ability to release very often (i.e. daily or even

several times per day) [26]. There is a strong connection between the Agile

and the DevOps (Figure 1) movements [3]: DevOps is helping what agile

started. The agile technique introduces some flexibility to the development

process and iterative approach in the collaboration between business and de-

velopment (Figure 1). The DevOps technique tears down the walls between

development and infrastructure.

The DevOps is based on four fundamental pillars (Figure 2). The people

aspect concentrates groups of developers, testers, infrastructure administrators

and clients together to collaborate with each other. The second and the third

258 Software Engineering: Improving Practice through Research

aspects focus on automating the processes with the right tools to achieve

maximum throughput in the development cycle. The last aspect – architecture

– makes sure that the possibilities of many releases often, is used to its maxi-

mum extent. One of the most suitable architectures that fit great into DevOps

is the microservice style, where small separately deployable software chunks

that communicate with each other are implemented. The aim of the microser-

vice architecture is to test easily and scale well [12, 5].

Figure 1. DevOps in development process

Figure 2. Main facets of DevOps

 Experience Report: Process of Introduction of DevOps ... 259

The main contribution of this paper is to present the process of the in-

troduction of DevOps elements into the production system Automotive Sys-

tem. The system was designed using waterfall methodology and was trans-

formed into Scrum. The DevOps pillars are accompanied by the continuous

everything (continuous integration, continuous testing and continuous de-

ployment) approach. The used tools and processes will be described. Some

metrics will be proposed and the results will be discussed.

This paper is organised as follows: a related work is presented in the

Section 2. Section 3 describes services concept in the organisation. Section 4

presents production system that used DevOps mechanisms and their metrics.

General results and conclusions are discussed in Section 5.

2. Related Work

In the year 2013, Puppet Labs State of DevOps Report [25] bench-

marked over 4000 IT organisations to better understand the companies at all

stages of DevOps adoption. They noticed that the DevOps culture enables high

performance by increasing agility and reliability. They claimed that the com-

panies, which adopted DevOps techniques and culture, deploy code 30 times

more often and have 50 percent fewer failures. They analysed and identified

barriers to DevOps adoption. They noticed that the processes and tooling con-

tribute to high performance, but without cultural change within the organisa-

tion, it will not be possible to implement the DevOps concept completely. The

most common barriers to DevOps adoption are: lack of manager or team buy-

in or the value of DevOps is not understood outside of a specific group.

In the 2014 State of the DevOps Report [27] they additionally noticed

the meaningful increase in the job satisfaction in companies adopting DevOps

culture which in turn boost their performance. In the last report [26] they no-

ticed growing performance of the companies adopting DevOps and addition-

ally stated need of lean management and diversity in the companies as one of

the important factors for DevOps culture adoption.

In the study World Quality Report 2015-2016 [4] authors notice the stra-

tegic role of QA, testing automation and the ongoing DevOps adoption. Addi-

tionally to traditional QA tasks they state the need for the predictive analytics

260 Software Engineering: Improving Practice through Research

usage in various stage of the project to shorten the lead time
3
, testing efforts

and manage the risk before the production.

The company Paddy Powder [6] introduces continuous delivery and

Kanban technique mainly to improve time to market. After the transition they

noticed huge improvements in several areas: accelerated time to market, build-

ing the right product, increased productivity and efficiency, stable releases,

improved quality, improved customer satisfaction. They shortened time to

market every six months to at least once a week and the cycle from user story

conception to production shortened from several months to several days. The

number of open bugs decreased more than 90 percent. Bugs are treated the

same as the new features and are added to the Kanban board. Hence, no dedi-

cated bug fixing process is required. They recognised several changes: organ-

isational(barriers between competing divisions), process-wise (delays due to

approval boards) and technical (lack of a robust out-of-the-box solution).

Another example is the Etsy DevOps case study [9]. Jon Cowie empha-

sises that introducing DevOps approach in the enterprise is not one time transi-

tion. It requires the general business culture change in the long term. The De-

vOps way of working is especially hard when one tries to introduce DevOps

culture in the large company, where different stakeholders on various levels do

not want to give up their control to the team. To convince the management

board, one has to show and emphasise business benefits of the new approach.

According to the case study, they push changes to the production every 20

minutes with little impact on end users using the Chefs [7] technology.

In the [7] Neely and Stolt show the transition from time-boxed Scrum to

the Scrum-ban [17] based continuous delivery process. They describe the two

different views: from business and engineering perspective. Besides the tech-

nology and testing efforts, which have to be introduced to get automatisation,

they once again emphasise the need for the business people commitment, es-

pecially in experimenting. They noticed that the monthly story throughput per

developer increased and the number of bugs dropped and became predictable

because of frequent release (no more bug peeks).

3
 Lead Time – the time between the initiation and completion of a production process. Often used in term of

lean management.

 Experience Report: Process of Introduction of DevOps ... 261

3. Services Concept in the Capgemini Organisation

One of the main issues in the development process is to keep the costs

low. Much effort is put into increasing the productivity of the company as a

whole. The Capgemini introduced the concept of services that are provided to

the project teams whenever they need to use or to configure a new tool and / or

process. The whole concept is based on the assumption that specialised units

use the tools and processes more efficiently and at lower costs than the project

teams that would have to master them through a long learning process. As the

DevOps principles rely hugely on automation using many different tools, the

services can potentially provide even more productivity to the project teams.

The services have been divided into two subcategories: the so-called

shared services that concentrate on single tools or processes and so-called ex-

pert services that glue the tools together to form a functioning deployment

pipeline [15] or to provide other specialised services like complete test auto-

mation for a project. The service approach helps to achieve maximum utilisa-

tion of the experts’ knowledge as they are not exclusively reserved by some

projects and their efforts can be redirected to the project that has the most

needs at a given moment in time.

The shared services can help the projects save costs as their work has

been structured into easily estimable processes and are provided in the Cap-

gemini Righshore ® [13, Chapter 1] delivery model.

4. Introducing DevOps Culture and Technique into the Automotive

System

4.1. Background

The project is being developed for one of the biggest automotive com-

panies in Europe, and it covers all aspects of car purchasing. The system is

used only internally by the customer and manages the whole process of car

renting, leasing and selling.

The system is made of 2 subsystems in two different technologies. Its

first version was written in COBOL and is now to be replaced by a new

262 Software Engineering: Improving Practice through Research

web-based application. Both subsystems are working in parallel, and the data

is synchronised between them in real time. The client part of the system has

been written using JSF (Java Server Faces) and JavaScript, while the server

tier uses Spring Framework, Hibernate, Spring Batch and Spring WS. The

database used for the project is IBM DB2. The project is manufactured using

agile methodologies. Regular user stories are developed using Scrum frame-

work. Support and bug fixing are hierarchically organised using Kanban tech-

nique as described in [22].

The team consists of 4 business as well as technology oriented sub-

teams. The project is delivered from 3 different locations. This type of work

has been organised in accordance with the Distributed Scrum concept as de-

scribed by Majchrzak et al. [23].

4.2. A timeline

The old system has been developed since 1990 using pure waterfall life-

cycle model. The new version of the systems was implemented at the begin-

ning also using the waterfall software development model with the sharp divi-

sion between business, development and operation organisations. First release

after 16 months showed that we were not able to integrate with the old system

and we did not cover minimal end user needs. Additionally, we were not able

to establish effective communication with the operations team on the customer

side and thus, all the changes and agreements were done in the conservative

and document-driven manner which in turn had slowed our release process

significantly and analysis of the production problems | mainly because of miss-

ing access to the infrastructure. In 2012 to improve at least some team and

customer collaboration aspects, it was decided, that the project will be devel-

oped as one Scrum project. After final transition in 2013, the team, as well as

the business, were using the Scrum framework – except the operations team.

Another important aspect which has been evolving since the project be-

ginning is the focus on continuous project and test infrastructure improvement.

We decided from the very start to invest in full test automation, continuous

integration and clean code rules. While the development team requires only a

few hours to deliver the new version of the system, e.g. after critical bug fix,

the operations team is still the bottleneck in the process.

 Experience Report: Process of Introduction of DevOps ... 263

4.3. Engineering practices

To introduce DevOps principles we focus on the process automation (if

possible), on XP techniques and simplicity.

Collaboration (Wiki, Issue Tracking System). Collaborative and agile

approach determined the selection of tools. We decided to use leading agile

tools like JIRA [1] and Conuence [1] to allow cooperation in the distributed

environment.

Clean code and coding rules (Findbug, PMD). Each user story or task

has to meet the Definition of Done (DoD), agreed both internally by the time

and with the customer. We focus mainly on Clean Code rules proposed by

Martin [19] and on lack of Findbug [11] and PMD [28] violations. The static

analysis is executed centrally on Jenkins and in the case of the threshold of

violations is reached the code corrections have to be immediately introduced.

Code Review, Pair Programming. All user stories and defects are being

reviewed in the peer review process (Crucible [1]). In the case of crucial re-

quirement or in the case of the job training we use Pair Programming [2] tech-

nique.

Continuous Integration. 2 Jenkins manages all integration tasks and run

on several slaves. The extended configuration is required because we want to

provide continuous feedback to the developers.

E2E Automation (xUnit, Selenium).We decided from the very beginning

to invest in full test automation, in other words, all the business processes in

our applications are tested automatically. We extended Selenium WD [29]

framework to test Webservices and long running jobs. Instead of focusing on

single use case we try to cover the whole business process to simulate real

application use – even if the process takes, in reality, several days.

Automatic Deployment (Jenkins). We introduced automatic application

deployment on all our tests systems including Tomcat and Websphere applica-

tion servers.

4.4. DevOps introduction stages

Our way of working evolved slowly into DevOps approach and was ini-

tially driven by test automatisation and development methodology changes. To

264 Software Engineering: Improving Practice through Research

improve the system architecture, infrastructure and processes we were extend-

ing temporary the team with DevOps experts from the Capgemini shared ser-

vices. For instance(see Figure 3) in the two development teams we added De-

vOps experts. Even though they are only available in part-time to the project,

the team can define the requirements in an efficient manner and together pro-

vide the required solution faster.

Figure 3. DevOps experts in the team structure

Integration. First step into IT automation was the continuous integration

tools and the commit rules each developer has to fulfil to comply DoD. The

tooling and infrastructure were installed by the external specialised team

(shared service). However, the configuration was done internally by the team

which in turn caused delays in the project schedule.

Automatic E2E. We introduced an automated testing soon after the first

release. We decided to cover all use cases using the Selenium framework.

Since then (exceptionally to joint experts service usage) testers are fully em-

ployed as team members responsible for test management and test automation.

It is important to mention that test experts are preparing not all the tests. De-

velopers and business analysts use test automation in their daily work as well.

Scrum. Even though we used several of XP practices from the early be-

ginning of the project, the Scrum introduction was a significant change in the

project constellation. First of all, we managed to break the wall between busi-

ness people, development team and end users. Secondly, we introduced

 Experience Report: Process of Introduction of DevOps ... 265

continuous flow in our project and routines understandable for IT and non-IT

peoples. Stepping into Scrum world required not only the process changes but

also tools which let us work in a distributed environment and tools which al-

low efficient testing and integration.

Support and bug fixing process improvements. Introducing Scrum did

not solve all the problems. We identified several bottlenecks in the project.

Particularly in the support and bug fixing areas [22]. One of the improvements

was the Kanban technique and the status visualisation of the tasks in the de-

velopment pipeline.

Testing environment improvements. One of the obstacles we are facing

now is the time required for end-2-end tests results. Thus, the ongoing im-

provement. We prepare the Docker [8] environment for managing test paral-

lelization. Later on, the gathered knowledge will be used in the production

environment so that we will be able to provide the continuous delivery ap-

proach to the customer.

4.5. Results

Figure 4 shows the development pipeline as well as the future improve-

ments currently developed or considered. In general, the continuous delivery

process could be divided into 4 group.

Inception. The phase is managed by Scrum process and Kanban tech-

nique in case of bugs or CRs. In reality, the process is more complex and con-

sists of several agile ceremonies like planning, refinement, prioritisation meet-

ing as well as Kanban meetings [22]. The output of this stage is the agreement

of what has to be done, deadline and involved individuals.

Since the project start we increased the number of implemented user

stories (Figure 5) and the team size (Figure 6). The project may be scaled de-

pending on business needs without the organizational, technical or infrastruc-

tural problems.

Development. The team is cross-functional, consists of testers, develop-

ers, business analysts as well as of infrastructure specialists (part time as de-

scribed in the previous sections). Despite the increasing number of developers

(Figure 6), the team decided to keep the development environment (branching,

configuration, and tagging) as simple as possible to avoid merging efforts. In

266 Software Engineering: Improving Practice through Research

the past, we kept long living feature branches which in turn created significant

merge debt. Now the team integrates the work several times per day on the

main branch using (if needed) feature toggle approach [14]. The only branches

we used are short living release branches. All the changes are continuously

inspected and tested using quick unit and integration tests.

Figure 4. Development pipeline

 Experience Report: Process of Introduction of DevOps ... 267

Figure 5. Number of user stories

Figure 6. Number of active developers

Integration. The phase consists of two major activities:

 static code analysis and complete regression tests inclusive unit, long-

running integration tests,

 automatic end-2-end tests.

268 Software Engineering: Improving Practice through Research

Both processes are fully automated and test all business cases in the ap-

plication during the night. All failures are collected and the comprehensive

report (continuous feedback) is provided to the development team on an early

morning. Additionally, every day we deliver the newest version of the system

on UAT
4
 server automatically so that the PO-Team and key users can check

the ongoing development results.

Delivery. Due to the different infrastructure provider than Capgemini,

the customer did not decide to introduce the automatic deployment on the pro-

duction (live) and pre-production (pre-live). The packages are automatically

delivered, but the installation is manual. Before live installation, the manual

tests (smoke tests) are executed to check whether the application was correctly

configured during the deployment or not.

Figure 7. Number of releases per year

After introducing DevOps and continuous delivery principles, we have

mainly shortened the release and test cycles so that we can deliver new soft-

ware version after each sprint. We noticeably increased new installations on

the production (Figure 7). We plan to provide at least 9 software versions to

the live environment in 2016 (in the first quarter we delivered already 3).

4
UAT stands for User Acceptance Testing.

 Experience Report: Process of Introduction of DevOps ... 269

If we consider the number of bugs reported in each quarter (Figure 8)

we will see that since the number of releases has grown, we can predict, with

the high likelihood, the number of found issues, so that we can plan the capac-

ity of the fire-fighting team. Predicting the bug fixing efforts lets to avoid dis-

tribution of the sprint.

Figure 8. Number of pre-live and live bugs

4.6. Feature improvements

We changed the processes as well as the architecture of our system to

support test automation and continuous integration goals. However, the trans-

formation is still unfinished. We recognised several improvements which

should or may be introduced to improve the process flow and shorten the de-

livery cycle. Some of the techniques like predictive analytics in software de-

velopment are being recognized as leading improvement factors in the near

feature [4].

(1) User Story estimation and risk assessment (predictive analytics).

Each user story could be described with several characteristics like story point,

product owner, development team, the number of tasks, business area,

270 Software Engineering: Improving Practice through Research

technical component, key user or keywords. Base on the project history we

would be able to build the analytic model which e.g. validates estimates or

predict the risk of potential defects.

(2) Version control improvement. SVN has several drawbacks. Despite

the fact we decided to keep only a few short living branches and keep the sin-

gle branch for the main development, we see that using SVN is not effective

and requires meaningful efforts for merging and code integration. Thus, we

consider migration to Git.

(3) Testing performance. Despite the fact that our test environment is

fully automated we see the need for faster feedback. In other words, we would

like to run the tests in parallel and scale the environments on demand so that

we would get results of full regression in one hour, which is crucial in case of

urgent fixes. One of the options would be the use of Docker [8] concept.

(4,7) Faster delivery of the application, pull instead of push approach.

One of the bottlenecks in the process is still the need for manual installation on

the pre-live and live environment. We would like to introduce Docker-based

installation and image registry. The registry stores Docker images and enables

their distribution, so that the business side could decide (pull instead of push

approach), whether the new version of the system should be introduced or not.

(5) Automatic user acceptance testing. We see that some of the user ac-

ceptance tests could be automated and provided in the test-first manner [18].

First probes showed that base on Behavioural Driven Development (BDD)

[24] and Cucamber [10], we were able to deliver business-oriented testing

framework, which in turn allowed writing tests by non-technical but business-

oriented experts.

(6) Software defect prediction (predictive analysis). Not all tests could

be executed manually, and not all test cases are identified because of the com-

plexity. Thus, we propose to introduce risk-based testing approach where risk

is a function of the probability of bug being found in the component or busi-

ness process. The likelihood of the defect in given functionality could be iden-

tified by the application of some of the software defect prediction techniques.

The first experiments conducted within the DePress [21] framework with the

use of the process and product metrics, as proposed in [20], are promising.

(7) Proactive monitoring (predictive analysis). All the failures and

events are stored in several log files. We think that some of the incidents (e.g.

 Experience Report: Process of Introduction of DevOps ... 271

memory problems) may be addressed in advance [30]. Thus, the central stor-

age of the logs and the continues analysis is required.

5. Conclusions

The impact of DevOps on the IT world shall not be underestimated.

Surely, not many of the companies that have a sizeable IT organisation are

willing to automatize their deployment pipelines completely or to build De-

vOps teams, but our paper shows, that even moderate changes to the software

development process in this direction bring measurable benefits, such as an

increase in quality and flexibility. The available publications show a tendency

to gain more and more market advantage to those who apply more and more

DevOps principles. Having the ability to react fast to quality drops and to de-

liver new functionality more quickly than the competition may be a differenti-

ating factor between staying in business or going bankrupt. There is still much

to do in this field, but by doing the first steps in this direction – preparing an

automated deployment pipeline, finding the new software architectures, refit-

ting our software development processes and organising the teams accord-

ingly, we make the push towards adopting the DevOps way on a broad front.

Acknowledgements

This work was supported by Capgemini Poland.

References

[1] Atlassian. Atlassian Documentation. https://conuence.atlassian.com, accessed:

May 10, 2016.

[2] K. Beck and C. Andres. Extreme Programming Explained: Embrace Change

(2Nd Edition). Addison-Wesley Professional, 2004.

[3] S. Bellomo. Architectural Implications of DevOps. Technical report, Carnegie-

Mellon University, 2014.

[4] M. Buenen and A. Walgude. World quality report 2015-2016, 7th edition. Tech-

nical report, Capgemini, Sogeti and HP, 2016.

272 Software Engineering: Improving Practice through Research

[5] L. Bass, I. Weber, and L. Zhu. DevOps: A Software Architect's Perspective.

Addison-Wesley Professional, 1st edition, 2015.

[6] L. Chen. Continuous delivery: Huge benefits, but challenges too. IEEE Software,

32(2):50-54, 2015.

[7] Chef Software. All about Chef. https://docs.chef.io/, accessed: March 1, 2016.

[8] Docker Inc. Docker Documents. https://docs.docker.com/, 2016.

[9] Caroline Donnelly. What the enterprise can learn from online marketplace etsy's

devops strategy. Computer Weekly, page 10, 2015.

[10] I. Dees, M. Wynne, and A. Hellesoy. Cucumber Recipes: Automate Anything

with BDD Tools and Techniques. Pragmatic Bookshelf, 2013.

[11] FindBugs. http:/_ndbugs.sourceforge.net/.
[12] J. Humble and J. Molesky. Why enterprises must adopt devops to enable con-

tinuous delivery. Cutter IT Journal, Agile Product Management & Software En-

gineering Excellence, 2011.

[13] A. Hendel, W. Messner, F. Thun, A. Hendel, W. Messner, and F. Thun.

Rightshore!: Successfully Industrialize SAP Projects Offshore. Springer-Verlag

TELOS, Santa Clara, CA, USA, 1 edition, 2008.

[14] P. Hodgson. Feature Toggles. http://martinfowler.com/articles/feature-

toggles.html, February 2016.

[15] J. Humble, Ch. Read, and D. North. The deployment production line. In: Pro-

ceedings of the Conference on AGILE 2006, AGILE '06, pp. 113–118, Washing-

ton, DC, USA, IEEE Computer Society, 2006.
[16] M. Httermann. DevOps for Developers. Apress, Berkely, CA, USA, 1st edition,

2012.

[17] C. Ladas. Scrumban – Essays on Kanban Systems for Lean Software Develop-

ment. Modus Cooperandi Press, USA, 2009.

[18] L. Madeyski. Test-Driven Development: An Empirical Evaluation of Agile Prac-

tice. Springer, Heidelberg, London, New York, 2010.

http://www.springer.com/978-3-642-04287-4.

[19] R. C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Pren-

tice Hall PTR, Upper Saddle River, NJ, USA, 1 edition, 2008.

[20] L. Madeyski and M. Jureczko. Which process metrics can significantly improve

defect prediction models? an empirical study. Software Quality Journal,

23(3):393-422, 2014.
[21] L. Madeyski and M. Majchrzak. Software measurement and defect prediction

with depress extensible framework. Foundations of Computing and Decision Sci-

ences, 39:249-270, 12, 2014.

[22] M. Majchrzak and L. Stilger. Experience Report: Introducing Kanban Into

Automotive Software Project. In Piotr Kosiuczenko and Michał Śmiałek, eds.,

From Requirements to Software: Research and Practice, Scientific Papers of the

Polish Information Processing Society Scientific Council, pp. 15–32. Polskie

Towarzystwo Informatyczne, 2015.

[23] M. Majchrzak, L. Stilger, and M. Matczak. Working with Agile in a Distributed

Environment. In Lech Madeyski and Mirosław Ochodek, eds., Software Engi-

neering from Research and Practice Perspectives, volume Scientific Papers of the

 Experience Report: Process of Introduction of DevOps ... 273

Polish Information Processing Society Scientific Council, pp. 41–54. Polskie

Towarzystwo Informatyczne, 2014.

[24] D. North. Introducing BDD. http://dannorth.net/introducing-bdd/, March 2006.

[25] Puppet Labs and IT Revolutionary Press. 2013 State of DevOps Report. Techni-

cal report, Puppet Labs, 2013.

[26] Puppet Labs and IT Revolutionary Press. 2015 State of DevOps Report. Techni-

cal report, Puppet Labs, 2015.

[27] Puppet Labs, IT Revolutionary Press, and ThoughtWorks. 2014 State of DevOps

Report. Technical report, Puppet Labs, 2014.

[28] PMD. http:/pmd.sourceforge.net/.

[29] Selenium Project. Selenium Documentation. http://www.seleniumhq.org/docs/,
March 2016.

[30] F. Salfner, M. Lenk, and M. Malek. A survey of online failure prediction meth-

ods. ACM Comput. Surv., 42(3):10:1-10:42, March 2010.

Authors and affiliations

Mark ASZTALOS

Department of Automation and Applied Informatics, Budapest University of

Technology and Economics, Hungary

asztalos@aut.bme.hu

Maciej CHMIELARZ

Stowarzyszenie Jakości Systemów Informatycznych, Warsaw, Poland

m.chmielarz@sjsi.org

Bartosz CHRABSKI

IBM Polska, Warsaw, Poland

bchrabski@gmail.com

Wojciech CICHOWSKI

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland

woj.cichy@gmail.com

Marta DĄBROWSKA

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland

Volvo Group, Poland

marta.dabrowska.2@volvo.com

Tomasz DERĘGOWSKI

Acxiom Corporation, Gdańsk, Poland

Tomasz.Deregowski@axciom.com

mailto:asztalos@aut.bme.hu

Tomasz GAWĘDA

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland

tomasz.gaweda@outlook.com

Andrzej GROSSER

Institute of Computer and Information Sciences, Czestochowa University of

Technology

andrzej.grosser@icis.pcz.pl

Jarosław HRYSZKO

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland

Volvo Group, Poland

jaroslaw.hryszko@pwr.edu.pl

Piotr JERUSZKA

Institute of Computer and Information Sciences, Czestochowa University of

Technology, Poland

piotr.jeruszka@icis.pcz.pl

Grzegorz KOCHAŃSKI

Smart4Aviation, Gdansk Science & Technology Park, Poland

grzegorz.kochanski@smart4aviation.aero

Piotr KONOPKA

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland

Volvo Group, Poland

piotr.konopka@volvo.com

Miłosz KURZAWSKI

Faculty of Management and Economics, Gdańsk University of Technology,

Gdansk, Poland

mkurzawski@zie.pg.gda.pl

mailto:piotr.jeruszka@icis.pcz.pl
mailto:grzegorz.kochanski@smart4aviation.aero

Piotr MAĆKOWIAK

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland,

piotr.mackowiakk@gmail.com

Lech MADEYSKI

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland

Lech.Madeyski@pwr.edu.pl

Marek MAJCHRZAK

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland (Chapter 9),

marek.majchrzak@pwr.edu.pl

Capgemini Poland (Chapter 16),

marek.majchrzak@capgemini.com

Michał MALINKA

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland

mmmalinkaaa1@gmail.com

Krzysztof MIŚTAL

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland

203298@student.pwr.edu.pl

Adrian NAJCZUK

Wrocław University of Science and Technology, Wrocław, Poland

najczuk@gmail.com

Ewa NESTOROWICZ

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland

ewa.nestorowicz@gmail.com

mailto:najczuk@gmail.com

Ziemowit NOWAK

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland

ziemowit.nowak@pwr.edu.pl

Cezary ORŁOWSKI

WSB University, Department of Information Technology Management,

Gdansk, Poland

corlowski@wsb.gda.pl

Agnieszka PATALAS

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland

a.m.patalas@gmail.com

Aneta PONISZEWSKA-MARAŃDA

Institute of Information Technology, Lodz University of Technology, Poland

aneta.poniszewska-maranda@p.lodz.pl

Adam ROMAN

Faculty of Mathematics and Computer Science, Jagiellonian University,

Poland

Stowarzyszenie Jakości Systemów Informatycznych, Warsaw, Poland

roman@ii.uj.edu.pl

Ferenc Attila SOMOGYI

Department of Automation and Applied Informatics, Budapest University of

Technology and Economics, Hungary

sf1026@hszk.bme.hu

Lucjan STAPP

Faculty of Mathematics and Information Science, Warsaw University of

Technology, Poland

Stowarzyszenie Jakości Systemów Informatycznych, Warsaw, Poland

l.stapp@mini.pw.edu.pl

mailto:ziemowit.nowak@pwr.edu.pl

Wojciech STĘPNIAK

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland

wojtek@niom.pl

Tomasz WALA

Capgemini Poland

tomasz.wala@capgemini.com

Artur WILCZEK

Faculty of Computer Science and Management, Wrocław University of Sci-

ence and Technology, Wrocław, Poland

Artur.Wilczek@pwr.edu.pl

Oskar WOŁK

Faculty of Computer Science and Management, Wrocław University of

Science and Technology, Wrocław, Poland

oskar.wolk@gmail.com

Patryk WÓJCIK

Institute of Information Technology, Lodz University of Technology, Poland

patryk.wojcik@outlook.com

Jolanta WRZUSZCZAK-NOGA

Faculty of Computer Science and Management, Wroclaw University of

Science and Technology, Poland

jolanta.wrzuszczak-noga@pwr.edu.pl

Artur ZIÓŁKOWSKI

WSB University, Department of Information Technology Management,

Gdansk, Poland

aziolkowski@wsb.gda.pl

Wiktor ZYCHLA

University of Wroclaw, Poland

VULCAN sp. z o.o., Wrocław, Poland

wzychla@ii.uni.wroc.pl

mailto:wzychla@ii.uni.wroc.pl

	Contents
	Preface
	I. Software Architecture and Modelling
	Chapter 1. Heterogeneous System Architecture in Education Management Software
	Chapter 2. Service-Oriented Architecture for Integration of Information Systems at Data Level
	Chapter 3. The Use of Web Services Architecture for Engineering Calculations Based on the webMES Platform
	Chapter 4. Designing a Data Warehouse for Changes with Data Vault
	Chapter 5.Toward Agile Data Warehousing
	Chapter 6. Performance Analysis of Web Application Using MySQL, MongoDB and Redis Databases
	Chapter 7. Merging Textual Representations of Software Models – a Practical Approach

	II. Software Maintenance
	Chapter 8. Software Metrics in Boa Large-Scale Software Mining Infrastructure: Challenges and Solutions
	Chapter 9. How to Improve Linking Between Issues and Commits for the Sake of Software Defect Prediction?
	Chapter 10. Defect Prediction with Bad Smells in Code
	Chapter 11. Postgraduate Studies on Software Testing in Poland
	Chapter 12. Data Flow Analysis for Code Change Propagation in Java Programs

	III. Agile Transformations
	Chapter 13. Trigger-based Model to Assess the Readiness of IT Organizations to Agile Transformation
	Chapter 14. The Reference Model of Tools Adaptation in the Perspective of Technological Agile Transformation in IT Organizations
	Chapter 15. Building Project and Project Team Characteristic For Creating Hybrid Management Processes
	Chapter 16. Experience Report: Process of Introduction of DevOps into Production System

	Authors and affiliations

