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From where we stand the rain seems random.
If we could stand somewhere else, we would see the order in it.

Tony Hillerman



Autorka sktada serdeczne podziekowania i wyrazy wdzigcznosci
dla Promotora dr hab. inz. Pawla Licznara, prof. nadzw. PWr

za cierpliwos¢, wyrozumiatos¢ i wsparcie okazane podczas pisania rozprawy.

Szczegolne podzigkowania kierowane sq rowniez dla MPWiK w Warszawie
za mozliwos¢ wykorzystania danych do celow naukowych

z unikalnej w skali Europy sieci 25 deszczomierzy.

Acknowledgements:

This doctoral dissertation was financed with the support from the Polish National Science
Centre (NCN) funds allocated on the basis of decision no. 2011/03/B/ST10/06338 as part of
the scientific project: Spatiotemporal analysis and modelling of urban precipitation field.

Precipitation data was provided by the Municipal Water Supply and Sewerage Company
(MPWIK m.st. Warszawa) in Warsaw, Poland.



Table of contents

TADIE OF CONTENTS ...ttt ettt s b ettt b e e st e n e e et e be s beebeebeene e s e et e besbesbeaneaneas 4
SUIMIMEBIY L.ttt r ettt bR b e E e bt e s s e e e bR R e R e e b e e s e e b e bt e Rt e R e e Rt e bt e e e e b n e b e bt b 5
IO 1) oo (0 o] o PO OO OO OO SO TSR 10
2. The aim and SCOPE OF the thESIS .....iiiiiiiccc e e e reereens 15
KT (- Tol T o] LA I 0] 0 ToT PR 17
3.1 PrecCipitation MEASUMEIMENTS.......ccviieieieieiesteste st steeee st este st e stesreste e e e e e eestestestesteeseeneeseessesressearensens 17
3.2 Error in precipitation MEaSUIEMENTS..........ccueiiiiieeeeieeiresesie e sieeteeee e e seeseestestesteeseeseeseeseeseesressessens 22

4. The rainfall data and the research field ..o 24
4.1 Warsaw Climatic CONAITIONS .......coiiiiiiieieieeie et sttt e e b e sresneeneas 24
4.2 Warsaw precipitation CONGITIONS .........cooiiiiiiiciie e 25
4.3 Guidelines for the location of precipitation stations in Urban areas............cccoevreneinenei e, 26
4.3.1 ODBSEIVALION SCAIES ....eveiuieiieiiite sttt ettt sttt sttt st e besbe bt e re et et sbesbesneeteenes 26
4.3.2 Classes Of rePreSENTALIVENESS . .......oiviiiiriiiitiiteiet sttt bbbt s 29

4.4 Warsaw rain gauge NEIWOTK ..........ccveiiiiieiie st te e e s e e e e sreesteeaeanseaneennee e 31

T - o = I T= o101 1 YR 36
5.1 Fractal QiMENSION ....c.eiuiiiiiiiiie ittt bbbttt sb bbbt e e st e e b e bbb e b 36
oI = To ) ol o ¥ o1 0T I3 111 T o SRS 38

B, IMIUITITIACTANS ...ttt bbbt et b bbbt bt bt e b e et et b e besbeebeens 39
6.1 Properties Of MUILITTACIAIS .........cceeiiie e 39
6.2 Classification Of MUIITIACAIS.........ccoiiieee e 42
6.3 Box counting method in MUItIFrACLalS ...........ccviiiiiiiiiie e 44
6.4 Spectral denSity GNALYSIS .....cviiiiriiiriiieire bbb 44
6.5 Functional boX-Counting MEtNOU............cuiiiiiiiiie e 46
6.6 Trace moment MEtNOT (TIM) ....ocuiiiiiiiirie ettt 47
6.7 Probability distribution/multiple scaling (PDIMS) .......cccoiiiiiniiiieeseese e 49
6.8 Double trace moment Method (DTIM) .....ccviiiiiieiice e sae s 49
6.9  Universal multifractal PArameLers .........c.oiieiieiieiece e nre e 50
6.10 HierarChiCal @NAIYSIS ........civiiieieeie ettt et e st e s te e te e te e teeseesnnesneenneenas 54
6.11 Universal mMUltifractal gENEIAtOr..........cccviiiiiicce et sae s 55
6.12 Evaluation of generated rainfall time SEIES ........ccceviiiiiie i s 57

7. RESUILS AN TISCUSSION ...ttt bbb bbbt e e e bbbt bt bt e b e et e b nb e be b ebeens 59
7.1 Functional boX-counting MEthOd............cuiiiiiiiiii e 59
7.2 SPECtral denSity GNAIYSIS .....cviiriiiiiriiieiirie bbb 65
7.3 Trace momMeNt MENOT (TIM) ....oiuiiiiiiiiiriee bbbttt 77
7.4 Probability distribution/multiple scaling (PDIMS) ..ot 80
7.5  Multifractal eXponent FUNCLIONS ..ot 82
7.6 Double trace moment Method (DTIM) .....ooviiiiiiciiee et sae s 87
7.7 Universal multifractal PArameLErS .........cviiiiiiiieece et re e nae e 93
7.8 Universal mMultifractal gENEIALOrS .........ccviiiiiieiecie e sre e sre e 98
7.8.1. Synthetic preCipitation tiMe SEFIES ........ciieiieice e sreesreenas 99
7.8.2. Evaluation of generated synthetic precipitation time SeriesS.........ccocevvveveiieiiesiee i 101

8. Summary and final CONCIUSIONS ........ccviiieiei ittt e st este e baesteesaeaseeas 118
9. LISt OF QPPENGICES ...ttt ettt b e et b bbb bbbt b b e bbb 121
IS Q) =] (T 1ot 122
ST OF WED PGS . ...ttt bbb bbb bbbt b bbbt 130
List OF fIQUIES ANd TADIES ......viieiiiicc ettt 131
List of Symbols and abbreViationsS ..........cooviiriiiiiiie e 135



Summary

Precipitation phenomena exhibit highly non-linear properties and strong intensity
differentiation across both spatial and temporal scales. The complex space-time distribution of
precipitation determines the course of the no less complicated phenomenon of surface runoff.
It is particularly visible in urban areas where, due to a large share of watertight surfaces, the
response of catchment to rainfall impulse is particularly violent. Rapid drainage of rain water
from sealing surfaces and its concentration in drainage systems results in increasingly
unfavorable phenomena of urban floods. In recent years, the frequency and extent of urban
floods and sewage overflows has been increasing in many cities in Poland and the world. The
reason for this is the rapid seal of urban surfaces and climate changes resulting in the
intensification of precipitation processes.

Solving the problems of urban floods and sewage overflows requires engineers to use a
modern hydrodynamic modeling workshop. According to current European sewage standard
EN 752, the application of computer simulation models within urban centers handled by
extensive and complex drainage systems is indispensable. However, the development of the
hydrodynamic model alone is not sufficient in executing the proper verifications, and access
to reliable precipitation data is required. There should be a locally-measured rainfall series in
high time resolution with the range of single minutes from a lengthy period of around 30
years of observation. Obviously, access to this class of precipitation data in Poland is very
limited. Moreover, in modern engineering practice, it is considered correct to model very large
urban drainage systems based on precipitation data from single rain gauges, often located in city
suburbs (e.g. airports). This raises questions and doubts. Firstly, how reliable is the use of data
from a single rain gauge? Are the frequencies of storm sewer overflows obtained from a series
of hydrodynamic simulations statistically correct? In the case of an absence of local observation
data, is it possible to generate synthetic precipitation data using random cascades? Finally, in
domestic conditions, can we use continuous and easy to set up generators based on the universal
multifractal model?

Accordingly, the subject of this dissertation is a comprehensive analysis of fractal and
multifractal properties of 1-minute precipitation data recorded on a unique nationwide
research field, in the form of a network of 25 electronic rain gauges, property of the
Municipal Water Supply and Sewerage Company (MPWIK) in Warsaw. Scaling properties,
precipitation intermittencies, and occurrences of extremes in the data series of individual rain

gauges for a time scale of 1 minute to over 11 days are investigated using a spectral density



analysis of the time series of rainfall intensity, functional box-counting method, trace moment
method, probability distribution/multiple scaling, and double trace moment method.

As a result, the universal multifractal parameters a, C1 and H (so called Lévy stochastic
variables) are estimated for all 25 rain gauges. Subsequently, the universal multifractal
parameters are subject to cluster analysis in order to identify groups of similar precipitation
gauges. Along these lines, the parameters derived for specific Warsaw rain gauges or clusters
of gauges displaying similarities, are used to generate synthetic precipitation series by means
of continuous universal random cascade models. The statistical evaluation is carried out of the
generated synthetic precipitation time series performed by comparing complementary
cumulative distribution function (P(R>r)) and the intermittency (Epo) calculated for synthetic
vs. observed time series. As a last step of research, a special filtering algorithm is proposed in
order to correct intermittency characteristics of synthetic precipitation time series.

Based on the performed studies, the time structure of the recorded Warsaw precipitation
time series is found to be a multifractal set characterized by scale-invariant behaviour over a
wide range of scales. Furthermore, it has been observed that the clear majority of Warsaw rain
gauges, except for two specific stations (airport and suburbs), have a distinct similarity of
multifractal properties of recorded precipitation series, manifested by similar values of
universal multifractal parameters a, C1 and H.

It has also been demonstrated that, for the first time in Poland, the universal continuous
cascades could be used in practice for generation of synthetic rainfall series of fine temporal
resolution for Warsaw. There is also a possibility of practical parameterization of the cascade
generator itself by only two multifractal parameters o and Ci. At the same time, the need to
use a filter algorithm to improve the structure of generated time series in terms of
precipitation intermittency has been noted.

In the summary, there exists a large potential of the developed continuous random cascade
models based on universal multifractal models in generating high-resolution precipitation
time series for purposes of urban hydrology.

Key words:
Rainfall time series, urban hydrology, scale invariance, intermittency, multifractal parameters,

universal multifractal model.



Streszczenie

Opady atmosferyczne charakteryzuja si¢ nieciaggtoscia i silnym zroéznicowaniem natezen
zarowno w skalach przestrzennych jak i czasowych. Skomplikowany czasoprzestrzennie
rozklad opadoéw determinuje przebieg nie mniej skomplikowanego zjawiska sptywu
powierzchniowego. Jest to szczegolnie zauwazalne na obszarach miejskich, gdzie przy duzym
udziale powierzchni nieprzepuszczalnych odpowiedz zlewni na impuls opadowy jest
szczegblnie gwalttowna. Szybki odptyw wod opadowych z powierzchni utwardzonych i ich
koncentracja w systemach odwodnienia skutkuje coraz czegsciej niekorzystnymi zjawiskami
podtopien 1 powodzi miejskich. W ostatnich latach mozna mowic¢ o zwigkszaniu si¢ czestosci
podtopien i powodzi miejskich, a takze zwigkszaniu si¢ ich zasiggu w wielu miastach
w Polsce 1 na §wiecie. Jako przyczyny tego procesu uznaje si¢ szybki proces uszczelniania
powierzchni miast oraz zmiany klimatyczne skutkujace wzmozeniem proceséw opadowych.

Rozwigzywanie problemow podtopien 1 powodzi miejskich wymaga od inzyniera
stosowania nowoczesnego warsztatu modelowania hydrodynamicznego. Zgodnie z aktualng
europejska normg kanalizacyjng EN 752, w obrgbie centrow miast obslugiwanych przez
rozlegle 1 skomplikowane systemy odwodnienia, nicodzowne jest stosowanie komputerowych
modeli symulacyjnych. Samo jednak opracowanie modelu hydrodynamicznego nie jest
wystarczajace, jako ze dla przeprowadzenia serii symulacji konieczny jest dostep do
wiarygodnych danych opadowych. Winny to by¢ lokalne szeregi opadowe o wysokiej
rozdzielczosci czasowe] rzedu pojedynczych minut, z dtugiego okresu rzgdu okoto 30 lat
obserwacji. W sposob oczywisty dostep do tej klasy danych opadowych w Polsce jest bardzo
ograniczony. Ponadto we wspolczesnej praktyce inzynierskiej przyjmuje si¢ za prawidtowe
modelowanie nawet bardzo duzych, rozleglych miejskich systeméw odwodnienia w oparciu
o dane opadowe pochodzace z pojedynczych deszczomierzy, czesto zlokalizowanych na
przedmiesciach miasta (np. na pobliskim lotnisku). Sytuacja ta rodzi pytania 1 watpliwosci. Po
pierwsze na ile wiarygodne jest stosowanie danych z pojedynczego deszczomierza? Czy
otrzymywane w wyniku serii symulacji hydrodynamicznych czestosci nadpietrzen kanalizacji
deszczowych sa statystycznie poprawne? Czy przy braku dostepnosci lokalnych danych
obserwacyjnych, mozliwe jest generowanie syntetycznych danych opadowych z uzyciem
kaskad losowych? Na koniec, czy mozna w warunkach krajowych stosowa¢ w praktyce
w tym celu ciggle i latwe w parametryzacji generatory oparte o uniwersalny model

multifraktalny?



W zwiazku z powyzszym, przedmiotem niniejszej rozprawy jest w pierwszym rzedzie
kompleksowa analiza wtasciwosci fraktalnych i multifraktalnych 1-minutowych szeregéw
opadowych zarejestrowanych na unikalnym w skali kraju poligonie badawczym, w postaci
sieci 25 elektronicznych deszczomierzy, nalezacych do MPWiK w Warszawie. Badania
wiasciwosci skalowych, niecigglosci opadow oraz wystepowania ekstremoOw w szeregach
opadowych z poszczegdlnych deszczomierzy przeprowadzono dla skal czasowych
odpowiadajacych czasom w przedziale od 1 minuty do 11 dni, z wykorzystaniem warsztatu
analizy widmowej szeregow czasowych nat¢zen deszczow, metody funkcyjnego zliczania
pudetek, metody prawdopodobienstwa/wielokrotnego skalowania, metody momentu $ladu
oraz metody podwdjnego momentu $ladu.

W wyniku cato$ciowej analizy otrzymanych wynikdw oszacowano uniwersalne parametry
multifraktalne o, C: i H (tzw. zmienne stochastyczne Leévy’ego) dla wszystkich 25
deszczomierzy. Zbior uniwersalnych parametréw multifraktalnych poddano analizie skupien
w celu identyfikacji grup deszczomierzy o podobnych wtasno$ciach. Uniwersalne parametry
multifraktalne charakterystyczne dla specyficznych deszczomierzy lub tez grup
deszczomierzy wykazujacych wzajemne podobienstwo, wykorzystywano do generowania
syntetycznych szeregdbw opadowych przy uzyciu uniwersalnych modeli cigglych kaskad
losowych. Jako$¢ generowanych szeregdw syntetycznych zostala zweryfikowana
statystycznie poprzez poroOwnanie wynikow obliczen komplementarnej dystrybuanty deszczu
(P(R>r)) oraz stopnia nieciggtosci (Ep0O) dla syntetycznych i zarejestrowanych szeregow
czasowych deszczow. Ostatnim etapem badan byta proba stworzenia specjalnego algorytmu
filtrujacego, w celu poprawy struktury syntetycznych szeregdw czasowych z punktu widzenia
nieciggtosci opadow.

Na podstawie przeprowadzonych badan stwierdzono, Ze struktura czasowa rejestrowanych
w Warszawie szeregow opadowych ma charakter multifraktalny i wykazuje niezmienniczo$¢
skalowg w szerokim zakresie skal. Zaobserwowano ponadto, ze zdecydowana wigkszos¢
deszczomierzy warszawskich za wyjatkiem dwoch specyficznych posterunkow (na terenie
lotniska 1 na przedmieSciach miasta) wykazuje wyrazne podobiefistwo wilasciwosci
multifraktalnych zarejestrowanych szeregéw opadowych, manifestujace si¢ zblizonymi
warto$ciami uniwersalnych parametrow multifraktalnych o, C1 i H.

W pracy zademonstrowano tez, po raz pierwszy w Polsce, mozliwo$¢ stosowania ciggtych
kaskad uniwersalnych do generowania syntetycznych szeregdéw opadowych o wysokiej
rozdzielczosci czasowej dla Warszawy. Odnotowano przy tym mozliwos¢ praktycznego

sparametryzowania samego generatora kaskady jedynie przez dwa parametry multifraktalne



a and Ci. Jednocze$nie zauwazono konieczno$¢ stosowania algorytmu filtrujgcego w celu
poprawy struktury generowanych szeregéw czasowych pod katem nieciggtosci opadow.
W podsumowaniu pracy stwierdza si¢ wysoki potencjat stosowania modeli ciggtych kaskad
losowych opartych o uniwersalne modele multifraktalne do generowania szeregow

opadowych o wysokiej rozdzielczo$ci czasowej do wykorzystania w hydrologii miejskiej.

Stowa kluczowe:
Szeregi opadowe, hydrologia miejska, niezmienniczo$¢ skalowa, niecigglto$¢, parametry

multifraktalne, uniwersalny model multifraktalny.



1. Introduction

From all the interrelated components of the hydrological system, precipitation plays the
most important role in the global meteorological cycle and has a great impact on everyday
life. The worldwide availability of surface and ground water depends on precipitation
variability, therefore an accurate estimation of precipitation changes in time and space is
crucial in hydrology. The analysis of precipitation for hydrological purposes is focused on
providing information in terms of long term average, that is, 30-year normal precipitation,
seasonal variability, inter-annual variability, i.e. the deviation of the annual values, and the
extreme values particularly useful for the prediction of flooding (e.g. real time monitoring),
drainage systems design, or model verification (hydrological modelling of catchments). The
latter is particularly subject to spatial variability that can influence the simulation of water
behaviours in catchment and sub-catchment responses (He et al., 2011b). The level of
accuracy of analysis results is strictly related to knowledge of atmospheric precipitations and
forecasting methods, thus the source of data and analysis techniques. Narkhedkar et al.
(2010), in their study, pointed that only a combination of different techniques of analysis
provides sufficient precipitation estimates, that is: observations from rain gauges and
satellites, together with a numerical model prediction lead to satisfactory analysis results,
even if with some (if not yet well understood) uncertainty.

Despite the increasingly wider application of hydrological modelling and precipitation
estimation using weather radar, these methods are still sources of uncertainties: hydrological
modelling is subject to error through model formulation, parameter estimation and model
inputs, while radar measurements are performed remotely and indirectly (Refsgaard et al.,
2007; He et al., 2011a), thus, rain gauge measurements are still considered the most reliable
point scale source of data, according to many authors (Lebel and Amani, 1999; Wang and
Wolff, 2010; He et al., 2011a). However, precipitation phenomena exhibit a high non-linear
variability in spatial and temporal scale, therefore the variability of both the surface and
duration (from minutes to several days) causes strongly irregular fluctuations difficult to
capture instrumentally, and even more difficult to describe mathematically (de Lima, 1998;
Kiely and Ivanova, 1999). For years, the random character of rainfall phenomena was ignored
and the only precipitation model assumed by engineers was of constant intensity.

Very often in hydrological modelling, the complex natural processes are simplified and
approximated: for instance, in hydrological modelling the generalization of rainfall

phenomena leads to an insufficient analysis of spatial and temporal resolution and an
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inadequate usage of rain data. This problem is particularly present in urban hydrology where,
due to changes in climate conditions (the increased frequency and intensity of heavy rainfall
events), and more rapid urban expansion, the increase of seal surface causes an increase of
surface runoff, (the soil absorption capacity is reduced) and specifically, an increase the load
of sewerage system (Berggren et al., 2011; Fletcher et al., 2013). Therefore, the
implementation of modelling as usual procedure of sewerage system design became
necessary. Yet, most of the already build rain water drainage and combined sewage systems
in Poland have been designed based on the Btaszczyk IDF (Intensity-Duration-Frequency)
rainfall model and the simple surface runoff calculation method (assuming constant intensity
rainfall in the catchments), reducing its value with the increasing outflow time, already
outdated and no longer recommended (Kotowski et al., 2010; Kazmierczak and Kotowski,
2012). Only for selected cities in Poland, computer based hydrodynamic drainage systems
models were developed and used for assessment of their hydraulic condition.

Practical motivation for the usage of hydrodynamic drainage systems models originates
mainly from the European standard EN 752:2008 ,Drain and sewer systems outside
buildings” (assumed Polish standard PN-EN:752). Computer based drainage system models
can be seen as contemporary engineering tools necessary for verification of the recommended
frequencies of acceptable drainage systems overtopping, in according to the European
standards. Especially for sewage systems covering large areas (over 2 km?), a real-time
modelling is recommended using software based on equations of slowly varying unsteady
flow for both surface runoff and the sewer conduits flow; this implies the application of
variable rainfall data in time and in space. Then, the modelled system outpouring has to be
verified by different rainfall scenarios at the input to the hydrodynamical modelling. In fact,
local rainfall data are required for verification of local results deriving from the model
simulations (Narkhedkar et al., 2010).

Commonly used rainfall data for verification are locally-measured intense multidecadal
(min 30 years) rainfall series or synthetic hyetograph of Euler type Il (Schmitt, 2007;
Kazmierczak and Kotowski, 2012; Kotowski, 2015). The former are very rare or rarely
available in Poland, whereas the use of simple and static synthetic hyetographs of Euler type
Il is in obvious conflict with the variability of rainfall hyetograph shapes and temporal
intensities observed in nature. Indeed, the main obstacle for proper hydrological modelling is
the lack of free access to relevant rainfall data by Polish designers (Kotowski, 2006; Licznar,
2008). In the past, prior to the exploitation of modern rain gauges (until 2007), the rainfall

data series had been registered mainly by pluviographs, whose results needed manual
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conversion to the digital format: even the reading of maximum rainfall events was tedious and
time-consuming (Licznar, 2005; Licznar et al., 2005; Licznar, 2009). Moreover, the access to
“raw” high-resolution rainfall intensity data was (and still is) mainly reserved for authorized
persons from the Polish Institute of Meteorology and Water Management. Similarly, local
rainfall monitoring systems dedicated to urban hydrology are still rare and usually under
development. In case of lack of any (available) multiannual local data, Polish designers tend
to build their analysis on rainfall time series from (single) rain gauges located outside the city
centres, usually at airports—where the best location conditions recommended by World
Meteorological Organization (WMO) are met by modelling even large urban sewage systems
without regard to the variability of rainfall on urban precipitation field.

Similar consideration is given to synthetic hyetographs, mainly on Euler type Il, commonly
used in Germany, and widely used by Polish designers. In a recent study, Licznar and Szelag
(2014) analysed over 400 Warsaw registered rainfall events of a time duration of up to 420
minutes, and stated that the model precipitation of Euler type Il significantly deviated from
the registered time series in almost every case, and the synthetic hyetograph was strongly
inconsistent with the shape of the registered hyetographs. Moreover, it follows that the
application of Euler type Il rainfall for time series longer than 180 minutes is senseless.
Consequently, we need to answer the arising question of whether in the design of urban
sewage system only one set of data is suitable for modelling purposes and is able to reflect the
spatial and temporal variability of rain. And finally, if no recorded data is available, is it
sufficient to use in simulations the defined model precipitations like Euler type 11?

A better understanding of the precipitation field, especially improving precipitation
modelling tools, is one of the most important tasks of modern hydrology, which so far does
not take into consideration the variability of the urban precipitation field, (Licznar, 2009;
Dzugaj, 2014). The requirements of rainfall data for purposes of urban hydrology are different
from those of natural catchments (Schilling, 1991). Urban hydrology requires high temporal
and spatial resolution rainfall time series that are only dedicated to this only purpose gauging
networks can provide (Niemczynowicz, 1999; Berne et al., 2004; Bruni et al., 2015). In terms
of numbers Emmanuel et al. (2012) defined the adequate spatial resolution of urban filed as a
maximum distance of 6.5 km between rain gauges for light rain events and 2.5 km for
showers, while Berne et al. (2004) developed a mathematical relation between the temporal
and the spatial resolution of rainfall for urban applications and, for a catchment of about 100
km?, defining the required spatial resolution as 5.2 km and the temporal resolution of 12

minutes. Interestingly, if the temporal resolution is sufficiently high (<5min) for catchments
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of areas greater than 1 km? a distance between neighbouring rain gauges of 1 km is
satisfactory (for drainage areas up to 8.7 km?) (Ochoa-Rodriguez et al., 2015).

The variability of precipitation fields is of particular importantance in the implementation
of global Real Time Control (RTC) of urban drainage systems (UDS), currently under
implementation in many European cities as an effective method for controlling urban
wastewater and stormwater systems (e.g. Vezzaro et al., 2014; Viessman et al., 2014). Such
systems take advantage of the precipitation field variability, whose description affects the
optimization of water retention inside the system itself (Licznar et al., 2005). As for 2010,
many European rain gauge networks had already been employed as part of the RTC (e.g. in
Barcelona (Spain) a network of 24 rain gauges, in Marseille (France) with 24 rain gauges and
Vienna (Austria) with 25 gauges (Thames Tunnel Needs Report Appendix B, 2010)).

In Poland, the lack of appropriate data necessary for modelling sewage systems resulted in
the implementation of a local precipitation measuring network in many urban catchments.
Gauge networks of L.6dz, Gdansk or Wroctaw are worthy of notice, but special attention is
given to Warsaw, where from 2008 one of the biggest monitoring systems in Europe is in
operation, and for the first time in Poland a local rain gauge network focused on gathering
input data for hydrodynamic modelling combined with the monitoring of filling and flows
levels within sewers has been created (Licznar, 2009).

The probabilistic evaluation of the urban drainage efficacy and degree of retention of
overloaded systems required by the European guidelines, can be performed only on the basis
of multidecadal (at least 20-30 years) high temporal resolution time series (up to 10 minutes)
(Licznar et al., 2015). The implementation of urban rain gauge networks would allow in the
future for a wider access to high resolution time series necessary for hydrodynamic
modelling; nevertheless, such data is necessary at present. Currently available computer
technologies and development of applied mathematics lead to a conceptual and mathematical
modelling of precipitation focused on the improvement of the input data to local simulations
such as synthetic rainfall events (Llasat et al, 2007). Effectively, to reflect the actual
conditions in modelling, the random nature of rainfall has to be implemented in urban
analysis. Such a purpose can be reached by using synthetic data randomly generated, e.g. by
the multiplicative random cascade models focused on rainfall disaggregation of coarse daily
rainfall to higher resolution by models conserving mass at each branch (microcanonical
cascades) or not conserving mass (canonical cascades) (Licznar et al., 2011a; Licznar et al.,
2011b; Rupp, 2012; Licznar and Szelag, 2014). Multiplicative random cascades belong to a

general type of fractal and multifractal cascade model which is simpler and characterized by
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fewer parameter than the remaining two types: autoregressive and point-process models
(Veneziano et al., 2006; Rupp et al., 2012). For the first time in Poland, such an approach has
been proposed as a method of analysis of the Wroctaw precipitation field by Licznar (2009).
As a result, the developed microcanonical random beta-normal cascade enabled the temporal
variability and intermittency of rainfall data for time scales from about 24 hours up to 5
minutes. The statistical parameters of the obtained generated synthetic time series are
consistent with the parameters of the observed data. Similar results were achieved by Gorski
(2013) for a rainfall time series from Kielce (Poland) and Licznar et al. for four German cities
(2011b).

Notwithstanding, a basic characteristic of microcanonical random cascade models requires
a large number of parameters that has to be estimated at each level of cascade. An alternative
claimed by many authors (de Lima, 1998; Schertzer and Lovejoy, 1987, 1989) is the approach
of the universal multifractal generator limited by only 3 parameters for the whole hierarchy of
scales.

The principle of the already mentioned fractal and multifractal theory, subject of the
present dissertation, is the invariance of properties across scales that is believed to be the
hidden principle of hydrology (de Lima, 1998). Advances in mathematics and computer
science also enabled the developing of scaling theories, according to that of which a natural
event is scale-invariant if its features are independent of scale. The quantification of this
scale-invariance is given by the scaling rules (power laws) described by scaling exponents. In
modern math, the generalization of scaling properties of a process is possible using the fractal
and multifractal theory as an alternative to the classical Euclidean approach for all the
phenomena that do not “fit” into traditional rules. Fractal theory deals with simple scaling,
while multifractal theory is described by an infinity of scaling exponents. The strongest point
of this geometry is the minimum number of parameters needed to describe complex natural
phenomena, like turbulence, cloud formation, earthquakes, or finally, rainfall precipitation (de
Lima, 1998; Schertzer and Lovejoy, 1993).

The fractal and multifractal analysis of rainfall is not well known in Poland. Yet, first
attempts of its application to Polish rainfall time series performed by Licznar in Wroctaw,
Gorski in Kielce and by the author in Warsaw, as is demonstrated, provided promising results

to a wider application of such methods in many applications of urban hydrology.
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2. The aim and scope of the thesis

The aim of the present study is to contribute to a better understanding of the non-linear
variability of rainfall by analysing the precipitation time series in terms of the scale-invariant
and multifractal behaviour present in precipitation data, originating from the biggest Polish
urban precipitation field. The study uses point-rainfall data retrieved from a network of 25
recording rain gauge situated in Warsaw (Poland) providing high resolution data for over
2 years. The registered precipitation time series are subject to multifractal investigation based
on spectral analysis and analysis of scaling of probability distributions and statistical moments
of rainfall intensity. Based on the multifractal geometry methods, the universal multifractal
parameters for all the rain gauge data are determined to characterize the statistical properties
of multifractal processes.

Special attention is therefore given to the universal multifractal model, based on Lévy
random variables, under which a universal multifractal generator is created, to generate
synthetic 1-minute precipitation time series for Warsaw data. The final step is focused on the
determination of statistical features of the generated data and their comparison to the statistics

of the recorded time series.

The following statements have been hypothesized:

I. Rainfall (temporal) structure varies within a precipitation field of a large city.
I1. Due to this, the multifractal characteristics of the local rainfall series recorded at different
rain gauges, that is: intermittency, scales, and extremes are subjected to significant

variation.
The conducted studies are additionally aimed to determine whether:

1. inalarge urban filed, properties such intermittency and scaling are variable;

2. the Warsaw rainfall time series exhibit multifractal characteristic;

3. it is possible characterize multifractal behaviour of rainfall series from Warsaw by a
simple set of universal multifractal parameters;

4. the universal multifractal model based on universal parameters can be a practical tool
for generating synthetic rainfall series;

5. it is possible to somehow impose intermittency observed in natural precipitation into

synthetic series generated by continuous universal multifractal model.
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Outline of the dissertation

The dissertation is divided in chapters and sections as follows. Chapter 3 is focused on a
brief review of type of precipitation measurements and the description of the most common
errors encountered in precipitation monitoring. In Chapter 4 the analysed precipitation field of
Warsaw (Poland) as well as the Warsaw climatic and precipitation conditions are presented.
In addition, guidelines of the proper location of urban precipitation monitoring stations are
reported, based on which the analysis of Warsaw gauges recording conditions is discussed. In
Chapter 5, the concept of the fractal geometry is introduced and the need of using fractal
dimension is clarified, and the basis of simple fractal analysis of sets that is the box-counting
method is described. Chapter 6 is dedicated to the assumptions and motivations of multifractal
geometry, the description of multifractals is presented, and the multifractal analysis
techniques are reviewed to finally obtain the full description of the universal multifractal
parameters upon which the universal multifractal generator is constructed. The results and
discussion are presented in Chapter 7 and the final conclusions are described in Chapter 8.
Furthermore, the references, list of symbols and abbreviation used in the text, as well as all

the attachments are found at the end of the dissertation.
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3. Precipitation process

The interactions occurring between the atmosphere and ground surface are essential for the
circulation and distribution of the water in the Earth system. In hydrology, intended as the
science studying the global water balance, both in temporal and spatial scale, as in many other
earth sciences, the water cycle plays a significant role also as a basis for hydrological
investigation. Besides the biological and chemical processes, the water cycle is defined by the
physical interactions between the atmosphere and the surface water, among which
precipitation and evaporation are the most important.

The formation of precipitation is roughly related to the processes of evaporation, when
moisture is released into the atmosphere; condensation, when moisture is lifted from the
atmosphere to the troposphere by convection; convergence of air mass; and the falling down
onto the ground surface by precipitation of rain or snow. Briefly, three basic stages of
precipitation formation are defined: 1) occurrence of saturation conditions, 2) phase change
from vapour to liquid/solid state, and 3) formation of water/ice crystal droplets to precipitable
size (Eagleson, 1970; Chow et al., 1988).

The conditions encouraging the formation of precipitation are related directly to the local
patterns of atmospheric circulation and the ground surface. The geographical position such as
latitude, altitude, topography, distance from mountains and moisture sources, and local feature
like: wind intensity, wind direction with the consequent air masses movements, relative
temperature of water and ground, affect the spatial and temporal variability of precipitation
(Eagleson, 1970; de Lima, 1998).

3.1 Precipitation measurements

Recent developments in precipitation measurement techniques have led to the replacement
of conventional (manual) rain gauges, focused to measure the precipitation intensity (defined
as the amount of precipitation, collected per unit time interval, WMO-No. 182) as a secondary
parameter deriving from precipitation amounts, to automatic ones, throughout the integration
of recorded intensity within a time interval, in order to obtain the rainfall intensity as a
primary quantity. In 2001, during the Expert Meeting on Rainfall Intensity Measurements,
recommendations concerning standardization of rainfall intensity measurements were
formulated. Among others, a time resolution of 1 minute for output averaging time and the
range 0.02 to 0.2 mm-h! as reporting ‘rain detected’ (Lanza et al., 2005). Snow measurement

is possible in rain gauges as well, after the snow melting by providing a melting agent to the
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gauge (Viessman and Lewis, 1996). In this dissertation, the term rain gauge is used to
identify both snow and rain measuring instruments.

A variety of methods have been developed to measure precipitation mainly due to a high
variability in time and in space of the phenomena. It is possible to access point type data from
rain gauges or network of rain gauges or spatial rainfall data originating from remote sensing
by ground radar or by satellites. An example of remote sensing device is presented in Fig. 3.1,

where an X-band weather radar is visible.

Figure 3.1. Remote sensing X-band weather radar

In ground observations, besides the distrometers and radars, the most common and useful
measurement instruments are gauges, also considered in precipitation as a source of reference
data (Tapiador et al., 2012). The rain gauges are classified into non-recording, (i.e. standard
gauge — Hellmann, or storage gauge Fig. 3.2) and recording types (i.e. tipping-bucket gauge,

float gauge or weighing gauge).

Figure 3.2. Hellmann rain gauges

The first type of gauge is designed for a daily, weekly, monthly or even seasonal reading.
The construction consists of a cylindrical vessel (container) provided with or without a funnel
through which the rainfall from the collector above it passes into the container. The rainfall
depth is defined usually by a calibrated measuring stick. The results readings have to be
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performed manually at regular time-intervals. The recording rain gauges allow continuous
recording measurements of precipitation and depending on the type, can provide a high and
well defined temporal resolution of the data.

Tipping-bucket gauges generate an electrical signal after reaching a certain depth defined
by the bucket capacity. Under the funnel, each rain gauge is equipped with a pair of triangular
reservoirs (buckets) on a rotation shaft (visible on right in Fig. 3.3). During a rainfall, after
one is filled up, the bucket tips and pours out the water into the drain cylinder and releases a
signal. The rain then continues to fall into the second bucket. In this manner, the tipping of the
buckets provides a measure of rainfall intensity and the results are registered by an

electromagnetic recorder.

Figure 3.3. Tipping-bucket rain gauge. From the outside (on left) and from the inside (on the right)

These kinds of instruments are the most common, nevertheless they are characterized by a
high underestimation of heavy precipitation, i.e. because of the small collection area and the
relatively slow recording, and neither they are not suitable for light or solid precipitation due
to a high evaporation rate, clock drift, or the necessity of snow melting to log the signal
(\Vasvari, 2005; Tapiador et al., 2012). In addition, their long-term usage requires systematic
maintenance and calibration. An example of tipping-bucket gauge calibration installation is
given in Fig. 3.4. (Licznar et al., 2013).

19



Figure 3.4. Measuring set used to rain gauge calibration at IIHR — Hydroscience & Engineering laboratory,
lowa State University (USA) (Licznar et al., 2013)

Siphon rain gauge (Fig. 3.5) operates on a pen provided with a floating element that
moves upward as the level of water in the storage tank rises, and records the water amount on
a chart. When the level equivalent to a fixed amount of water is reached, the rainfall is drained
by a siphon into a collecting jar placed below the storage tank. On the graph, the amount from
0 to a fixed maximum is registered. When the rainfall stops, a horizontal line is traced (sample

chart visible in Fig. 3.6).

i "%W

Figure 3.5. Siphon rain gauge in field (on left) and (on right) the inside elements. From the top: the funnel,
the recording pen, the floating element and the siphon
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Figure 3.6. Sample pluviograph chart obtained by a siphon rain gauge recording

The modern weighing-type rain gauges (exemplary weighing rain gauge in Fig. 3.7) are
less common and measure the weight of precipitation collected in a vessel. The increase of the
deposited weight (measured by a strain-gauge bridge — Fig. 3.8) is converted into a cumulated
precipitation recorded in time. The lack of a funnel at the entrance of the gauge orifice,
required for previously described tipping-bucket and siphon gauges, allows to record different
types of precipitation, e.g. liquid precipitation (rainfall), solid precipitation (snow, graupel) or
mixed precipitation (sleet). For all the above-mentioned types of precipitation, weighing type

rain gauges are capable of recording the intensity of liquid water content.

Figure 3.7. A MPS Systém weighing-type rain gauge
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Figure 3.8. The strain-gauge bridge of an electronic weighing-type rain gauge

However, these types of instruments are unable to recognize the rainfall type (snow or
rain). Nevertheless, the weighing rain gauges were found to be the most accurate instruments
for 1-minute rainfall intensity measurements with a good dynamical stability and short step
response in comparison to other types of gauges (for further discussion see Vuerich et al.,
2009). Additionally, such devices could be easily provided with telemetry systems useful to a

real-time monitoring purposes.

The guidelines for the location of precipitation stations in urban areas are described in
Section 4.3, and the weighing rain gauges of TRwS type, as well as the phenomenon of step

response error, are described in detail in Section 4.4.

3.2 Error in precipitation measurements

The rain gauge measurement errors depend mainly on their source. Usually they can be
classified as (i) systematic and (ii) random type of errors. Systematic errors (i) have been
relatively well established and are mainly due to instrument imprecisions or the
environmental influence on it. Studies about the identification and quantification of
systematic errors have been conducted by analysing: wind and turbulence undercatch,
evaporation and wetting or splashing losses, calibration effects, the effect of drop size, and
wind speed on rainfall measurement as well as the occurrence of relationship between error,
intensity and timescale of rainfall, or the existence of mechanical errors affecting the
assessment of duration of short and high intensity events (Habib et al., 1999; Nespor et al.,
2000; Molini et al., 2001; La Barbera et al., 2002; Ciach, 2003; Testik and Gebremichael,
2010).
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The other less known types of discrepancies are defined as ‘local random errors’ (ii) and
are caused by unpredictable changes, ether in instruments or in environmental data recording
conditions. Studies conducted by Habib et al. (2001) and Ciach (2003) on tipping-bucket rain
gauge measurements show a significant occurrence of such errors at short-time rainfall scales
up to 10-15 minutes and a strong dependence of error from rainfall intensity, timescales, and
the way of data collection and processing.

However, the impact of measurement errors on the investigation results have not yet been
precisely quantified. Such an error, omitted in practice, may affect significantly the extremes
rainfall statistics of high resolution precipitation measurements, required for hydrological
purposes (Lanza and Vuerich, 2010). Despite this, it is a very common practice to transfer
rainfall data to large areas collected from sparsely distributed point gauges based on a
quantitative estimation of the spatial variability of the precipitation field—rain gauges still
remain the largest source of acquisition of observational precipitation data, mainly providing
data for emergency flood alerts or to the calibration of radar rainfall measurement algorithms
(Habib et al., 2001; Ciach, 2003; Tapiador et al., 2012).

A possible solution nowadays to minimize an eventual measurement failure and to improve
the quality of measured data is to increase the number of rain gauges at measurement stations

to at least two units, in case of relatively cheap tipping-bucket rain gauges, as shown in Fig.

3.9, where a pair of Hellmann rain gauges is presented (Ciach, 2003 and further reference).
—

Figure 3.9. Tipping-bucket rain gauges

Eventually, an even better solution is to supplement the old type siphon or tipping-bucket
rain gauge, subjected to numerous limitations and errors, with the modern, more precise and
easier in practical use, namely the weighing type gauges. In the following chapters, one of the
biggest monitoring systems in Europe—the rain gauge monitoring system in Warsaw

(Poland)—is described as a research field for complex multifractal analysis.
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4. The rainfall data and the research field

Warsaw city is located in the east-central part of Poland in the heart of the Masovian Plain.
The city is divided north to south diagonally by the middle reach of one of the major Polish
rivers: the Vistula (Wista) River. The city is divided in two parts: the left bank, situated
almost entirely in a moraine upland (Warsaw Plain), and the right bank, covered by the river
valley (Vistula Valley). The boundary of both units is determined by the Warsaw
Embankment, one of the most important factor of the natural environment of the city. It
extends for almost 31 km along the city and constitutes the main element of the city
ventilation system, controlling the direction of the winds discharging pollutants, and
supplying clean air to Warsaw. The Vistula River is characterized by a low water level in
autumn and early spring water saturation. The average annual vertical water level fluctuations

reach 4-5 m, and extremely exceed 7 m (Pawlak and Teisseyre-Sierpinska et al., 2006).

4.1 Warsaw climatic conditions

The Warsaw agglomeration is characterized by a transitional-temperate climate where the
clashing continental and Atlantic masses cause frequent weather changes throughout the year.
For almost 8 months the polar-marine mass dominates, meaning that for nearly 3 months the
climate is formed by the continental mass, and the arctic climate prevails for one month in the
year. Even more rarely Warsaw is influenced by the dry hot and tropical mass. The average
annual amount of solar radiation in Warsaw is 3538 MJ/m?. The average annual air
temperature in Warsaw is 8.2°C. The coldest month is January (average temperature of
approx. -2.0°C) and the warmest is July (average temperature is 18.0°C) (Ptazewski, 2014).

In Warsaw, from the second half of the 20" century, a decreasing trend of winter
temperature has been noted, especially in the downtown area, where the temperature increase
is more pronounced. This behaviour is explained by the phenomenon of ‘urban heat island’
which predominates in compact construction and artificial surfaces. In this area, an increased
air temperature compared to the surrounding areas is observed as a result of changes in
radiation balance, differences in urban and non-urban thermal conductivity and heat capacity,
as well as higher emissions of artificial heat and air pollution in this part of the town (Pawlak
and Teisseyre-Sierpinska et al., 2006; Ptazewski, 2014; Kicinska and Wawer, 2014). Peng et
al. (2012) analysed 419 cities all over the world, including Warsaw, in terms of the diurnal
and seasonal variation of the heat island intensity. They found that for 56 analysed cities in

Europe the annual daytime heat island effect is higher than during the night. Furthermore, its
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intensity is more pronounced in winter than in summer and, interestingly, the greener the city,
the smaller the urban heat island effect, which underlines the importance of vegetation in

large cities.

4.2 Warsaw precipitation conditions

The average total yearly precipitation for Warsaw, recorded by the meteorological station
Warsaw-Okecie and based on the observation for the 30-years period from 1971 to 2000,
amounts to 519 mm. Whereas for the years 2001-2010 this value is slightly increased and
amounts to 571 mm. The lowest average monthly precipitation values for the years 1971-2010
are recorded in winter months (Tab.4.1): in January and February (25 mm) and in transitional
periods: October (30 mm) and March (31 mm). The highest values are noticed in summer
months: July (76 mm) and June (65 mm) (Koztowska et al., 2013).

Table 4.1. Monthly precipitation in Warsaw for years 1971-2012 (Koztowska et al., 2013)

Years Monthly precipitation in mm
(for Warsaw—Okecie) | 1 Il [\ \Y VI VI | VI IX X XI XIl
1971-2000 22 22 28 35 51 71 73 59 49 38 36 34
2001-2010 34 34 39 22 60 48 84 22 33 5 29 81
1971-20102 25 25 31 32 53 65 76 50 45 30 34 46

a own elaboration

During the meteorological winter, defined as a three-month period from the beginning of
December to the end of February, in the period range from 1965 to 1995, on average, the
coldest month was January (-2.6°C, 12 snow days) followed by February (-1.6°C, 10 snow
days) and December (-0.6°C, 10 snow days). The average number of snow days ranged from
19 days in 1990 to 50 days in 1968. Additionally, it is noticeable that the winters grew milder
and shorter in the described 1965-1995 period (Ptazewski, 2014).

The Warsaw area is dominated by the west winds (W — 25.0%), but there are also present
northwest winds (NW — 10.7%) during warm seasons and the southwest winds (SW — 10.5%)
during the cold seasons. The North (N — 7.2%) and Northeast winds (5.9%) are the least likely
to occur. The urban area hampers the dynamic movement of air masses and it is also a source
of condensation nuclei which contributes to increase the total amount of precipitation. The
spatial distribution and the amount of precipitation in the city is varied: in central parts the
annual rainfall precipitations are lower than in the western districts. Similarly, the wind speed
in the city centre is 60% lower than speed of the open suburban spaces.

The Warsaw ventilation system is made of an external system, where the movement of air
takes place by city sectors depending on the overall air circulation, and the internal local air
circulation resulting from the type and arrangement of the buildings, road network system and
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the distribution and size of green areas. The range of the internal ventilation system coincides
roughly with the range of occurrence of Warsaw heat island (Pawlak and Teisseyre —
Sierpinska et al., 2006). From a comparison between a rural station in Warsaw-Okecie
(situated near the airport, on the suburbs) and an urban one in Warsaw-University station
(located on the left bank of Vistula River), a clear change in wind directions and speed is
visible. The wind speed in the city centre is not only decreased on an average of 55%, but also
deviated to the left by about 22.5°, which is consistent with the Vistula Valley, lying on the
SE-NW direction, and the main city streets (WSW direction). It is therefore concluded that
the Warsaw wind is significantly impacted by urban buildings (being an area of increased
roughness), and by the Vistula River valley (and it proximity to the University measurement
station), as an important element of the terrain (Kossowska-Cezak and Bareja, 1998).

4.3 Guidelines for the location of precipitation stations in urban areas

Crucial factors determining the appropriate parameters to adopt in setting an urban station
are the spatial-temporal scale and the classes of representativeness of a device. Both these

factors are characterized below according to WMO guidelines.
4.3.1 Observation scales

During the precipitation data recording, the portion of the surroundings only ‘visible’ to the
sensor therein placed—called ‘source area’—depends on the sensor height and the recording
circumstances. In addition, many disadvantageous events can cause measuring interferences
(Oke, 2006). In accordance to the WMO guidelines the attention is drawn, among others, to
four different groups of phenomena (Nespor et al., 2000; Oke, 2006; Tapiador et al., 2012;
Licznar et al., 2013; Pollock et al., 2016):

1. the ‘rain shadow effect’, meaning the interception of rain out of its trajectory of falling
to the ground by the obstructing elements like trees or buildings;

2. the splashing of rain drops, due to the presence of sealed surface in the device
surrounding as well as hanging objects above the gauge like tree fruits of leaves, likely
to fall inside;

3. the urban canopy layer (UCL) as complex wind layer depending on the mean height of
the main roughness city elements like buildings or trees, only wherein the vertical
exchange occurs;

4. the air turbulence caused by wind gusts and the presence of the rain gauge itself, that

may interfere with the proper amount of the recording rain.
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The guidelines (WMO No 8, 2012) determine also three different urban scales defined as
follows: the microscale (Fig. 4.1c) where it is possible to catch the city microclimate features,
usually reflecting the local conditions and having a great impact on the measurement, the
local scale (Fig. 4.1b)—the climate monitoring meteorological instruments are designed for—
and the mesoscale (Fig. 4.1a), whose features are not capable of being represented by a single

urban station.
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Figure 4.1. Scheme of climatic scales and vertical layers found in urban areas: planetary boundary layer
(PBL), urban boundary layer (UBI), urban canopy layer (UCL), rural boundary layer (RBL)
(from WMO No. 8, 2012)

Meteorological measurements, including the rainfall precipitations, are mainly performed
inside the local scale, especially in the urban canopy layer, which is given by the height from
the ground to the main roughness elements of the city. Herein, all the isolated microclimatic
effects formed in microscale close to the source, are mixed and calmed by the turbulent local
winds. In this way, the local climate is influenced by the blending effect, both horizontally, up
to a few hundred meters, and vertically, where it persists in the roughness sublayer (RSL),
from the ground up to the so-called mixing height. A precipitation recording device, focused
on investigating the intra-urban patterns, has to be placed below this level to record the local
environment of the gauge. Furthermore, in urban areas, due to the heat island effect, large
roughness and stability condition, an additional height restriction arises: each local scale
surface type is delimited by an internal boundary layer, whose height depends on the distance
upwind to the borders of distinctly different surface type (i.e. fetch distance). By analogy, in

27



rural areas, where the heat island effect and surface roughness is lower, the surface type’s
boundaries are further apart, the fetch distance is higher and the internal boundary layer is
greater. If the source area is not sufficiently uniform, the provided data cannot be local
representative (Oke, 2006; Licznar et al., 2014). In practice, for precipitation measurement,
the standard is that the obstacles should be no closer to the rain gauge than two times their
height.

To reflect the meteorological measurement in the mesoscale the use of many instruments is
required. In case of rainfall, the most common solution is to install a rain gauge network. In
such a case the locations affected by microscale climate conditions should be excluded.
Therefore, the location of the gauges in open spaces or nearby sharp-edged buildings should
be avoided. High variable or even turbulent wind activity in UCL or RSL fields can be more

dangerous than in case of natural obstacles (Fig. 4.2).

Figure 4.2. 2-D flow around a building with flow normal to the upwind face (a) stream lines and flow zones;
A -undisturbed, B - displacement, C - cavity, D — wake and (b) flow, and vortex structures (from
WMO-No. 8)

Considering all the above, it is recommended in urban areas to collocate the measurement
devices like rain gauges in places where the standard exposure conditions on the ground are
met, i.e. playgrounds, open parks with low density of trees, urban airports, etc. The best
places to install rain gauges are those surrounded by trees, brushwood and bushes or other
barriers against the wind. The less preferred option is to collocate the rain gauge on a roof-
level. In such locations, greater than normal wind speed and hence a greater error of
estimation than on the ground surface occurs, therefore a conjunction with the wind

instruments is necessary, to provide rain gauge output corrections (Oke, 2006).
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4.3.2 Classes of representativeness

The general guidelines for meteorological instruments and observations, WMO No. 8,
indicate as preferred observation station for rainfall data a secured fenced area with
dimensions of approximately 10x7 m, a device placed at a distance of min. 3 m from the
fence and the surrounded area overgrown with regularly moved lawn. The rain gauge orifice
should be place at a certain height of the range between 0.5-1.5 m above the terrain—in
Poland it is set 1 m above the ground level.

Furthermore, the usage of automatic recording precipitation gauges is recommended to
provide better time resolution and reduction of evaporation and wetting losses in comparison
to the manual ones. Particularly, from among three types of automatic rain gauges (the
weighing-recording type, the tipping-bucket type, and the float type), only the weighing type
is suitable for all kinds of precipitation measurements (both rain and snow). The output of
such a device is an electronic signal, recorded continuously, being proportional to the input
quantity. Normally, such types of gauges are not designed for emptying themselves
automatically, so the capacity of maximum accumulation of a recording gauge given by the
size of the internal container, is usually at the range at least comparable with annual
precipitation total.

In order to take into account the environmental operating conditions of the devices, which
often distort the results and have impact on their representativeness especially in larger spatial
scales, for meteorological probes (including the rain gauges) the concept of classes
determining the representativeness of the data location is introduced by the above-mentioned
guidelines (WMO No 8, 2012). These are defined below:

Class 1, meets the following (optional) requirements (Fig. 4.3 and Fig. 4.4):

e Flat, horizontal ground, surrounded by open space, slope less than 1:3 (19°). The rain
gauge surrounded by constant height obstacles under elevation angle between 14° and
19° (the obstacles situated at a distance between 2 times and 4 times their height);

e Flat, horizontal area, surrounded by open space, slope less than 1:3 (19°). For rain
gauges artificially protected against wind by so called wind-shields, obstacles of
constant height are not necessary. In this case, all other barriers should be situated at

minimum distance of 4 times their height;

29



or

I s
[

Figure 4.4. Site condition for class 1 rain gauge (from WMO No. 8, 2012) — condition 2
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Class 2, (additional estimated uncertainty of 5% due to site) meets the following

requirements (Fig. 4.5):

e Flat, horizontal area, surrounded by open space, slope less than 1:3 (19°);

e Any possible obstacles should be situated at minimum distance of 2 times their height,

(about the orifice height of the rain gauge);
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Figure 4.5. Site condition for class 2 rain gauge (from WMO No. 8, 2012)
Class 3, (additional estimated uncertainty of 10% due to site) meets the following

requirements (Fig. 4.6):

e Flat, horizontal area, surrounded by open space, slope less than 1:2 (< 30°);

e Any possible obstacles should be situated at a distance exceeding their height;

(site <45)

Figure 4.6. Site condition for class 3 rain gauge (from WMO No. 8, 2012)
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Class 4, (additional estimated uncertainty of 25% due to site) meets the following

requirements (Fig. 4.7):

e Steeply sloping land (>30°);

e Any possible obstacles should be situated at a distance exceeding half of their height;

Figure 4.7. Site condition for class 4 rain gauge (from WMO No. 8, 2012)

Class 5, (additional estimated uncertainty up to 100% due to site) meets the following

requirements (Fig. 4.8):

e The obstacles (e.g. trees, roofs, walls) situated at a closer distance of half their height.

Figure 4.8. Site condition for class 5 rain gauge (from WMO No. 8, 2012)

Except gauges classified as mentioned above from 1 to 5, where 1 indicates the best
conditions, considered representative, and 5 meaning inappropriate conditions for
representative measurements due to the surrounding obstacles in the neighbourhood and
which location of the devices should be avoided, the urban gauges are often characterized by

high class values, distinguished with an additional letter S (e.g. 4S and 5S).

4.4 Warsaw rain gauge network

The rainfall data series are collected at the precipitation monitoring system of the
Municipal Water Supply and Sewerage Company in Warsaw (MPWIiK w m.st. Warszawie
S.A)). The Warsaw rain gauge network (R01+R25), installed in 2008, roughly covers the area
of 517.2 km? and each rain gauge is designed to collect rainfall data from almost 21 m? of the
city area, obtaining possibly a constant gauge density over the entire surface. Eight rain

gauges are located on the right bank of the Vistula River, while 17 are situated on the left
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bank, mainly in the city centre, where the areas of sealed surfaces constitute the most to the

total rainwater surface outfall (Fig. 4.9).
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Figure 4.9. Locations of rain gauges in Warsaw

The Warsaw rainfall monitoring network is assembled from the weighing type
precipitation gauges of TRwS model 200E, manufactured by a Slovakian company MPS
Systém Ltd., capable of measuring both rain and snow (Fig. 4.10). According to the
manufacturer’s technical information, the type TRwS 200E/203E rain gauges are

characterized by the following parameters:

Orifice area: 200 cm?;

Range of precipitation: 750 mm;

Accuracy: 0.1%;

Maximum rain intensity: 60 mm-min;
Resolution: 0.001 mm;

Measuring element: strain-gauge bridge;
Air temperature measurement: -35°C+70°C;

Weighing range: 0+12000 g;

© © N o gk~ wbdPRF

Operating humidity range: 0+100%;
10. Dimensions: $355x470 mm (Fig. 10);
11. Weight: 4.5 kg.
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480

Figure 4.10. Scheme with its dimensions (on left) of a rain gauge type TRwS 200E (on right)

The principle of operation of TRwS 200E gauge is based on recording the increase in mass
of the precipitation deposited in a rain tank, put on a strain-gauge bridge. The gauge is
crowned with a standard intake of 200 cm?, intercepting rainfall to the inner tank. The
electronic module calculates the amount of rainfall that occurred within a specified time
period. The rain gauges are provided with heating elements on the inlets crown. Since the
opening does not freeze in under zero temperatures, and the gauge’s openings are not blocked
by ice, they can be operative also in winter.

A qualitative gauge performance field tests with the implementation of a precise peristaltic
pump revealed a dampening of the first 3 min of the initial phase and a longer 5 min
broadening of the final phase of simulated rainfall hyetograph (Licznar et al., 2015). The
phenomenon of a dampening or broadening of the registration data over the range of few
minutes by rain gauges is known as step response error. Detailed laboratory test of different
gauges confirmed the presence of a 3-minutes step error for rain gauge of type TRwS and
revealed that the error magnitude as quite small in comparison to other analysed gauges
(Lanza et al., 2005).

Furthermore, during construction of the rain gauge network, the most important parameter
is the optimal gauge location. It is significant to obtain a slightly higher density network
measurement in the central part of the city where the degree of sealing surfaces is the highest

and the sewage system is the richest, and the buildings are the tallest. The major part of the
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network gauges (21 of 25) is located on the Warsaw MPWIK properties. All the gauges are
installed 1 m above ground level, as requested by Polish meteorological standards.

On the basis of the characteristics of each class of representativeness of the instruments
location (described in Section 4.3.2) a classification of each rain gauge location is made. The
results of this classification are summarized in Tab.4.2.

All the gauges are connected to a GSM/GPRS modules and all the recorded data is stored
as total mass (WABS) and 1-minute precipitation layer (PR1M) with a resolution of 0.001 g
and 0.001 mm respectively. The so called Absolute Weight (WABS) in this case, is not only
the weight of the precipitation inside the container, but the sum of both the weight of rain and

the precipitation tank.

Table 4.2. List of locations of Warsaw rain gauges and the assessment of the local measurement condition.

Rain gauge Address Location on MPWIK | Representativeness class according
ground to WMO no 8
RO1 Wovycickiego St. No 4
R02 Rudzka St. Yes 5
R0O3 Arkuszowa St. Yes 4
R04 Gorczewska St. Yes 5
R05 Ostroroga St. No 3
R0O6 Dobra/Karowa St. Yes 5
RO7 Koszykowa/Krzywickiego St. Yes 2
R0O8 Jerozolimskie Blvd/P. Tysiaclecia St. No 2
R09 Chroscickiego/Obywatelska St. Yes 3
R10 Dzwonkowa St. Yes 2
R11 Grojecka/Kotorynskiego St. Yes 5
R12 Zaruskiego/Czerniakowska St. Yes 5
R13 Powsinska/Limanowskiego St. Yes 4
R14 Ken/Dolina Stuzewiecka St. Yes 3
R15 Wyrazowa St. No 2
R16 Przyczdkowa/Vougla St. Yes 5
R17 Stryjenskich St. Yes 1
R18 Mehoffera/Strumykowa St. Yes 2
R19 Borecka St. (Bialoteka) Yes 2
R20 Rolanda/Rajmunda St. Yes 5
R21 Waszyngtona St. Yes 4
R22 Dzielnicowa St. Yes 5
R23 Chelmzyniska/Gwarkéw St. Yes 4
R24 Patriotow/Pajecza St. Yes 4
R25 Bystawska St. Yes 4

The database of a 1-minute rainfall time series for the period from 15" September 2008 to
19" November 2010 recorded on the network of all 25 gauges is used as a material of this
dissertation. All the recorded data are presented below in Fig. 4.11. The locations of all the 25

gauges of Warsaw rain gauge network is presented in Appendix I.
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Figure 4.11. Hyetographs of Warsaw 1-minute rainfall data recorded in 2008-2010 by 25 rain gauges
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5. Fractal geometry

First reports about the idea of fractal geometry, non-properly named at that time, can be
found in 1872, when a mathematician Karl Weierstrass proved the existence of a function that
produced a non-differentiable curve, previously introduced but not demonstrated by Riemann.
During the decades, many attempts to handle the non-linear geometry has been done; the self-
similar sets were developed by G. Cantor (1883) and H. von Koch (1904), the definition of
dimension was expanded by F. Hausdorff (1918), the attractors and repellors were studied at
the same time by G. Juliaand P. Fatou in 1918, and the generalization of self-similarity
properties was done by P. Lévy. All these contributed to the development of the later fractal
geometry by Mandelbrot (History of fractals).

The term fractal—from Latin: fractus meaning broken—was coined and introduced for the
first time by Benoit B. Mandelbrot in 1975 (Encyclopedia Britannica; Mandelbrot, 1975,
1977) to describe jagged and broken objects that do not fit the patterns of traditional
Euclidean geometry. Mandelbrot, more willing to visual representations of mathematical
problems using high performance computing power to which he had access, developed Julia’s
equation by mapping the equation values and created, now famous, the Mandelbrot set. By
doing so, he defined a new geometry enabling the study of simple structures of nature not yet
described by mathematic formulas. Instead of measuring the length of an object, he
discovered to be able to measure its roughness. To do so, he had to rethink the basic concept

of dimension.

5.1 Fractal dimension

The dimension of a standard Euclidean or topological object can be defined unequivocally
as an integer value (0O-dimensional for a point, 1-dimensional for a line, 2-dimension for a
plane) providing us geometric information of the set, therefore its ‘qualitative’ properties, that
is how an object fills the space. In fractal geometry, the notion of fractal dimension is used to
measure the complexity of an object, here intended as a ‘quantitative’ definition of it, or rather
how fast our measurement will change while varying the scale of observation. The fractal
dimension determines an overall structure of the set, the degree to which it covers the space in
which is embedded, in other words, the measure of it sparseness (e.g. Seuront, 2009).

The mathematical expression of objects dimension is generally expressed by the

Hausdorff-Besicovitch dimension, which assumes integer values in case of Euclidean objects
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and (in general) non-integer values for fractals. We talk about fractals if the so called
‘capacity dimension’ of a physical object is different (always larger) than its topological
(Lebesgue covering) dimension, but in any case, remains less than the space dimension in
which it is settled (Shivamoggi, 2014). Fractals have a property of ‘self-similarity’, meaning
that each section of the set constitutes a completed reduced-scale copy of the whole
(Mandelbrot, 1967). The dimension of a self-similar figure follows a power law relation:

Ny, ~ AP 1)
where Ns is the number of self-similar objects created by dividing the original image by the
scale factor A, defined as the quotient between the largest scale of observation and the
homogeneity scale (see section 6.1). It means that there is a proportionality between Ns and AP
in the limit A—o0 (e.g de Lima, 1998). In this way, the fractal dimension D is a non-integer
number and it is determined by the equation:

 log (V)
Y= g

where D is the Hausdorff - Besicovitch dimension, which coincides with the similarity

)

dimension and the capacity dimension for self-similar objects (Mandelbrot, 1967). As specific
case of fractals, the Equation (2) is also suitable for the definition of Euclidean dimensions.

A fractal measurement, in a probabilistic framework considered even more fundamental
than the fractal dimension, is the codimension. Given the fractal dimension Da of a fractal set
A, the codimension ca is the dimension of its complementary space expressed as follows:

ca=D-Da (3)
where D is the dimension of the topographic (Euclidean) space wherein the fractal set is
embedded. Frequent events are characterized by high values of dimension of a set and thus by
low values of codimension.

However, a certain limitation occurs for ca>D which implies Da<0, not admissible for a
negative definition of Hausdorff-Besicovitch dimension (Seuront, 2009; Lovejoy and
Schertzer, 2013). More versatile than the geometric definition of codimension is the
probability of a D-dimensional object of size 1/A to intersect the set A defined as the ratio
between the number of non-overlapping objects Na necessary to cover the set and total
number of D-dimensional objects Np necessary to cover the entire space containing the set A
(de Lima, 1998; Seuront, 2009; Lovejoy and Schertzer, 2013):

~—= APa—D = )¢ (4)
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While the dimension stands for the measure of relative sparseness, the codimension is the

measure of absolute sparseness, (Seuront, 2009; Lovejoy and Schertzer, 2013).

5.2 Box counting method

To calculate the dimension of complicated fractal (or even not self-similar) objects the box
counting method is preferred. It consists on covering the image with defined, gradually
decreasing mesh size non-overlapping grids (called boxes) of size 1/A and determining the
number of boxes (box-counting) containing at least a part of the object. The resulting number
of boxes N; will be proportional to the box size L = (1/)) according to Equation (1):

N, =~ L7P )
where D is the fractal dimension given by the Equation (2) as the ratio of the number of boxes
containing the object to the magnification or the inverse of grid/box size, usually identified as
the fractal dimension (Lovejoy and Schertzer, 2013). Graphically, by plotting the values of
log(N) against the value of box size log(A) (from the Equation (2)) a scale-invariant set will
exhibit a linear relation defined by the power law (defined by Equation (1)) and the fractal
dimension will be determined by the slope of the line fitted to the data. Nevertheless, the
dimension of measured object cannot exceed the dimension of the unit used to carry out the
measurement, which can be seen as a limitation of the method as well as problem that may

arise in case of low data resolution or size of unit boxes tending to zero while rescaling.
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6. Multifractals

The theoretical and observational approach to the statistical properties of rainfall
phenomena was developed at the beginning of 1960s (Marani, 2003). The high nonlinear
dynamics of rainfall precipitation changes in spatial and in temporal scale have led, during
last decades, to the development of applied mathematics and to an expansion of scaling
theories, based on the invariance of properties across scales, as well as the diffusion of
multifractal geometry (de Lima, 1998; de Lima and Grasman, 1999; Lovejoy and Schertzer,
2006), mainly for the study of atmospheric purposes, especially for meteorology, thus rainfall
phenomena.

A multifractal approach in theory deals with the description of self-affine objects in place
of simpler self-similar mono fractals. It is mainly focused on the analysis of intensity changes
(rainfall intensity) of a non-linear process across the entire hierarchy of scales (time

framework).

6.1 Properties of multifractals

In context of the turbulence formalism, a multifractal behaviour exhibits a hyperbolic
intermittency over an intensity scale (Fraedrich and Larnder, 1993). In a time domain of
rainfall processes, the intermittency is referred to two aspects of variability: (i) the alternation
of wet and dry periods, that is the variability of the support of the measure (Mascaro et al.,
2013) or the percentage of no-rain periods within a rainfall event and at high rainfall
frequencies (which strongly influence the rain measurements) it can be considered as a
random variable, and (ii) as a sudden variation of rainfall intensity, i.e. the intensity
fluctuations of a given support (Molini et al., 2001; Molnar and Burlando, 2005; Mascaro et
al., 2013).

A multifractal set is a set of non-uniformly interlaced fractals exhibiting multiscaling,
scale-invariance and variability of features. In nature, one usually must deal with multifractal
phenomena revealing more complex scaling relation than monofractals. In short, it can be said
that multifractal objects are somehow ‘supported’ by a combination of simple self-similar
fractals of low dimensions (Mandelbrot, 1989; de Lima, 1998), each of them characterized by
a fractal dimension and single scaling exponent.

The multifractal theory deals with multiple scaling, that is the generalization of scaling
properties of natural phenomena. A single fractal interpretation of a rain event provides only

the information about the rainfall occurences, while the multifractal apporach allows to study
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the variability over time and space of a such high non-linear process like rain, for different
levels of intensity. To obtain a significant description of the multiple scaling of a process, a
multifractal object can be described by nothing but an infinite number of fractal dimensions
(dimension function) and infinite scaling exponents (scaling exponent function) (de Lima,
1998; Mandelbrot, 1989; Pathirana et al., 2003).

Because of scaling, the scale-invariance of a phenomenon is given by a power-law
behaviour of its energy spectra (e.g. Tessier, 1993; de Lima, 1998; Burlando and Rosso,
1996), and can be tested by standard spectral analysis (described in section 6.4). However,
some deviations from power law behaviour are possible (Fraedrich and Larnder, 1993;
Olsson, 1995; de Lima and Grasman, 1999; Olsson and Burlando, 2002; Pathirana et al.,
2003): whether a multiple scaling regions are present in a graphical representation of the data,
some breaks in the scaling regime at few hours may occur. It has not yet been explained if the
nature of scaling breaks is related directly to the rainfall structure fluctuations or to the
limitations of the measuring device (Olsson, 1995; Harris et al., 1997; Marani, 2003; Licznar,
2009), nevertheless, deviations described above are reflected in several multifractal analyses
conducted on rainfall time-series from different climatic locations. To determine the scaling
behaviour providing information about the existence of scaling breaks, among the most
frequently used, two methods (described further in detail) have been chosen: (i) the spectral
analysis, which has shown a pronounced spectral break for various resolution data sets in the
range of few minutes to few hours (e.g. Olsson and Burlando, 2002) and (ii) the empirical
probability distribution function (PDF). These together with the multifractal parameters
analysing techniques, lead to a divergence of results somehow related to the rainfall process
nature (Olsson, 1995).

Multifractal processes are also characterized by high variability, concerning a large range
of scales, from high scales down to the small ones. Particularly, the latter corresponds to the
‘inner’ scale of a phenomenon where the very small scales causes that the processes are
homogeneous, the intensity is constant and the variability vanishes. It is practically impossible
to register the innermost scale of a process experimentally; the limitations of the available
devices allow only an average (or even accumulated) discrete registration of the densities of a
continuous process, and that depends on the device resolution.

As shown in Fig. 6.1, there is a strong dependence of the range of intensity values on the
scale of observation for a continuous process. The rainfall intensity decreases with the

increasing of observation resolution.
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Figure 6.1. Illustration of the relation between the intensity of rainfall process and the temporal resolution of
recorded data. Original series recoded by gauge R05 in Warsaw, at 29" September 2009

Furthermore, the method of data recording significantly affects the obtained measured
values. In recording geophysical processes, the ‘observable’ scale gains importance in the
context of ‘missing’ the smallest scale of observation, and thus the true scale of homogeneity
during experiments. As noted by Schertzer and Lovejoy (1989), de Lima (1998) and Licznar
(2009) there is a noticeable loss in context of singular statistics of small scale behaviour.

According to the traditional mathematical approach, it is desirable to describe all
measurements of natural processes by function, assuming that the obtained function will
reflect the continuous process at the scale of discrete observation tending to zero. This
practice puts aside the strong variable behaviour occurring on a smaller scale than on that
observable. Is therefore necessary to use measures instead of using functions to describe
natural continuous processes (de Lima, 1998; Licznar, 2009). Since the Lebesgue measures
are not applicable here because of the non-integer values of fractal dimensions, the D-
dimensional Hausdorf measure should be used (as already described in section 5.1).

Consequently, the intensity of a multifractal process is defined as follows:

g = A (6)
where ¢ is the intensity (or density) of a multifractal process at the scale ratio A, and y the
singularity or order of singularity. These singularities correspond to all the range of
intensities of a process, from the very high to the very low. The parameter y, is scale-

independent and characterizes ‘qualitatively’ the strength of the process intensity on a given
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scale resolution. Usually, as the scale A — oo for all singularities y>0 and &, — o (Schertzer
and Lovejoy, 1989; de Lima, 1998).

Hereby, the multitude of intensity levels leads to obtain an infinite number of fractal
dimensions, dependent on the order of singularity y. In this way, the so-called fractal
dimension function, D(y), and, consequently, the codimension function c(y) is defined as

follows:

c(y) = D-D(y) ()
where D is the dimension of the embedding space and D(y) is the fractal dimension (also non-
integer, i.c. fractal) of the ‘support’ of singularities of order greater than y. In terms of

probabilities, according to the equation (Tessier et al., 1993):
Pr(e, = AY) =~ A=) 8
the codimension of the singularities shows the changes of histograms depending on resolution

and provides an exponent for each intensity level of the process.

6.2 Classification of multifractals

To characterize multifractal processes, a classification of bare and dressed processes is
used most frequently. These terms, used in theoretical physics, were introduced in multifractal
geometry by Schertzer and Lovejoy (1987) in order to identify two types of nature of cascade
processes (Licznar, 2009; Lovejoy and Schertzer, 2013).

Bare processes are theoretical and all their moments are finite (A is finite), whereas dressed
processes are derived from observation, usually on a larger scale than the ‘inner scale’ of a
process. For dressed processes, there is a divergence for all moments greater than a critical
value depending also on the space dimension (Lovejoy and Schertzer, 2013). This divergence
comes from the more ‘violent’ variability of dressed processes characterized by larger
singularities than the ones resulting from bare processes, for the same probability.

The bare multifractals arise because of fine-grained process (Tessier et al., 1993), shown
on the left-hand side in Fig. 6.2, where descending process from larger to smaller scales
occurs (Lovejoy and Schertzer, 2013). The opposite process is the coarse-grained process,
(right-hand side in Fig. 6.2), where the dressed data obtained experimentally are averaged in
time or in space on ascending scales. The small-scale interactions are considered in dressed
processes despite of smoothing of data, hence the origin of the term indicating that they are
‘dressed” with the small-scale interactions (Licznar, 2009; Schertzer and Lovejoy, 1989;

Lovejoy and Schertzer, 2013).
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Figure 6.2. Illustration of construction of ‘bare’ (on left-hand side) and ‘dressed” (on right-hand side)
multifractal process. On the bottom centre the scale factor equals to A = 27. Reproduced from Lovejoy
and Schertzer (2013)
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6.3 Box counting method in multifractals

To describe a multifractal, a sequence of generalized fractal dimensions is used. To
provide a statistical description of self-similarity properties of fractals, the multifractal
formalism is applied (Lynch, 2004; Saa et al. 2007). In practice, by applying the box counting
method (described in section 5.2) to a multifractal object, the sought value is the sum of

measure of interest py, within a given box N,. For multifractals, the dimension expressed by
Equation (1) takes the following form:

Pn, = LP )
where L is the box size and D the fractal dimension, considered here as local variable. To

determine the multifractal properties of a set, the moments of order g of the measure py, are

calculated according to the function:
n(L)

ma(1) = ) pl, (10)

where n(L) is the total number of non-empty boxes. Therefore the generalized dimension of
the set (e.g. Do for capacity dimension) is dependent on the moment g and is defined by
(Lynch, 2004):
mg(L) ~ L@-HPa (11)
Rainfall process, as an example of natural multifractal phenomena, are characterized by
scale invariance as well as by intermittency which, given a sampling time, provides additional
information about the variability of the intensity of the time series. All the mentioned
properties are subject to verification in this dissertation, by using the multifractal methods

described in following sections.

6.4 Spectral density analysis

An efficient computational tool for time series analysis as well as time series modelling are
spectral methods, also known as the Fourier transform methods (Pathirana et al., 2003;
Licznar et al., 2011). These methods involve converting (by the Fourier transform equations)
the data series in time domain, where the data is described as a function of time, into a

frequency domain where the amplitude of the data is a function of frequency.
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Indeed, in a scaling field, a power-law dependency between the power spectrum and the

corresponding frequency is observed holding the equation:

P(f)~fF (12)

where f is the frequency, P(f) is the power energy of the spectrum and f is the spectral
exponent and it act as an indicator of the of the range of scales of the analysed field. The
Equation (12) indicates that in a log-log plot there is a linear relationship between the
frequency and the spectrum energy of the process (Pandey et al., 1998; Licznar, 2009).

In data series modelling, a spectrum analysis is based on the power spectral density
function (PSD function), focused mainly in detention of the seasonal (cyclic) components of
the process, shown as spectrum peaks on the signal graphs, and their separation from that
randomly present i.e. noise (STATSOFT Electronic Statistic Textbook). In environmental
engineering this approach is widely used i.e. in forecasting water consumption, wherein the
occurring daily and weekly periodicity must be considered while creating a model.

Given a discrete time series of precipitation x(n), recorded in strictly defined and constant
time intervals, by using the discrete Fourier transform (DFT) can be converted in a discrete

series of harmonic frequency-domain values X(m), in accordance to the equation:
N-1

X(m) = Z x(n)e=2mmm/N (13)

n=0
where j equals to/—1, N is the total integer sample number, n is the sample number and m is
the harmonic number.

Numerical calculations necessary to carry out the DTF transformation requires substantial
memory and processing time resources, due to the rapidly increasing amount of data
undergoing calculations. Here, it is of use the faster equivalent to DFT, namely the fast
Fourier transform (FFT), also called the base-2 algorithm. The function involves the
Danielson - Lanczos lemma that assumes the idea to break up the series, and rewrite it as the
sum of two discrete Fourier transforms, each of length N/2; one is formed from the even-
numbered samples and the other from the odd-numbered samples. For that reason, an even
dimension of the data series N is recommended (Lyons, 2006; Wolfram Mathworld).

The Warsaw data series are subjected to FFT algorithm and the resulting sequence of
harmonic values X(m) is ultimately used to compute the power spectrum P(f) for N/2 + 1 of
the frequency f according to the methods described in detail by Licznar (2009). To execute the

calculations, two scripts — SPECTRUM_Warsaw and EvaluateSpectrum2b - are used. A
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limiting factor for the considered upper frequency range is critical Nyquist frequency fc

determined by the temporal resolution of Warsaw precipitation, described by:
1

T2

where A is equal to 1 minute which is the recording time resolution of the data. Subsequently

fc (14)

a smoothing of the output calculation spectrum for the high frequency using MAIN script is
carried out, considered as a standard practice by other researches (i.e. de Lima, 1998; Licznar,
2009). Thus, a PSD function following the P(f) dependence a double logarithmic scale is

obtained.

6.5 Functional box-counting method

The functional box-counting method was developed at the end of the 20th century by
Lovejoy (et al., 1987), as a method to obtain a functional description of the dimension D. It is
based on the classical box-counting method, since the test sets are repeatedly covered entirely
with non-overlapping boxes of fixed and increasing each time dimension 1/A. Whenever the
number of boxes containing at least one element of the set (non-empty boxes) is counted, the
amount of non-empty boxes is presented in logarithmic scale as a function of the box
dimension. A fractal set exhibits a linear relationship between the number of the boxes and
the corresponding boxes size, and the slope of the curve determines the fractal dimension. In
terms of 1-dimension time series, the box size becomes a time interval, and a non-empty box
is the one containing at least a non-zero rain element.

The innovation proposed by Lovejoy is to introduce, beside the box size, a boundary
precipitation intensity rate, then to count the number of boxes containing rain, the amount of
which is below the given threshold limit (intensity threshold Tkr), and to repeat the counting
process of each time for the increasing boundary intensity rate. By this means, it is possible to
perform an analysis of the fractal dimension variability depending on the variation of
boundary conditions. Finally, by relating the obtained fractal dimension D(Tx) to the order of
singularity v, it is possible to indirectly obtain the codimension function c(y), conforming to
the approximation Thr = A¥. The main advantage of this method is that there is no need to use
statistical moments; nevertheless, a significant limitation of the method stands in the
“saturation” effect which occurs for certain intensity threshold values, above which, all the
boxes are filled with rainfall. Such a situation may cause artificial breaks on the resulting

graphs.
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For the Warsaw precipitation time series, time intervals from 1 minute to 1048576 minutes
(~2years) and for boundary precipitation intensity rates of 0, 0.04, 0.08 and 0.16 mm/min are
analysed. To perform the functional box-counting analysis for Warsaw time series a special
application BOX_Warsaw in Pascal and an additional MATLAB script called BoxPlot for

visualization of the results are developed.

6.6 Trace moment method (TM)

A technique allowing to perform a multifractal analysis with no need of using the Legendre
transformation is the trace moment method (TM) focused on determining the moments
scaling exponent function, K(qg) and the codimension function, c(q).

The method is based on the analysis of the moments of order g of the density &, within the
timescales A and in part uses the principle of the functional box counting method already
described in section 6.5. Statistical moments q are expressed as central moments, whose low
values are commonly used in statistics, and are preferred over the ordinary moments.

A multifractal process exhibits a defined relation between the moments of its intensity &,
(for i = 1,..., AP) and the resolution scale A. The scaling moment function K(q) is the linking
function of the average g moments (g, %) of the intensities of a multifractal process at
different resolutions with the scales of this process resolution levels A, as defined by the
equation (Lovejoy et al., 1987; Lovejoy and Schertzer, 1990):

(£:) ~ AK@ (15)
where q is the order of statistical moments and K(q) the moments scaling exponent function.
Because of the singular behaviour for the small-scale limit A—oo, the Equation (15) tends to
infinity for all moments g>1, since K(q) is an increasing function, so K(q)>0 for g>0 (de
Lima, 1998); furthermore, the moments are calculated only for integers values, which leads to
an inaccurate estimation of the K(q) curve.

A possible solution is to study the scaling moments using the fluxes (integrals) of the
densities of a process defined as the trace moment of the flux over the set A as its ensemble

average, expressed as follows:
oy (8% = ([ (&7 o) 16)
A

where the flux is called the g™ — order trace moment, at resolution A. It is therefore possible to
obtain the fluxes of the statistical moment values also for not integer q values (g<1),

overcoming the limitations imposed by applying the usual statistical moments.
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By using the functional box counting method, the set A is covered with non-overlapping
boxes of side 1/4, it means that a set A is divided in AP sub-sets A, ;, (for i = 1,... AP), given that
for rainfall time series the boxes are defined as 1-dimensional time segments of length 1/A.

Then, the flux of a single sub-set is defined as:

HA/LL' = fSA'de (17)
"

Api
where A<\’ intended as the ratio of scale of interest to the smallest scale of homogeneity and
&, 1s the intensity of ‘inner’ scales, components of ¢, of the sub-sets A;,i. For each one of the
sub-sets the intensity & is determined by summing the flux over all the sub-sets needed to
cover the set A. Therefore, at resolution A, the Equation (16) defines the q"-order trace

moment becomes:

AP
Try (9] ~ () (20)" 77) (18)

Finally, the above described average intensities &, are raised to powers g, and due to an
existence of a relationship between Equation (18) and the scale A and moment scaling
function K(q) defined in Equation (15), according to de Lima (1998) could be expressed as
follows:

Try, [£,9] = ALAK@~aP = JK(@-(@@-DD = 3(a-1)(C(a)-D) (19)

The final value of the K(q) function for order moments g is the slope of the linear relationship
between the log values of the flux moments log(Tr.[€:9]) and the log values of scales log(1).
A more detailed trace moment description could be found in papers of Lovejoy and Schertzer
(1990) and Lovejoy et al. (1987).

Additionally, the TM method determines the codimension function c(q), here defined as:

_ K(q)
c(q) = qu (20)

where K(q) is the moments scaling exponent function and q is the order of the statistical

moments. It relates to the dimension function D(q) by:

D(q) = D —c(a) (21)
wchich is defined as the distance between the value of K(q=0) = -c and the origin of the axis
(de Lima, 1998; Licznar, 2009).

The TM analysis of the Warsaw precipitation time series is carried out by a calculation
program written in Pascal called TRACE_Warsaw, and a MATLAB script called TracePlot,
for scales from 1 minute up to 11.4 days (A=16384 to A=1).
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6.7 Probability distribution/multiple scaling (PDMYS)

The statistical analysis of multifractal sets can be achieved either by scaling the statistical
moments of the process intensity, i.e. by applying the trace moment method (TM) as
described above, or alternatively by applying the PDMS method, focused on determining the
scale invariant probability distribution, that is the codimension c(y) of a rainfall process,
whose intensity exceeds certain sequentially increasing algebraic thresholds, dependent on
scale ratio proportional to AY (Schertzer and Lovejoy, 1988).

The analysis is undertaken over a large range of scales, by covering the entire set of
elements, in case of Warsaw the rainfall time series, with disjoint boxes (time intervals) as in
the case of box-counting method, of size (length) A and counting the number of non-empty

intervals N,(y) with the intensity &, verifying the inequality:

l0g(e;)

—r > 22

log(4) — 22)
By modifying the Equation (8), the probability distribution for decreasing scale ratio A and

for many different values of y is given by:

Pr(s, = 1Y) « —i = F A=) (23)

where F is the proportionality pre-factor slowly varying with A and weakly depending on y

NA(Y)
A

(de Lima, 1998). In practice, it is possible to estimate the values of c(y) as the slopes of the
probability distributions curves N»(y)/Nx functions versus A scale ratios for the given y levels,
in a log-log graphs (Schertzer and Lovejoy, 1988; Lovejoy and Schertzer,1991).

The PDMS analysis of the Warsaw precipitation time series is supported by a Pascal
program called PDMS_Warsaw and a MATLAB script called PDMSPIlot. The analysis is
carried out for 24 values of singularity orders y of the range y € [0.04; 0.96].

6.8 Double trace moment method (DTM)

Double trace moment method (DTM) is a generalization of the classical trace moment
method and it is widely used to estimate the universal multifractal parameters a, C1 and H
(Schertzer and Lovejoy, 1987; de Lima, 1998) especially from conservative multifractal
fields, for which the flux of the process is conserved while going from scale to scale (Pandey
et al., 1998). For further description of the universal multifractal parameters refer to Section
6.9.

The generalization of TM method is here achieved through the introduction of a second

(double) moment 1 to the analysis of data. The intensity &;, related directly to the finest
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(known) resolution A" of the process, is hereby raised to power n (being a real positive

number) and then normalized with the ensemble average (g,-") of the entire set:

Sx'n
(eaM)

where &, is the n-normalized intensity &;-, widening the dynamic range of the process

g M = (24)

which can be subjected to analysis.
Based on the n - power normalization defined in Equation (24), the flux IT described by

Equation (17) is transformed in a ‘n - flux’ II™ in according to the relation:

m
[ - f e MdPx (25)

A A
where A<\’ and &,-™ is the n-normalized intensity ;- at scale resolution A intended as a
component of the intensity &, associated with sub-sets Ayi. Similarly, at resolution A, the g™ —
order double trace moment is defined as:

Try, [s}\(n)q] ~ AK@m—-(q-1D (26)
where K(gm) is a double moments scaling exponent function and for 1 = 1, K(qm) is
consistent with K(q), defined by the trace moment method. Practically, as for TM method, the
DTM function K(g,n) is obtained as the slope of plots of log(Tr. [£2™9]) against log()) for
different moments q and, in this case, also for different values of n.

In addition, the re-normalized version of multifractal process is applicable as the initial
step for the probability distributions/multiple scaling function and for the determination of co-
dimension function as well, here defined equal to c(y,n), being a dual function in relation to
K(qg,n) (for details see de Lima, 1998 and Licznar, 2009).

The DTM analysis of the Warsaw precipitation time series is performed using the
DTM_Warsaw Pascal program and a MATLAB script called DTMPIlot. The analysis is
carried out for 12 values of moment order g € [0.9; 2.1] and 20 specific n values, n € [0.13;
10.00].

6.9 Universal multifractal parameters

The statistics of multifractals can be described by scaling exponent function K(q), however
as there is only a conservation K(1) = 0 and convexity constraint on this function, it implies an
infinity of parameters to describe the scaling behaviour of an ideal multifractal process
(Pathirana et al., 2003; Lovejoy and Schertzer, 2013). Therefore, the concept of universality is

introduced, which assumes an existence of a few relevant parameters among the infinity of
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them, especially taking into consideration a realistic system, liable to perturbations, rejecting
some theoretical features. Such a system is expected to ‘converge’ to some universal attractor
in the same way as a class of models based on the same domain attractor leads to the same
processes defined by few parameters (Tessier et al., 1993; Licznar, 2009; Lovejoy and
Schertzer, 2013). In this way, the definition of K(q) by an infinity of parameters is reduced
only to tree universal parameters: a, C1 and H. For further discussion, see Tessier et al. (1993)
and Lovejoy and Schertzer (2013).

To obtain a bare multifractal process (see Section 6.2), discrete cascades are used. These
kinds of generators apply fixed scale ratios at each cascade step leading to not realistic
physical processes. For satisfactory results, instead of using an infinite number of cascade
steps, over a wide range of scales it is possible to introduce many intermediate steps (Fig. 6.3)
to ‘densify’ the steps. This way of processing is a valid alternative to obtain a process
exhibiting ‘universal’ behaviour (de Lima, 1998; Lovejoy and Schertzer, 2013). It is therefore

possible to obtain a multifractal process in according to the relation:

g ~ el (27)
where T, is the generator of the process. Thus, the modelling of multifractal processes is given
by multiplying densities with densities, what in practice means adding generators to
generators of the type I, = In(g)) (in Equation (27)) (De Lima, 1998). Consequently, the
average " moment (g, 9) in Equation (15) takes the form as follows:

(edM) ~ ekKa@ z eK(@In®) (28)
Then, K,(q) = K(q)In(A), resulting from Equation (28) is called the second

characteristic function of generator I.

Figure 6.3. Scheme of densification of scales. Reproduced from Lovejoy and Schertzer (2013)
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The bare generator I of a scale-invariant multiplicative cascade process must follow the

basic properties (de Lima, 1998):

1. the (finite resolution) generator is a random noise process restricted to the range [1, 1];
this ensures that the process will be smooth on scales smaller than 12;

2. the second characteristic function K;(q) of the generator I; has a logarithmic behaviour
with scale (1—w) to assure multiple scaling;

3. the probability distribution of positive fluctuations of the generator I; must fall-off more
quickly than exponentially, to have some finite moments q=>0;

4. the generator must be normalized so that Ki(1) = 0 (i.e. (¢, ) =1) to assure (canonical —

energy) conservation of the flux.

Properties 1. and 2. define the presence of so called pink noises, also called 1/f noise, that
is the proportionality of the spectrum of generator and the inverse of the wave-number:
Er(w) ~ w1

A generator that satisfies all the above-mentioned properties and is also an example of pink
noise is the ‘universal’ class of multifractals, based on Lévy stochastic variables (de Lima and
Grasman, 1999), characterized by a Lévy index a, determining the order of divergence of the
statistical moments of the generator:

Pr(-I'>2s)=s % fors>»1 => ((-IN9) = oo, forg>a (29)
where 0<a<2 and s in an intensity threshold.

Generators based on Equation (29) are ‘universal’ and characterized by two fundamental
equations, describing the scale probability distribution c(y) and the moments scaling exponent

function K(q) as follows (Tessier et al., 1993):

a

y 1

C1<—,+—> fora#1
cy-Hy=4{ o @ (30)

C; exp (— - 1) fora =1,

\ Gy
G

a—1(qa_q) fora#1

K(q) — qH = (31)

\Cl qIn(q) foroa =1,
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where in Equation (31) q = 5—; > 0, a is valid for the interval [0, 2] and o fulfils the

relation:

1 1
4+ —=1 32
a"‘a, fora#1 (32)

The parameters described by Equations (30) and (31) that is a, C1 and H are the “universal’

multifractal parameters, described in detail below (de Lima, 1998; Bernardara, 2007):

H — characterizes the deviation from conservation (that is: (g; } = A7), it is also called index
of nonstationarity (smoothness of data). Usually is determined experimentally. As is
demonstrated by Pandey et al. (1998), for conserved processes H = 0, and the thus
functions in Equations (30) and (31) become two-parameter « and C1 function. For the
analysis of the Warsaw field, the precipitation series are generated as for a conserved
process (the generation process of synthetic rainfall series made as for conserved process
is described in Section 6.11).

C1 — is the index of intermittency; it describes the sparseness or inhomogeneity (i.e. the
distance from homogeneity) of the mean of the process. It stands for the codimension of
the singularity of the mean: for non-conserved processes C1 = ¢(Ci-H). For conserved
processes is at the same time the order of singularity and the codimension of the mean of
the process. A process with C1 = 0 is homogeneous.

a — is the degree of multifractality, or the deviation from monofractality. Is fundamental to the
classification of multifractal process. It is also the Lévy index already described. The
influence of a parameter on the magnitude of codimension function and moment scaling

function curvature is shown in Fig. 6.4:

V)

a) Ve b) q

Figure 6.4. Universal scaling exponent functions for o from 0 to 2. a) Codimension functions, c(y)/Cu;
b) Moment scaling functions, K(q)/ C,. From Lovejoy and Schertzer (2013)

The degree of multifractality is also suitable to determine the universality classes, defined

as the magnitude of the parameter a (de Lima, 1998):
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e Unconditionally hard multifractals are given for the interval 1<a<2. In particular
o a=2,are the log-normal (Gaussian) sets,
o 1<0<2, are the (log) Lévy processes with unbounded singularities,
o a= 1, corresponds to log-Cauchy multifractals;

e Conditionally hard multifractals are defined in the interval 0<o<1, corresponding to
the (log) Lévy processes with bounded singularities. They arise as an integration of
such multifractals over an observational set with large dimension D, leading to a
soft behaviour;

e Monofractals corresponding to the case o = 0, whose singularities all have the same

fractal dimension.

6.10 Hierarchical analysis

The previous sections described the path to the determination of the universal multifractal
parameters, whose results are presented and discussed in Chapter 7. Once the parameters are
obtained, at each rain gauge a group of universal parameters is assigned and their variability
among the stations of the Warsaw rain gauge network is analysed by using the cluster
analysis. The method is a data-mining tool, used both for meaningful or useful definition of
groups based only on the information provided by the data (Tan et al., 2005). The analysis
implies at first the aggregation of data into groups (or clusters) on the basis of their similarity,
and then the determination of similarities (or differences) between the groups.

There are many types of clustering methods (Tan et al., 2005), but the most common are
the (agglomerative) hierarchical techniques, where is permitted to the cluster to have
subclusters, i.e. nesting of subclusters until one overall cluster containing all the elements
remains. The final result is given by a tree-like diagram called a dendrogram on which the
cluster-subclusters relationships are displayed as well as the order of merging data.

In the analysis of rainfall data, the groups of parameters for each rain gauge is considered
as a single cluster of equal distance to the other. To determine the similarity between clusters
specific measures of distance are used starting from the basic single link (minimum of
distance between any two points in any two clusters) and ending with complex formulas
depending on the analysis purposes. A detailed description of the measures is available in Tan
et al. (2005).
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For the Warsaw analysis, the data are subject to cluster investigation by using all the
methods available in MATLAB software that is the combination of metric distance functions
with the linkage methods according to the Tab.6.1 (Mathworks documentation):

Table 6.1. Summary of the distances functions and linkage methods used in hierarchical analysis of

Warsaw data
Metric distance function Description Linkage method
euclidean Euclidean distance Average
squaredeuclidean Squared Euclidean distance Centroid
seuclidean Standardized Euclidean distance Complete
cityblock City block metric Median
minkowski Minkowski distance Single
chebychev Chebychev distance Ward
mahalanobis Mahalanobis distance Weighted
cosine One minus the cosine of the included angle between points
correlation One minus the sample correlation between points
spearman One minus the sample Spearman's rank correlation
hamming Hamming distance
jaccard One minus the Jaccard coefficient

The suitability of the methods employed in cluster analysis is performed by determining
the cophenetic correlation, which is a measure of how faithfully the dendrograph represents
the dissimilarities among observations. All the obtained results are presented and discussed in
Chapter 7.

6.11 Universal multifractal generator

To generate synthetic rainfall data, a generator GENERATOR_R, satisfying all the
requirements described in Section 6.9, is adopted. It is based on the Multifractal Fields
Simulation Software Epsl1D created by S. Lovejoy in 2014 (McGill University). The original
Eps1D code was developed to generate 1-dimensional multifractal fields. All the simulations
are performed in MATLAB software.

The input data are: the resolution A of the field, the multifractality index o, the
codimension index C: and a switch to make the process causal (switch = 0) or not
(switch = 0). The generation process is set up for the universal parameters characterizing 3
single rain gauges (R06, R15 and R25 - Fig. 6.5) and two groups of gauges (RM23 and RM22
- Fig. 6.6) whose parameters are averaged for 23 rain gauges (excluding R15 and R25 gauges)

and 22 rain gauges (excluding R06, R15 and R25 gauges) respectively.
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Figure 6.5. Locations of gauges R06, R15 and R25 for which synthetic series are generated from universal
cascades for gauge — specific a and C; parameters, at the frame of so called single simulations
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Figure 6.6. Locations of gauge groups RM23 and RM22 containing 23 and 22 gauges respectively for which
synthetic series were performed from universal cascades for gauge — group averaged a and C;
parameters, at the frame of so called average simulations
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All the simulations are performed for 1-minute resolution data. The length of the time
series is A = 22 minutes (A = 2 years). However, the quality analysis of the obtained data (in
detail described in Section 6.12 and Chapter 7) revealed that the casual feature of the
generator lead to obtain also very small values of precipitation intensities, far below the
resolution of the rain gauges claimed by the manufacturer as 0.001 mm (compare to rain
gauges technical data presented in Section 4.4), which implies the need for elimination of all
the generated values smaller than 0.001 mm. For this purpose, a script called FILTR has been
created in order to accumulate very small values below the recording resolution of the device.
A detailed description of the obtained results is provided in Chapter 7.

After the generating process, the synthetic rainfall data are subjected to quality analysis, by
the comparison of their certain statistical parameters to the ones derived for observation
series. The analysis is carried out through the determination of the statistics of both types of
the data series using the probability of occurrence of rain P(R>r) and the intermittency E(po).

Both the measures are described in the following Section.

6.12 Evaluation of generated rainfall time series

The qualitative assessment of the obtained data series in GENERATOR_R is performed by
comparing the statistical parameters of the generated data to the statistics of recorded rainfall
time series. The parameters taken into consideration during assessment were already selected
by other researches in selected evaluation of synthetic rainfall data quality originating from
multifractal generation (Molnar and Burlando, 2005; Licznar, 2009; Licznar et al., 2011a;
Rupp et al., 2012). The first parameter is the probability of rain P(R>r), computed by the
complementary cumulative distribution function (cCDF). The basic CDF function is the
fraction of density that falls below some particular value x CDF = Pr(X<x), where X is a
random variable, whose distribution is defined as Pr(x), and here is used to evaluate the
ability of the model to reproduce cumulative distribution frequency (Rupp et al., 2012). The
complementary CDF is defined as 1 — CDF = 1 — Pr(X<x) = Pr(X > x)—that is the
probability that the signal power will be above the average power level (Clauset A.). While
the second parameter is the intermittency E(po), defined as the expected value (or the
probability) of the no-rain occurrence, given by percentage of zero-rain values for 11 time
scales A =1, 5, 10, 20, 40, 80, 160, 320, 740, 1580, 2560 minutes (~43hours). The comparison
of both the parameters between generated data and the recorded series allows the assessment

of the performance of the generator. To perform the statistical analysis of data two MATLAB
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scripts are written: CCDF and EPO and the computation are conducted for the data obtained
directly from the generator as well as for the data after filtering process (after synthetic series
postprocessing by FILTR procedure).
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7. Results and discussion

In this Chapter, the results of analysis of the 1-minute rainfall data collected by the
Warsaw rain gauge network from September 2008 to November 2010 are presented. The
analysis is carried out using fractal and multifractal methods already described in Chapter 5,
I.e. spectral density analysis (Section 6.4), functional box-counting method (Section 6.5) trace
moment method (Section 6.6), probability distribution/multiple scaling (Section 6.7) and
double trace moment method (Section 6.8), in order to determine the universal multifractal
parameters. Thereafter, results of fractal and multifractal studies are used for taxonomic
division of analysed rain gauges into groups of gauges displaying similarities. Synthetic
precipitation series are generated from universal cascade generators parametrized by derived
multifractal parameters o, C1 and H. Finally, these synthetic precipitation series are analysed
and statistically compared versus recorded series based on the complementary cumulative
distribution function and the intermittency studies (Section 6.12).

Hereafter, having in mind sample set of results for a 25-gauge group, all the obtained
results are presented and discussed in detail only for selected rain gauges. These are
distinctive gauges: R06, R15 and R25. The gauge R06 is chosen as the city centre location;
the R15 due to its location at the Warsaw airport, and the R25 as the city limits location (for
further discussion see Section 7.7). For the remaining rain gauges, the results are assembled in
Appendices Il — V1.

7.1 Functional box-counting method

Results of the functional box-counting method for rain gauges R06, R15 and R25 are
presented in Figs 7.1+7.3. The similar results of functional box-counting method for
remaining Warsaw’s rain gauges are accessible in Appendix II, Section A. The relationships
between the log values of non-empty boxes and the log values of the size of the analysed
boxes are plotted in all figures. The analysis is performed for four different intensity
thresholds: 0, 0.04, 0.08 and 0.16 mm/min. For the first intensity threshold of 0 mm/min, the
ranges of linear relationships are delineated and outlined by the dotted lines in plots.
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Figure 7.1 Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain
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gauge R15

60



R25

Ca | o e |
E * 0 mmimin
r B 0.04 mmimin [
L 0.08 mmmin ||
_ I range 0.16 mm/min
10 3
E* . 3
E . ]
L - ]
L "*--.w_ llrange B
e o 30 minutes
210 ey -
s E . i‘ 1 hour E
> = Fee i’ 3]
% r ] ., N
g | " T .
| it
[ = — - —
g g n - Il range .
2 E - “He E|
- E ™ e 6 days ]
5 F . - e 7
[T [ ] - R J_, b
_g | [ B
2 [ ] ~.
3 = - -
3wk ., E
E .~ E
C =, u
L T ]
L I 4
]
1 bt
e Teem E
£ . 3
- “H, ]
[ \'"-w .
_e..“‘~
107 e Ll L Ll L | L Lol L | L L \I\\I‘"{ﬂ;
1

10’ 10° 10° 10* 10° 10
Size of boxes (1 minute)

= =

Figure 7.3 Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain
gauge R25

Ranges of linear relationships between the number of non-empty boxes and their size are
evident on log-log plots for all 25 rain gauges. Three different ranges of scaling relationship
are clearly visible on the graphs. Range | occurs between 1 and 30 minutes, range Il between
60 and 300 minutes (i.e. between 1 and 5 hours), and range 11l — between 8640 and 1048576
minutes (i.e. 6 days and almost 2 years). For all the observed ranges of intensity threshold, the
calculated slopes of linear relationship are presented in Tab.7.1. The results for all other
gauges and chosen intensity thresholds are provided in Appendix Il, Section B.
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Table 7.1. Slope values of the relationships between the number of non-empty boxes and their sizes for the
identified time ranges, for 1-minute time series of rainfall intensities in Warsaw from September 2008 to
November 2010

. . Range of times/box sizes
Rain gauge Intensity threshold 1-30 min 60-300 min | 8640-1178710 min
0 -0.86 -0.51 -1.02
0.04 . -0.57 -0.32 -1.00
RO1 0.08 mm/min -0.52 -0.22 -0.93
0.016 -0.47 0.12 -0.86
0 -0.84 -0.53 21,01
0.04 . -0.53 -0.32 -0.99
R02 0.08 mm/min -0.49 -0.22 -0.94
0.016 -0.44 -0.15 -0.85
0 -0.87 -0.54 21,01
0.04 . -0.56 -0.34 -0.99
RO3 0.08 mm/min -0.50 -0.23 -0.94
0.016 -0.48 -0.15 -0.84
0 -0.88 20.52 21,02
0.04 . -0.57 -0.32 -0.99
R04 0.08 mm/min -0.54 0.23 20.92
0.016 -0.50 -0.14 -0.83
0 -0.84 -0.51 -0.95
0.04 . -0.53 -0.33 -0.92
ROS 0.08 mm/min 20.49 0.23 -0.85
0.016 -0.43 -0.13 -0.78
0 -0.87 -0.52 -1.00
0.04 . -0.57 -0.33 -0.98
RO6 0.08 mm/min -0.51 -0.24 20.92
0.016 -0.48 -0.17 -0.81
0 -0.86 -0.53 -0.99
0.04 . -0.55 -0.35 -0.98
RO7 0.08 mm/min -0.51 -0.24 20.92
0.016 -0.50 -0.14 -0.81
0 -0.86 -0.54 -0.99
0.04 . -0.55 -0.36 -0.97
RO8 0.08 mm/min -0.53 -0.25 -0.93
0.016 -0.47 -0.15 -0.87
0 -0.88 -0.52 -0.93
0.04 . -0.58 -0.34 -0.90
R09 0.08 mm/min -0.56 0.23 -0.83
0.016 -0.52 -0.16 -0.73
0 -0.87 -0.52 21,02
0.04 . -0.59 -0.32 -0.99
R10 0.08 mm/min -0.54 -0.24 -0.92
0.016 -0.51 -0.15 -0.82
0 -0.86 -0.55 -1.00
0.04 . -0.59 -0.34 -0.97
R11 0.08 mm/min 0.52 0.24 -0.93
0.016 -0.48 -0.15 -0.84
0 -0.87 -0.55 21,02
0.04 . -0.60 -0.34 -0.98
R12 0.08 mm/min 0.52 0.25 -0.91
0.016 -0.47 -0.17 -0.82
0 -0.87 -0.51 20.99
0.04 . -0.59 -0.33 -0.96
R13 0.08 mm/min -0.54 0.23 -0.92
0.016 -0.51 -0.16 -0.85
0 -0.84 -0.57 -1.03
0.04 . -0.58 -0.33 -0.99
R14 0.08 mm/min 0.53 0.25 -0.92
0.016 -0.53 -0.16 -0.82
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. . Range of times/box sizes
Rain gauge Intensity threshold 1-30 min 60-300 min 8640-1178710 min
0 -0.82 -0.48 -1.00
R15 0.04 mm/min 20.61 -0.34 -0.95
0.08 -0.48 -0.28 -0.92
0.016 -0.44 -0.18 -0.86
0 -0.88 -0.53 -1.02
R16 0.04 mm/min -0.58 -0.34 -0.99
0.08 -0.52 -0.24 -0.91
0.016 -0.50 -0.15 -0.83
0 -0.86 -0.52 -1.02
R17 0.04 mm/min -0.58 -0.35 -0.98
0.08 -0.53 -0.26 -0.91
0.016 -0.50 -0.19 -0.81
0 -0.84 -0.50 -1.03
k18 0.04 mm/min -0.55 -0.32 21,01
0.08 -0.51 0.21 -0.93
0.016 -0.43 -0.13 -0.84
0 -0.86 -0.50 -1.02
R19 0.04 mm/min 20.60 -0.31 -0.99
0.08 -0.52 -0.23 -0.91
0.016 -0.43 -0.16 -0.83
0 -0.88 -0.52 -1.00
R0 0.04 mm/min -0.59 -0.33 -0.98
0.08 -0.53 -0.25 20,91
0.016 -0.47 -0.14 -0.83
0 -0.87 -0.53 -1.00
Ro1 0.04 mm/min -0.57 -0.36 -0.98
0.08 -0.52 -0.25 20,92
0.016 -0.47 -0.16 -0.83
0 -0.88 -0.52 -1.00
R 0.04 mm/min -0.58 -0.33 -0.97
0.08 -0.51 -0.24 -0.91
0.016 -0.46 -0.16 -0.83
0 -0.85 -0.52 -1.01
Ro3 0.04 mm/min -0.59 0.31 -0.98
0.08 -0.52 -0.23 20,91
0.016 -0.48 -0.16 -0.79
0 -0.89 -0.53 -0.93
R4 0.04 mm/min 20.61 0.34 -0.92
0.08 -0.54 -0.24 -0.88
0.016 20.49 -0.17 20.77
0 -0.89 -0.55 -0.94
Ros 0.04 mm/min -0.54 0.34 -0.92
0.08 -0.50 0.21 -0.84
0.016 20.44 0.13 -0.70

A mutual comparison and statistical analysis of the obtained slopes for all 25 Warsaw rain
gauges (Tab.7.2) indicates statistical similarities between the rain gauge data within the same
intensity threshold. For all four thresholds, the slopes are very close to the mean value as
evidenced by a low standard deviation, even though the variability of the slopes slightly
increases with the increasing of intensity. The external ranges of linear relationships (I and
[11) for the intensity threshold equal to O mm/min are very close to each other, and amount on
average to -0.86 and -1.00 (Tab.7.2). Similar results are found by Licznar (2009) for 5-minute

precipitation data series from gauges located in Wroctaw, about 350 km south-west of

Warsaw: -0.91 and -1,00 respectively.
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Table 7.2. Basic statistics of the slope values obtained from box—counting method for three distinctive time
ranges and for the analysed intensity thresholds for Warsaw rain gauge network

Intensity threshold 0 mm/min 0.04 mm/min
Range I 1 i I 1] i
Average -0.86 -053 | -1.00 | -0.57 | -0.33 | -0.97
Median -0.87 -052 | -1.00 | -0.58 | -0.33 | -0.98
Standard deviation 0.02 0.02 0.03 0.02 0.01 0.03
Minimum -0.89 -0.57 | -1.03 | -061 | -0.36 | -1.01
Maximum -0.82 -048 | -093 | -053 | -0.31 | -0.90

First quartile (25th %) -0.88 -0.53 -1.02 -0.59 -0.34 -0.99
Third quartile (75th %) -0.86 -0.52 -0.99 -0.56 -0.32 -0.97

Intensity threshold 0.08 mm/min 0.16 mm/min
Range | 1 i | 1 i
Average -0.52 -024 | -091 | -048 | -0.15 -0.82
Median -0.52 -024 | -092 | -048 | -0.15 -0.83
Standard deviation 0.02 0.02 0.03 0.03 0.02 0.04
Minimum -0.56 -0.28 -0.94 | -0.53 -0.19 -0.87
Maximum -0.48 -0.21 -0.83 | -0.43 -0.12 -0.70

First quartile (25th %) -0.53 -0.25 -0.92 -0.50 -0.16 -0.84
Third quartile (75th %) -0.51 -0.23 -0.91 -0.46 -0.14 -0.81

The slope values of the middle plots’ sections for all the 25 rain gauges differ from the two
external ranges; for instance, for the rain gauges R06, R15 and R25 these range slopes are
equal to -0.52, -0.48 and -0.55 respectively (Tab.7.1), whereas the overall value of 25 rain
gauges is -0.53. The middle range of linear relationship (range I1) between 60 and 300
minutes is considered the multifractal dimension of the geometrical “support” of rainfall
occurrence (de Lima, 1998; Licznar, 2009). Hereby, the multifractal dimension of the
geometrical “support” of rainfall occurrence for the Warsaw rain gauge network is D =~ 0.53.
For comparison, for a 5-minute data series from Wroctaw, Licznar (2008) reported the
multifractal dimension of support D = 0.58 (Licznar, 2009), while for 1-minute rainfall data
series from Vale Formoso (Portugal) de Lima (1998) obtained D = 0.50.

The above-mentioned authors point out a limitation to the functional box-counting method
to the proper investigation of multifractal dimensions in the two external ranges due to the
“saturation” effect, visible here for scales smaller than 30 minutes and larger than 6 days. The
saturation of the 111 range is easily explained: for scales larger than 6 days, all boxes are filled
with data, so the number of non-empty (full) boxes is always equal to the number of boxes.
Therefore, the decreasing slope of the graph is given by the decreasing overall number of
boxes of higher dimension, thus the slope of range 111 will be always 1.

The case of | range is more complex: for time scales smaller than 30 minutes (range 1), the
slope of the graph indicates the occurrence of almost non-zero rainfall periods, i.e., the set of
observed data almost entirely covers the available space of time. The presence of such a
critical scale in box-counting method can be explained by the poor ability of the measuring
device to capture the intermittency and variability of rain (no rain periods). It could result
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from superposition of gauge resolution and step response error, i.e. the already discussed
phenomenon of dampening/broadening (averaging) of the registration data by rain gauges
over the range of few minutes.

From the analysis of the middle section of the plots (I range), a dependency emerges
between the absolute values of the slope and the magnitude of the threshold: the values of the
slope, for all the analysed rain gauges, decreases with the increasing of the intensity threshold.
To the intensity thresholds: 0, 0.04, 0.08 and 0.16 correspond the average slope values for 25
Warsaw rain gauges equal to: -0.53, -0.33, -0.24 and -0.15, i.e. the fractal dimension D is
respectively: 0.53, 0.33, 0.24 and 0.15. It follows that for infinite magnitude values an infinite
number of fractal dimension would be found, so it implies an infinite hierarchy of dimension.
This is the first proof that the precipitation process has a multifractal structure, thus the further

application of multifractal analysis techniques is justified.

7.2 Spectral density analysis

The resulting power spectra plots obtained for the Warsaw gauges by the spectral density
analysis are presented in a log-log scale. The plots are smoothed for high frequencies. The
sample energy spectra obtained for 1-minute of the Warsaw gauges time series for rain gauges
R06, R15 and R25 are presented in Figs 7.4+7.6. They evidently display scale-invariant
behaviour over a range of scales. The power-law described by Equation (12) holds for two
distinctive ranges of highest frequencies. The first range of frequencies plot in Fig. 7.4 starts
from 29 1/h and ends at 0.7 1/h, while the second is in the range from 2 to 0.042 1/h. The
spectrum plot shown in Fig. 7.5 presents the first range from 30 1/h up to 0.7 1/h while the
second range is delimited is set between 2.5-0.042 1/h. Finally, in case of the spectrum in Fig.
Fig. 7.6, the first range includes frequencies from 1.7 to 30 1/h, whereas the second range
starts at a frequency of 2.2 1/h and reaches up to 0.042 1/h. For both the ranges the linear
regressions of log(P(f)) and log(f) are marked on the graphs with a dotted line and their slopes
are stated. Similar behaviour is found in almost all the remaining Warsaw rain gauges
(Appendix Ill, Section A). To determine the power spectral densities of the Warsaw
precipitation 1-minute time series, recorded from September 2008 to November 2010, a
Pascal program SPECTRUM_Warsaw and a MATLAB script EvaluateSpectrum2b are used.
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Figure 7.4. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to

November 2010, for rain gauge R06
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Figure 7.5. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to

November 2010, for rain gauge R15
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Figure 7.6. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to
November 2010, for rain gauge R25

Most of the energy spectra exhibit no distinct spectral peaks, indicating the presence of
periodicity in the time series; only in case of R09 and R23 a slight peak can be seen for the
frequency corresponding to about 2 months (Figs 111.8 and 111.21 Appendix 111, Section A).

As shown in Tab.7.3, in almost every case for high frequencies the spectrum slope, i.e. the
exponent Bi, is greater than 1 (excluding RO3 and R06), and is equal on average to 1.68.
Moving down in frequency, excluding the significantly outlying R06, a spectral “brake” is
observable in correspondence of the frequencies ranging from 0.42 to 0.91 1/h (i.e. 25-55
minutes). This spectral brake agrees with the critical scale obtained during functional box-
counting analysis (Figs 7.4+7.6, range of break: 30-60 minutes). By that means, on a time
scale corresponding to a frequency of about f = 1.8 1/h (=33 minutes) a transition region from
one scaling behaviour (for higher frequencies) to another (for lower frequencies) is
recognizable. For the latter, the fluctuation of energy spectra is significant but, at least up to a
frequency of about 0.042 1/h (that is 24 hours) a power law relation is still observable. The
spectral exponent B2 for this range of frequencies is smaller than 1 in almost all the cases
(excluding R17) and on average is 0.68. All the mentioned above parameters had been read

directly from the graphs.
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Table 7.3. Spectral exponents of two scaling regimes for 1-minute time series energy spectra, from 25 rain
gauges with basic statistics

Rain gauge B1 B2 B(rra?rlfuﬁgé; t

RO1 1.53 0.63 35
R02 1.60 0.57 40
RO3 1.00 0.72 32
R04 1.85 0.74 25
RO5 1.20 0.57 55
RO6 0.81 0.60 150*
RO7 1.74 0.77 43
R08 1.34 0.85 40
R0O9 1.75 0.77 35
R10 1.92 0.72 30
R11 1.72 0.80 27
R12 1.79 0.67 33
R13 1.53 0.61 40
R14 2.01 0.73 30
R15 1.71 0.91 29
R16 1.91 0.80 25
R17 1.86 1.00 32
R18 1.56 0.59 46
R19 1.91 0.59 33
R20 2.06 0.51 32
R21 2.12 0.51 27
R22 1.32 0.48 50
R23 1.72 0.59 38
R24 2.18 0.63 26
R25 1.85 0.68 25
Average 1.68 0.68 34
Median 1.74 0.67 32
Standard deviation | 0.34 0.13 8
Minimum 0.81 0.48 25
Maximum 2.18 1.00 55
First quartile (25th 1.53 0.59 28
Third quartile (75th | 1.91 0.77 40

*value omitted as extremely outlying at calculation of set statistics

The basic statistics demonstrate variability of the analysed values within the set of the time
series from 25 Warsaw rain gauge network. The values of the spectral exponents change
between 0.81 and 2.18 for 1 and between 0.48 and 1.00 for B2. Despite the clear variation of
extreme values, it should be noted that the analysed sets of parameters are relatively tightly
clustered around the mean values, as evidenced, especially for B exponents, by a low value of
standard deviation and the proximity of the first and third quartiles to the mean values.

The above described results concerning the rain gauge network in Warsaw are in good
agreement with the results obtained by the study conducted by Licznar et al. (2011) in 4
locations in Germany revealing a spectral break at 60 minutes. The values of spectral
exponents for rainfall data collected by 4 rain gauges are: 1 greater than 1, and B2 around 0.5
(Licznar et al., 2011). The same study conducted by Licznar (2009) in Wroctaw (Poland) for
rainfall data series recorded in 1964 and 1997 provides similar results: the spectral break
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occurs for 110 and 85 minutes and the values of spectral exponents amount to 0.27 and 0.28
for B1, and 1.40 and 1.11 for B2 (Licznar, 2009; Licznar et al., 2011). Analogously, de Lima
(1998) obtained B1 equal to 0.73 and 0.96, and 2 equal to 0.15 and 0.21 for rainfall data series
collected in Vale Formoso (Portugal) and Nancy (France). Furthermore, spectral breaks are
observed respectively for frequencies corresponding to around 100 minutes for Vale Formoso
and from 17 to 80 minutes for Nancy (de Lima, 1998).

In all the above-mentioned studies, a scale invariant behaviour is detected over a range of
scales as well as the spectrum break, which, however occurs for different time scales; this fact
is strictly related to the difficulty of calculating the exact point where the spectral break arises,
and therefore, the determination of the precise value of the spectral exponent f is problematic.
A detailed study conducted by de Lima (1998) on over 20-years rainfall time series
demonstrates that there is no fundamental character of the observed energy spectral break;
indeed, on analysed power spectra of different n-power renormalized rainfall process, the
spectral break does not occur at a fixed scale, and by that means, it does not depend on the
intensity of the process. Therefore, the presence of a break is directly related to the scale-
depending difficulties of measuring and/or the technique adopted to processing data.

It is reasonable to say, that the quantization of the rainfall process by the currently
available measuring devices, like those forming the Warsaw rain gauge network, affects
significantly the proper reflection of natural rainfall process for time series resolution smaller
than 5 minutes. Thus, it raises the question whether such a level of resolution in recording
data it is achievable by generally accessible devices. Studies conducted by Menabde et al.
(1997) on 17 hours of 15-seconds rainfall rime series, recorded by a high-time-resolution rain
gauge in Norfolk Island and Matawai (New Zealand) confirm the scale invariant behaviour
and moreover, the presence of a single spectral exponent ( = 1,52 — Norfolk Island and p =
1,37 — Matawai) for the time scales form 4 minutes up to 17 hours. Despite the high resolution
of the data, the analysis is not performed by Menabde et al. (1997) for time scales smaller
than 4 minutes, clearly avoiding quantization of data for higher frequencies.

It is important to note that the discussed energy spectra are obtained for a precipitation
time series (containing both liquid and solid precipitation records) whereas the mentioned
studies of de Lima (1998) and Licznar (1998) were limited to only rainfall time series
analysis. In Warsaw, most rainfall precipitation falls between May and August (Fig. 7.7) and
the summer precipitation, in many cases (R06 and R15), is twice (or triple) that of winter
precipitation when low intensity events dominate. In addition, winter precipitation is

dominated by stratiform-type, long-lasting and small or moderate intensity events. Whereas in
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summer, except long-lasting and small intensity stratiform events, one can expect also
convective rainfalls of shorter durations but much higher and more variable intensities. In
order to have a better insight into this phenomenon, sample energy spectra are calculated for

separate periods of summer and winter half-years.
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Figure 7.7. Monthly rainfall in Warsaw (2009) for gauges R06, R15 and R25
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Sample energy spectra for summer and winter season, for rain gauges R06, R15 and R25 are
presented in Figs 7.8+7.10 (all the remaining result are listed in Appendix Ill, Section B). As
for the already discussed all year long spectra, the seasonal graphs present a scale-invariant
(power-law) behaviour over a range of scales, occurring in almost all the cases, although
winter spectra are generally characterized by a smoother behaviour. The analysis of seasonal
energy spectra reveals the presence of spectral breaks, but at shifted frequencies locations are
compared to a year-long series. As shown in Tab.7.4, the spectral break in summer is formed
for frequency corresponding on average to times of 61 minutes, while the winter spectral
break is observed form small frequencies, corresponding on average to time of 13 hours and
24 minutes.

The above discussed observations confirm the hypothesis that the precipitation forming
mechanisms have influence on energy spectra shape. The vivid shift of a spectral break
occurrence for separate summer and winter half-years could be explained by the seasonality
of precipitation: summer precipitation generally occurs as short-duration and high intensity
storms; during summertime, there is a high frequency of convective storms, forming along a

fast-moving cold front, whereas winter stratiform precipitation occurs usually as low-intensity
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rain or snow, generated by a slow-mowing cold fronts. A stratiform precipitation can be
distinguished from a convective event if its vertical air velocity is less than the terminal fall
velocity of ice crystals and snow (Houze, 1993). Most probably, the estimated times of
spectral breaks of 61 minutes, and 13 hours and 24 minutes could be associated with the
duration times of respectively shorter convective storms and much longer stratiform

precipitations in Warsaw.

Table 7.4. Spectral energy breaks for 1-minute summer and winter time series, from 25 rain gauges with
their basic statistics.

Summer season | Winter season
Rain gauge Break point

min -
RO1 67 16h 24 min
R02 56 28h 11 min
R0O3 67 34h 28 min
R04 59 14h 17 min
R0O5 59 10h 55 min
R06 56 14h 17 min
RO7 74 13h 9 min
R08 85 18h 46 min
R09 77 7h 16 min
R10 60 9h 48 min
R11 61 12h 20 min
R12 52 14h 19 min
R13 61 6h 32 min
R14 61 12h 30 min
R15 85 4h 30 min
R16 61 10h 12 min
R17 222* 5h 24 min
R18 51 34h 31 min
R19 231* 4h 30 min
R20 55 17h 33 min
R21 43 4h 12 min
R22 51 153h 50 min*
R23 61 16h 40 min
R24 55 11h 41 min
R25 55 9h 32 min
Average 61 13h 24 min
Median 60 12h 25 min
Standard deviation 11 8h 26 min
Minimum 43 4h 27 min
Maximum 85 34h 28 min
First quartile (25th %) | 55 8h 29 min
Third quartile (75th %) | 64 16h 30 min

*value omitted as extremely outlying at calculation of set statistics
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Figure 7.8. Energy spectra for 1-minute rainfall time-series from Warsaw, for
Summer season (upper graph) and winter season (lower graph)
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, R15b - summer season 2009
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Figure 7.9. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R15 in 2009.
Summer season (upper graph) and winter season (lower graph)
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Figure 7.10. Energy spectrum for 1-minute rainfall time-series from Warsaw, for

R25b - summer season 2009
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In multifractal studies, the B exponent plays an important role in the determination of the
universal nonstationarity index H, which is obtained by the comparison of the spectral
exponent of the examined non-stationary process to the spectral exponent of a stationary
process (the calculation steps are discussed in detail in Section 7.7). To this end, the last step
of spectral density analysis is the estimation of the 3 exponent for the overall time series i.e.
for the total average of analysed frequencies. In Figs 7.11+7.13 the overall slopes of the
sample rain gauges R06, R15 and R25 are presented. The graphical results for the remaining
22 of the Warsaw rain gauges are set up in Appendix Il1, Section C.

The calculated spectral exponents of the Warsaw time series are listed in Tab.7.5. These

values are the ones considered for the estimation of the multifractal parameter H.

o R06
10 g ——

B=0448

~~~~~
.

hhhhh

..
hhhhh
_____

3
=

f(1/h)

Figure 7.11. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R06 with the
overall slope
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Table 7.5. Spectral exponents of energy spectra for 1-minute time series from 25 rain gauges with basic
statistics calculated for the whole frequency range

Rain gauge B
RO1 0.577
R02 0.569
RO3 0.522
RO4 0.662
RO5 0.504
R06 0.448
RO7 0.660
R0O8 0.613
R09 0.645
R10 0.647
R11 0.641
R12 0.644
R13 0.558
R14 0.670
R15 0.643
R16 0.676
R17 0.709
R18 0.573
R19 0.621
R20 0.603
R21 0.604
R22 0.532
R23 0.601
R24 0.677
R25 0.681
Average 0.611
Median 0.621
Standard deviation 0.063
Minimum 0.448
Maximum 0.709
First quartile (25th %) 0.573
Third quartile (75th %) 0.660

To sum up the spectral analysis, it can be said that the obtained results for the Warsaw
rainfall time series indicate a scale-invariance of the local rainfall process, occurring
particularly for time scales from 1 minute up to at least 24 hours. This peculiarity is even
more pronounced in a seasonal analysis, where a scale-invariant behaviour reflects the
features of summer/winter precipitation, defined by convective/stratiform nature of the
process. Furthermore, the spectral breaks, separating two different scaling domains,
demonstrate the existence of more than one scaling behaviour (typical of monofractals) and
involves the application of more complex methods of Warsaw precipitation series studies,

such as multifractal methods.

7.3 Trace moment method (TM)

The sample results for rain gauges R06, R15 and R25 obtained by applying the trace

moment method to the 1-minute Warsaw precipitation time series are presented in Figs
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7.14+7.16 in double logarithmic scale. The results of the remaining 22 rain gauges are set up
in Appendix 1V, Section A. The graphs display the relationships between the log values of the
average g moment of the rainfall intensity &) and the logarithms of the scale coefficients A.

The analysis is performed using TRACE_Warsaw program and the results are plotted by
means of TracePlot script for time scales from 1 minute (A = 16384) to over 16384 minutes
(11 days, A = 1). The calculations are carried out for 27 values of the moments q € [0.01;
7.00], depending on the intensity of the event rain: 14 values smaller than 1 for low-intensity
rains (to be found on the left side of the pictures) and 13 greater than or equal to 1 for high-
intensity events (on the right side of the pictures). For simplicity, the pictures present only
selected values of the moments g (to be read in the legend).

All the results obtained for the 25 rain gauges have a similar nature. It is possible to notice
the linear relationship between the log mean values of the moments and the log scaling values
A, indicating the scaling nature of the analysed rainfall time series. However, for the highest
and lowest values of time scales, a deviation of the expected power law (linear) behaviour is
visible: a power-law line slope is decreasing at a time scale around 32 minutes to 1 hour (i.e.
log(A) = 3.01+2.41, so t = 16+64 min) for all the g moments. It is consistent with the results
obtained so far by spectral density analysis and functional box counting where similar
magnitude time scales were identified as “break” in scaling.

The lowering of the slope values is particularly evident for low-intensity precipitation (i.e.
g<1) in all the 25 plots, especially for the lowest values of g (0.05, 0.3) at a time scale around
34 hours to 11 days (i.e. log(A) = 0.9+0.0, thus t = 2048+16384 min). Whereas in the same
range of scales, this kind of the slope lowering behaviour is slightly visible for the high-
intensity precipitation (i.e. g>1). Actually, the higher the ¢ moment, the more magnified the
highest rainfall intensities and averaged g-moments values are, determined by their
magnitude.

It follows that the precipitation series during recording are subjected to a clear
overestimation of lower intensities and a slight underestimation of higher intensities. The
obtained results are comparable with those achieved by de Lima (1998) for data from Vale
Formoso, where a power law deviation at a time scale of around 30 minutes to 1 hour is
observed as well as the same under/overestimation of the smallest and highest rainfall

intensities.
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Figure 7.14. Log-log plot of the mean g moments of the rainfall intensity ¢; against the scale coefficient A for
1-minute precipitation data series from Warsaw rain gauge R06, for g<1 (on left) and for g>1 (on
right). The time scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 7.15. Log-log plot of the mean g moments of the rainfall intensity ¢, against the scale coefficient A for
1-minute precipitation data series from Warsaw rain gauge R15, for g<1 (on left) and for g>1 (on
right). The time scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 7.16. Log-log plot of the mean g moments of the rainfall intensity ¢; against the scale coefficient A for
1-minute precipitation data series from Warsaw rain gauge R25, for g<1 (on left) and for g>1 (on
right). The time scales range from A = 16384 (1 minute) to A = 1 (11.4 days)

The second part of the trace moment analysis is focused on the determination of the
moment scaling function K(q) which, in turn, is strictly related to the codimension function
c(y) obtained by the probability distribution/multiple scaling method, described in the
following Section. Hereby, the results of K(q) function are discussed together with the results

of c(y) function in Section 7.5.

7.4 Probability distribution/multiple scaling (PDMS)

PDMS method is mainly focused on determining the codimension function c(y), i.e. the
scaling of the probability distributions of the given process (described in detail in the
following Section). To reach this goal, it must first be appointed the relationship of the
probability of exceeding rainfall-intensity levels of singularity y, observed on scales of
resolution A, against the scale ratio A. Such relationships sample log-log plots for selected
Warsaw rain gauges R06, R15 and R25 as shown in Figs 7.17+7.19. The analysis is
performed for 24 values of singularity y € [0.04; 0.96], using PDMS_Warsaw program and
PDMSplot script. For simplicity, the graphs refer only to selected singularity orders y (to be
read in the legend). The remaining plots for other 22 gauges are provided in Appendix V,
Section A.

In all the analysed cases a scale relation of the probability Pr(e. > ") is well preserved, as

evidenced by a linear shape of the log-log values, particularly for the singularity levels y close
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to 0.4. For the specific case of y = 0.4, the linear fitting is almost exact (what is visible by the
dotted line in the plots). The resulting slopes of linear relationships for y = 0.4, for the sample
rain gauges are -0.480, -0.441 and -0.475 respectively, and the average slope for all the
Warsaw rain gauges is equal to -0.475. The absolute value of the slope corresponds to the
codimension value of c(y) for y = 0.4 (see Fig. 7.24 in the following Section).

The overestimation of low intensity precipitation and underestimation of highest intensity
precipitation in recorded series as reported by several authors (e.g. de Lima, 1998; Licznar,
2009) and confirmed by the already discussed results could also be observed for the Warsaw
gauges log-log plots for probability exceeding rainfall. The observed course of the plots
suggests the presence of two different scaling regimes (reported by e.g. Tessier and al., 1996),
one for time scales from 1 minute to 1 hour and another from 1 hour up to 11 days.
Interestingly, the scale time around 1 hour (log(A) = 2.4, A = 251, t = 63 min) constitutes a
kind of boundary value between two different scaling regimes: the linear behaviour of the
probability plots deviates upwards from the straight line for small singularities (related to low-
intensity events) and downwards for high-intensity events, remaining however in a power-law
relation. The discussed results are very similar to those observed by Licznar (2009) for

rainfall time series for Wroclaw.
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Figure 7.17. Log-log plot of the probability of exceeding rainfall-intensity levels for selected values of
singularity y relation against scale parameter A, obtained for 1-minute precipitation data series from
Warsaw rain gauge R06. The time scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 7.18. Log-log plot of the probability of exceeding rainfall-intensity levels for selected values of
singularity y relation against scale parameter A, obtained for 1-minute precipitation data series from
Warsaw rain gauge R15. The time scales range from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 7.19. Log-log plot of the probability of exceeding rainfall-intensity levels for selected values of
singularity y relation against scale parameter A, obtained for 1-minute precipitation data series from
Warsaw rain gauge R25. The time scales range from A = 16384 (1 minute) to A =1 (11.4 days)

7.5 Multifractal exponent functions

The statistical description of a multifractal process, as for all other random variables, leads
to the analysis of the probability distribution or its statistical moments. In multifractal

processes a duality exists between probabilities and moments, both related to each other by a
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type of Legendre transform (Frish and Parisi, 1985; Schertzer and Lovejoy, 1993). Thus, the
scaling behavior, verified by the trace moment analysis (Figs 7.14+7.16) and probability
distribution/multiple scaling analysis (Figs 7.17+7.19), may be also described by multifractal
exponent functions: the moment scaling function K(qg) and the codimension function c(y) (see
Sections 6.1 and 6.6).

The sample empirical moments scaling function K(q), determined by the trace moment
method, are plotted in Figs 7.21+7.23 for Warsaw rain gauge R06, R15 and R25. Their shapes
are almost identical and similar to shapes obtained for other 22 gauges (the remaining plot are
presented in Appendix IV, Section B). Regions of linear and non-linear relationship, below
and above one single point, of coordinates (2.48; 0.73) are visible on the graphs. The abscissa
of this point is identified as the critical order moments gp and the ordinate as K(gp) of a
process.

All the 25 plots of empirical K(q) function for Warsaw gauges exhibit linear relationship
for moment larger than 2.48. They differ from the theoretical moment scaling function K(q),
defined by Schertzer and Lovejoy (1987, 1993). The theoretical K(q) function has a fully
curvilinear shape presenting two intersections with the x axis, K(q) = 0, namely at ¢ = 1 and
g = 0 (Fig. 7.20 left), wherein the latter condition is fulfilled only for multifractals filling the
available space in simple manner (Lovejoy and Schertzer, 2013).

K(9) o

D+D,

,: ’,q
0 Yo Yo

Figure 7.20. Shape of the theoretical scaling exponent functions K(q) and c(y) for multifractal first-order
phase transformations (from Lovejoy and Schertzer, 2013)

As shown on the sample graphs of empirical K(q) function, the curvilinear shape is
perceivable only for the lowest values of the moments. Moreover, the empirical K(g) function
equals to 0 only in case of g = 1. Both the straightness and the presence of only one zero point
is typical for real rainfall time series. It is an expected behavior due to the deviations detected
in TM plots (Figs 7.14+7.16), and it corresponds to the results obtained by other researchers
(e.g. de Lima, 1998; Licznar, 2009).
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Figure 7.21. The empirical scaling moment function log-log plot obtained for 1-minute precipitation
series from Warsaw rain gauge R06 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 7.22. The empirical scaling moment function log-log plot obtained for 1-minute precipitation
series from Warsaw rain gauge R15 for time scales from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 7.23. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data
series from Warsaw rain gauge R25 for time scales from A = 16384 (1 minute) to A = 1 (11.4 days)

Additionally, if the processes covers the available 1-dimensional space in a more complex
manner, the empirical moment scaling function K(q) provides the value of codimension,
defined as the intercept of the function for K(q = 0) = -c. In this way, c is the codimension of
the “support” of the process and it is strictly related to the dimension as follows:

c=1-D (33)

Based on the plots, the Warsaw time series codimension value amounts to 0.35, and the
average dimension D isequal to D =1 - ¢ = 0.65.

The empirical codimension functions c(y), determined by the probability
distribution/multiple scaling method, for selected rain gauges are plotted in Fig. 7.24 (the
remaining plots are presented in Appendix V, Section B). The shape of the curve is consistent
with the theoretical codimension function (Fig. 7.20 right) namely, includes both linear and
non-linear sections. The non-linear behavior concerns the middle section of the plots, for
orders of singularity from 0.08 to 0.65+0.06. For orders y > 0.65 the curves become linear,
and y = 0.65 is identified as the critical singularity yp.

First order multifractal transformation, resulting from the observation (recording) carried
out in a scale larger than the scale of the internal homogeneity of the actual process, are often
due to the limitations of measuring instruments, is characterized by a linear behavior of the
c(y) function, for y > yp. The equation of such a line, allows to determine the value of gp as

the slope, and K(q) as the negative value of the intercept.
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Figure 7.24. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R06, R15 and R25, for time scales from
1 minute 11.4 days
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For singularity orders, y > yp, the fitting lines (blue lines in figures) and their equations are
visible on the graphs. The estimated slopes for the selected rain gauges R06, R15 and R25 are
equal to 2.26, 2.40 and 2.25 respectively (Fig. 7.24). The overall slope value for the entire
network is on average 2.44+0.26. As it could be noticed, the empirical c(y) codimension
function for all the 25 Warsaw gauges are characterized by strong variability of the slopes for
the linear sections marking the first-order multifractal phase transformation.

Regarding the intercepts of the fitted lines, they are equal to -0.72, -0.82 and -0.57
respectively for gauges R06, R15 and R25, and for all the network the intercept is on average
-0.74+0.36. In accordance to the duality between the codimension and the moment scaling
functions, the slope and its negative intercept of the fitting line defined by c(y), should satisfy
the critical scaling moment gp and its corresponding function value, defined by K(q). It is
easily seen that the overall value of the slope (2.44+0.26), i.e. qp = 2.44, as well as the
negative intercept -0.74+0.36, i.e. K(qo) = 0.74, are both defined by c(y), and coincide with
values of the coordinates of the beginning point of the linear section of K(q) that is (2.48;
0.73). Hence, the duality of those two parameters confirms the correctness of the
independently performed the PDMS and the TM analysis of Warsaw time series.

The PDMS method additionally defines the fractal dimension of the geometrical “support”
of the process, already determined by functional box counting method. It is determined by the
intersection of the obtained fitting lines for values y > yp with the line of equation c(y) =y (as
visible in Fig. 7.24). The resulting point of coordinates (D; D) is defined by Schertzer and
Lovejoy (1993) as the mentioned fractal dimension. For the selected rain gauges R06, R15
and R25, D is equal to 0.57, 0.59 and 0.46 respectively. The overall value for the entire
network is D = 0.55+0.05. These results coincide with the values already obtained by the
functional box counting method namely D = 0.52, 0.48 and 0.55 for rain gauges R06, R15
and R25 and the average value for 25 rain gauges set D = 0.53. The results are also close to

D = 0.65 obtained by the TM method as an average value for 25 gauges’ group.

7.6 Double trace moment method (DTM)

The DTM analysis, focused on the determination of order moments q for n-normalized
intensities of events, is performed using the modified version of the DTM_Warsaw program
and by a MATLAB script DTMPIlot. The calculations, set for several values of parameters,
thus oriented to the estimation of basic universal multifractal parameters, cover ranges of
moment order g € [0.9; 2.1] and n € [0.13; 10.00]. As a result, sample plots of log|K(g,n)|

against log(n) for selected order moments g (indicated in the legend), are provided in Figs
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for other 22 gauges are set up in Appendix VI, Section A).

7.25+7.27. These figures concern Warsaw rain gauges R06, R15 and R25; the remaining plots
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Figure 7.25. DTM plots of log|K(g,n)| against log(n) for selected order moments q obtained for 1-minute
precipitation data series from Warsaw rain gauge R06
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Figure 7.26. DTM plots of log|K(g,n)| against log(n) for selected order moments g obtained for 1-minute
precipitation data series from Warsaw rain gauge R15
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Figure 7.27. DTM plots of log|K(g,n)| against log(n) for selected order moments q obtained for 1-minute
precipitation data series from Warsaw rain gauge R25

The confirmation of the “universality” of the process is granted by the parallel shapes of
the obtained graphs, observed for the entire period of analysis. Two scaling “breaks” causes
the characteristic “S”-shaped bend of the curves and the linear relation of the middle section
of the graph (dotted lines) is therefore delimited by two critical orders of moments gmin and
gmax. The section between these two values is the one suitable for the estimation of universal
parameter a, as the slope of the graph of the linear relationship, according to the relation for

conservative processes (H = 0):

K(g,m) = naK(q) (34)
Based on Equation (34), it is possible to rewrite the Equation (31) as follows:
(in“(q“ —q)
a—1 fora#1
K(q,n) = ! (35)

LCln qIn(q) fora =1,

where a assumes values at the range [0;2], and q>0 for a£2.

From the log-log plots the values of log(n) limiting the linear relationships (namely
log(n)min and log(n)max) are read for each order moment g. Then, the values of n are
calculated, and the critical moments are determined by the product of the moments g and n
(for further discussion please refer to Tessier et al. 1993). All the estimated values for the
sample rain gauges R06, R15 and R25 are listed in Tab.7.6 (the values obtained for all the

remaining gauges are given in Tables VI.a in Appendix VI, Section B). The critical moments
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for selected rain gauges R05, R15 and R25 are equal to: 0.98, 1.00 and 1.07 for qmin and 2.89,
2.94 and 2.90 for gmax respectively. The overall averaged results obtained for the entire
Warsaw network are gmin = 1.04+0.06 and gmax = 2.91+0.23. Nevertheless, it has to be
underlined that the estimate of critical moments is liable to subjective error while reading data
from graphs. Indeed, it should be noticed that estimated values of gmax for Warsaw gauges
(Omax = 2.91+0.23) is higher than the already discussed values of go form the TM (go = 2.48)
and the PDMS studies (qp = 2.44+0.26).

Table 7.6. Critical moments gmin and Omax €stimated based on Figs 7.25+7.27 for selected values of order
moment g, obtained for 1-minute precipitation series from Warsaw rain gauges R06, R15 and R25

R06

Curve for g Minimal critical moment gmin _ Maximal critical moment Qmax -
log(n) n Qmin = Q1) log(m) n Qmax = Q1)

0.90 0.0 1.00 0.90 0.5 3.16 2.85
1.10 -0.1 0.79 0.87 0.4 2.51 2.76
1.20 -0.1 0.79 0.95 0.3 2.00 2.39
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.2 0.63 0.88 0.3 2.00 2.79
1.50 -0.2 0.63 0.95 0.3 2.00 2.99
1.60 -0.2 0.63 1.01 0.3 2.00 3.19
1.70 -0.2 0.63 1.07 0.2 1.58 2.69
1.80 -0.2 0.63 1.14 0.2 1.58 2.85
1.90 -0.3 0.50 0.95 0.2 1.58 3.01
2.00 -0.3 0.50 1.00 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.2 1.58 3.33
Average 0.98 Average 2.89
Standard deviation 0.08 Standard deviation 0.27

R15
0.90 0.0 1.00 0.90 0.5 3.16 2.85
1.10 -0.1 0.79 0.87 0.4 2.51 2.76
1.20 -0.1 0.79 0.95 0.4 2.51 3.01
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.2 0.63 0.95 0.3 2.00 2.99
1.60 -0.2 0.63 1.01 0.3 2.00 3.19
1.70 -0.2 0.63 1.07 0.2 1.58 2.69
1.80 -0.2 0.63 1.14 0.2 1.58 2.85
1.90 -0.3 0.50 0.95 0.2 1.58 3.01
2.00 -0.3 0.50 1.00 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.2 1.58 3.33
Average 1.00 Average 2.94
Standard deviation 0.08 Standard deviation 0.22
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R25

0.90 0.00 1.00 0.90 0.4 2.51 2.26
1.10 -0.10 0.79 0.87 0.4 2.51 2.76
1.20 -0.10 0.79 0.95 0.3 2.00 2.39
1.30 -0.10 0.79 1.03 0.3 2.00 2.59
1.40 -0.10 0.79 1.11 0.3 2.00 2.79
1.50 -0.10 0.79 1.19 0.3 2.00 2.99
1.60 -0.20 0.63 1.01 0.3 2.00 3.19
1.70 -0.20 0.63 1.07 0.3 2.00 3.39
1.80 -0.20 0.63 1.14 0.2 1.58 2.85
1.90 -0.20 0.63 1.20 0.2 1.58 3.01
2.00 -0.20 0.63 1.26 0.2 1.58 3.17
2.10 -0.30 0.50 1.05 0.2 1.58 3.33
Average 1.07 Average 2.90

Standard deviation 0.12 Standard deviation 0.36

Estimations of the universal parameter o, as the slope of log|K(q,n)| against log(n) for the
range of data delimited by gmin and gmax, and consequently, the parameter C: are the final step
of the DTM analysis. All the obtained results for selected gauges R06, R15 and R25 are listed
in Tab.7.7 (and in Tables VILb in Appendix VI, Section B for all the remaining 22 gauges of
the set). For the sample rain gauges R06, R15 and R25 the parameter o amounts to 0.938,
0.546 and 0.848. The value of a parameter for 25 gauges set is oo = 0.77+0.09.

Because of a # 1, the Equation (35) becomes suitable to the estimation of C; as follows
(the identity K(q) = K(q,1) is visible in Fig. 7.28):

C
K@) = K@D =—7 @ —q) (36)

For the selected rain gauges R06, R15 and R25 the universal parameters C; are 0.413, 0.439
and 0.337 respectively. The overall value of C; for the whole analysed group of 25 gauges in
Warsaw is equal to C1 = 0.40+0.02.
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Figure 7.28. Empirical moment scaling function K(q) obtained by TM method on the background of K(qg,1)
obtained by DTM method (based on the results for gauge R06)
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The degree of multifractality a determines the universality class of an event. According to
the classification of the multifractals for 0<o<1 in case of Warsaw gauges, it is a (log) Lévy
process with bounded singularities, presenting soft behaviour, what means, is a dressed
process (see Section 6.2). The universal multifractal parameters a and C; are also used to
determine the critical moment gp associated with multifractal first-order phase transition,
according to the equation:

Ci a9 —qp
=D 37

By that means, for o = 0.77, C1 = 0.40 and D = 0.55 i.e. averaged values for a set of 25
Warsaw gauges, the critical moment gp is equal to 2.50. This value is at least comparable to
go = 2.48 and gp = 2.44+0.26 originating from the TM and the PDMS studies respectively.

Table 7.7. Calculation of o and C; parameters for 1-minute precipitation series from Warsaw rain gauges
R06, R15 and R25

Gauge R06
Curve for q K(q,1) o C1

1.10 -1.378 0.971 0.400
1.20 -1.060 1.034 0.396
1.30 -0.868 1.038 0.396
1.40 -0.726 0.931 0.404
1.50 -0.612 0.935 0.407
1.60 -0.517 0.935 0.410
1.70 -0.435 0.958 0.412
1.80 -0.363 0.961 0.414
1.90 -0.299 0.848 0.433
2.00 -0.241 0.853 0.436
2.10 -0.189 0.856 0.438
Average 0.938 0.413

Standard deviation 0.066 0.015

Gauge R15

1.10 -1.352 0.563 0.433
120 -1.042 0.559 0.432
1.30 -0.856 0.596 0.430
1.40 -0.722 0.593 0.431
1.50 -0.616 0.544 0.436
1.60 -0.529 0.543 0.437
1.70 -0.454 0.553 0.438
1.80 -0.388 0.555 0.439
1.90 -0.330 0.496 0.449
2.00 -0.278 0.498 0.450
2.10 -0.231 0.500 0.451
Average 0.546 0.439

Standard deviation 0.035 0.008
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Gauge R25

1.10 -1.454 0.865 0.337
1.20 -1.142 0.888 0.333
1.30 -0.955 0.910 0.329
1.40 -0.818 0.921 0.327
1.50 -0.709 0.923 0.326
1.60 -0.618 0.816 0.335
1.70 -0.538 0.819 0.337
1.80 -0.468 0.814 0.339
1.90 -0.406 0.822 0.341
2.00 -0.349 0.826 0.343
2.10 -0.297 0.719 0.359
Average 0.848 0.337

Standard deviation 0.061 0.009

7.7 Universal multifractal parameters

In this section, the final results of the multifractal studies are presented. In Tab.7.8 the
universal multifractal parameters a, C1 and H, together with the global scaling exponent 3 are
listed. The parameters in Tab.7.8 concern 1-minute precipitation time series from all the 25
rain gauges of the Warsaw rain gauge network, and cover the period from September 2008 to
November 2010. The universal parameters o and Ci are determined by the double trace
moment method (DTM) already described in Section 7.6, whereas the global scaling exponent
B is estimated by the spectral density analysis, discussed in Section 7.2.

Knowing the parameters a and Cy, the universal parameter H is calculated according to the
following equation

-1 Cc(2*-2
H= ﬁz + ;Ea—l)) (38)

The overall multifractal parameter H = 0.06+0.02 for all the Warsaw gauging network

together with the already determined parameters a = 0.77+0.09 and C; = 0.40+0.02 forms a
parameter set very similar to the results obtained by Tessier et al. (1996) for 30 locations in
France, for rainfall data from 1 day to 30 years (o = 0.7+0.2, C1 = 0.4+0.1 and H = -0.1+0.1).
Moreover, comparable results are reported by de Lima (1998) for Vale Formoso, Portugal
(0 = 0.49, C1 = 0.51 and H = -0.13) and Licznar (2009) for Wroctaw, Poland (o = 0.69,
C1=0.34 and H = -0.01).

However, to quantify the level of variability of universal multifractal parameter among the
network, the taxonomic investigation is performed using the hierarchical analysis. The
calculations are performed for two groups of multifractal parameters: first group covers a set
of all the 3 parameters a, C: and H, the second only a and Ci, assuming H = 0 (as for

conserved process). The universal multifractal parameters for specific gauges of Warsaw
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network are in majority of cases very similar. The results are summarized in dendrograms,
where the distance between rain gauges is measured by metric distance and linkage methods
listed in Tab.6.1.

Table 7.8. Universal multifractal parameters o, C; and H, and the global scaling exponent  for Warsaw rain
gauges, for 1-minute time series, recorded from September 2008 to November 2010

Rai Parameter
ain gauge o ) v 5

RO1L Average 0.80 0.40 0.05 0.58
St. dev. 0.03 0.01 - -

RO2 Average 0.79 0.40 0.04 0.57
St. dev. 0.04 0.01

RO3 Average 0.81 0.39 0.01 0.52
St. dev. 0.04 0.01

RO4 Average 0.65 0.38 0.04 0.66
St. dev. 0.04 0.01

RO5 Average 0.76 0.42 0.02 0.50
St. dev. 0.04 0.01 -

RO6 Average 0.94 0.41 0.00 0.45
St. dev. 0.07 0.02 -

RO7 Average 0.75 0.40 0.08 0.66
St. dev. 0.05 0.01 -

RO8 Average 0.70 0.39 0.05 0.61
St. dev. 0.04 0.01 -

RO9 Average 0.73 0.39 0.07 0.65
St. dev. 0.06 0.01 -

R10 Average 0.72 0.40 0.07 0.65
St. dev. 0.04 0.01 -

R11 Average 0.72 0.40 0.07 0.64
St. dev. 0.05 0.01 -

R12 Average 0.82 0.38 0.07 0.64
St. dev. 0.04 0.01 -

R13 Average 0.71 0.43 0.05 0.56
St. dev. 0.03 0.01 -

R14 Average 0.82 0.38 0.08 0.67
St. dev. 0.05 0.01 -

R15 Average 0.55 0.44 0.08 0.64
St. dev. 0.04 0.01 -

R16 Average 0.74 0.38 0.08 0.68
St. dev. 0.05 0.01 -

R17 Average 0.71 0.40 0.10 0.71
St. dev. 0.04 0.01 -

R18 Average 0.83 0.40 0.05 0.57
St. dev. 0.05 0.01 -

R19 Average 0.87 0.39 0.07 0.62
St. dev. 0.04 0.01 -

R20 Average 0.87 0.40 0.07 0.60
St. dev. 0.05 0.01 -

R21 Average 0.93 0.39 0.07 0.60
St. dev. 0.06 0.01 -

R22 Average 0.78 0.40 0.03 0.53
St. dev. 0.05 0.01 -

R23 Average 0.74 0.40 0.05 0.60
St. dev. 0.03 0.01 -

R24 Average 0.74 0.40 0.09 0.68
St. dev. 0.03 0.01 -

R25 Average 0.85 0.34 0.06 0.68
St. dev. 0.06 0.01 -

Average 0.77 0.40 0.06 0.61
Standard deviation 0.09 0.02 0.02 0.06

94



In Figure 7.29 the results of clustering for all three universal parameters: o, C1 and H using
average linkage and Euclidean distance are plotted. The vertical scale shows the binding
distance, whereas the names of the rain gauges are presented on horizontal scale. The majority
of gauges is in a single group. The gauges of similar bending distance smaller than 0.051 are
marked in red. The biggest binding distance is observed only for three outlying gauges R21,
RO6 and R15. In case of gauges R21 and RO6 the binding distances are comparable and are
equal to 0.058 and 0.067 respectively, whereas for gauge R15 the binding distance is equal to
0.124. 1t has to be underlined, that this last value is at least twice bigger than the binding

distances obtained among other 22 closely located on dendrogram gauges.

Average linkage, Euclidean distance
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Figure 7.29. Dendrogram resulting from cluster analysis of universal multifractal parameters o, C; and H for
Warsaw rain gauge network, using average linkage and Euclidean distance

Due to a conserved nature of rainfall processes (confirmed by the obtained values of H
oscillating around 0), the similarity of gauges based only on 2 remaining a and C1 parameters
is investigated. The results of these studies in the form of dendrograms are plotted in Fig. 7.30
and Fig. 7.31. The largest distance from the nearest neighbour defined both by Euclidean and
Minkowski distance is equal to 0.240 for gauge R15 and 0.166 for both the gauges R21 and
R06. The behaviour of the remaining gauges is very similar as in case previous analysis
shown in Fig. 7.29. They are grouped practicaly in one big cluster with binding distances
(defined by Euclidean and Minkowski distance) not exceeding the boundary value of 0.104.
This value could not be directly compared to the distances presented in Fig. 7.29. However, it

should be noticed, that also in case of Fig. 7.30 and Fig. 7.31 the binding distance for the
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outermost outlying gauge R15 exceeds by double the binding values of the other gauges
forming the main cluster.

Average linkage, Euclidean distance
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Figure 7.30. Dendrogram resulting from cluster analysis of universal multifractal parameters o and C; for
Warsaw rain gauge network, using average linkage and Euclidean distance
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Figure 7.31. Dendrogram resulting from cluster analysis of universal multifractal parameters o and C; for
Warsaw rain gauge network, using average linkage and Minkowski distance

A quality measure of all the combination of methods used during hierarchical analysis is

the cophenetic correlation, showing the goodness of fit of the clustering: the closest to 1 is the
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value of this correlation, the better is the result. Among all the obtained dendrograms, the
above-presented in Fig. 7.29+7.31 are the ones with the highest value of cophenetic
correlation, equal to 0.831 and 0.834 respectively for the analysis of all 3 and only 2 universal
parameters. For other combinations of linkage methods and distance definition smaller values

of cophenetic correlation are reached as it could be seen from the Tab.7.9.

Table 7.9. Cophenetic correlation values obtained for different combination of linkage method and distance

definition
Linkage method
Cophenetic correlation Average |  Centroid Average |  Centroid
For a, C1 and H For aand C1

Euclidean 0.831 0.830 0.834 0.834
Seuclidean 0.643 0.673 0.660 0.652
Cityblock 0.812 0.808 0.799 0.798
Minkowski 0.831 0.830 0.834 0.834
Chebychev 0.830 0.829 0.834 0.834
Metric distance Mahalanobis 0.633 0.628 0.652 0.630
Cosine 0.658 0.661 0.643 0.684
Correlation 0.623 0.631 -0.249 -0.258

Spearman NaN -0.087 * *

Hamming 0.062 -0.008 * *

Jaccard 0.062 -0.008 * *

*values too small

The similarity of the majority of the Warsaw gauges with respect to their multifractal
parameters is in good agreement with former results of Licznar et al. (2015) analysis
performed on the same dataset but with alternative methodology, based on studies of BDCs
(breakdown coefficients distributions) for hierarchy of sub-daily timescales. In the mentioned
study of Licznar et al. (2015) the clearly outlying gauges were the gauges R15 and R25. Their
outlying position on dendrograms was explained by the location of gauges in untypical for
urban precipitation field conditions. Gauge R15 is an airport gauge and in its neighbourhood
there are no buildings, trees or other obstacles typical for city centre. Gauge R25 is located in
city limits and is surrounded by green areas of forests and grasslands. Most probably this type
of neighbourhood eliminates or drastically reduces the effects of urban heat island which has
to have influence on recorded precipitation. This in mind, in subsequent part of the research,
both gauge R15 and R25 are selected for generation of synthetic precipitation series from
continuous universal cascade generators. Finally, to the group of outliers, gauges R06 and
R21 should be added. They are closely located geographically in the centre of Warsaw. This
is the section of the city with the highest density of high buildings. In addition, gauge R06 is
located very close to the Vistula River. Most probably this specific and close location of
gauge R06 and R21 explain both small binding distance among both gauges and bigger

binding distances to other Warsaw gauges. Consequently, this gauge RO06 is also selected for
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generation of synthetic precipitation series from continuous universal cascade generator. The
location of the above-mentioned gauges R06, R15 and R25 representing the variability of

universal cascade parameters among Warsaw precipitation field is shown in Fig. 7.32.

N
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Figure 7.32. The locations of the rain gauges chosen as the most representative of the variability of Warsaw
rain gauge network: R06, R15 and R25

7.8 Universal multifractal generators

In this section, results of synthetic precipitation time series generation by means of
continuous universal cascades generators are presented. Generators are parametrized by
universal parameters derived for selected specific gauges R06, R15 and R25, as well as, for
average parameters for other remaining 22 gauges (excluding R06, R15 and R25) or 23
gauges (excluding R15 and R25) of the Warsaw precipitation field. Samples of generated
1-minute precipitation series are presented and their quality with respect of precipitation
variability and intermittency is assessed determining the probability of rain by the
complementary cumulative distribution function (cCDF) and investigating the probability of
zero rainfall occurrence E(po) for a hierarchy of sub-daily timescales. A comparison of cCDF
and E(po) parameters between synthetic and recorded precipitation time series is carried out.
Finally, attempts of correction of the intermittency structure of generated precipitation time

series by means of specially developed post processing filter algorithm FILTR are reported.
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7.8.1. Synthetic precipitation time series

In order to generate a synthetic precipitation time series for the Warsaw gauging network,
the universal multifractal generator, a MATLAB script GENERATOR_R, is oriented to the
simulation of 1-minute resolution data of length A = 22° minutes (A = over 2 years). The
synthetic data are generated on basis of the universal multifractal parameters o, C; and H,
assuming a conservative nature of the data, thus H = 0. The simulations are carried out five
times: three times for single rain gauges R06s, R15s and R25s (“s” stands for synthetic) and
two times for groups of gauges RM23s and RM22s, whose parameters are averaged for 23
rain gauges (excluding of R15 and R25) and 22 rain gauges (excluding R06, R15 and R25)
respectively.

In Figure 7.34 sample synthetic results obtained for R0O6s are presented. The overall view
of time series suggests the proper structure of rainfall time series. Precipitation is distributed
irregularly in time in the form of rainfall clusters of variable temporal intensity with
alternating (almost) no-rain periods. However, some peaks of very high rainfall intensity
reaching up to 6-8 mm/min are visible. Simultaneously, in more detail (the enlarged section of
the obtained time series is presented in Fig. 7.34), very small rainfall intensity values, far
below the resolution of rain gauges (0.001 mm) are very frequent. These features of generated
time series are discussed further in more detail. Despite that, positive observations about the
quality of generated time series could also be derived from the evaluation of the total annual
precipitations - TAP. The TAPs of the synthetic time series are very close to the observed
values, i.e. the TAP of R06s is 612 mm/year, whereas the TAP of R06 is equal to 659
mm/year; for R15s the TAP is 544 mm/year (for R15 is 502 mm/year), and for R25s the TAP
is 480 mm/year (for R25 is 424 mm/year). To some extent the differences in TAP values for
observed and synthetic time series could be explained by the fact, that the synthetic series do
not cover entirely two years of observation (21° minutes are ~1.995 years), since the length of
the simulated data should be a multiple of 2, and 2% is the closest value to two years of

observation.
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Figure 7.33. Sample result of the universal multifractal generator. The plot of an almost 2-year time series for R06s
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Figure 7.34. Sample result of the universal multifractal generator. An enlarged section of the time series, with
very small values of rainfall intensities (one magnitude below weighing gauges’ resolution)

7.8.2. Evaluation of generated synthetic precipitation time series

From the perspective of future engineering use of a synthetic time series, the generation of
synthetic data from continuous universal cascades is focused on obtaining the most probable
rainfall events as possible. The generated time series should represent probable realizations of
local rainfall process. Thus, the statistical features of the synthetic rainfall series should be
similar to the observed ones.

The first step of the evaluation of the generated synthetic rainfall time series R06s, R15s
and R25s and RM22s and RM23s originating from the single gauge or set of gauges’ models,
is based on the studies of probabilities of non-zero rainfall values occurrence P(R>r) in
synthetic and real datasets. For this purpose, a MATLAB script CCDF calculating the
complementary cumulative distribution function is implemented and the ability of the
universal continuous cascades to reproduce cumulative distribution frequency of rainfall is
assessed.

The probability distributions of the synthetic time series R06s, R15s and R25s are
compared with the distributions of the respective observed time series in Figs 7.35+7.37. The
same non-zero rainfall distributions for time series R06s, R15s and R25s are drawn on the
background of similar distributions found for recorded series from all 25 rain gauges of the
Warsaw network in Figs 7.38+7.40. All distributions in Figs 7.35+7.40 are plotted in
logarithmic scales to highlight the tails of the distributions, most interesting from the point of

view of extreme values analysis.
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Figure 7.35. The complementary cumulative distribution function (cCDF) calculated for the synthetic
precipitation time series R06s against the cCDF for observed precipitation time series for Warsaw rain
gauge R0O6
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Figure 7.36. The complementary cumulative distribution function (cCDF) calculated for the synthetic
precipitation time series R15s against the cCDF for observed precipitation time series for Warsaw rain
gauge R15
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Figure 7.37. The complementary cumulative distribution function (cCDF) calculated for the synthetic
precipitation time series R25s against the cCDF for observed precipitation time series for Warsaw rain
gauge R25

The best agreement between cCDFs for synthetic and observed time series is maintained
for gauge R25 (Fig. 7.37). Both cCDF curves have quite similar shapes. However, a
noticeable departure of synthetic vs. observed curve is observed for rainfall intensities
exceeding 0.04 mm/min. The universal cascade model seems to produce a rainfall series with
higher temporal rainfall intensities occurring more frequently than in observed time series.
Whereas, for rainfall intensities less than 0.04 mm/min. an opposite phenomenon is found.
Frequencies of occurrence of small temporal rainfall intensities in synthetic series (exceeding
however the minimum boundary level of 0.001 mm, i.e. weighing gauge resolution) are
obviously lower than for observed time series. Quite similar observations could also be made
for other two gauges R06 (Fig. 7.35) and R15 (Fig. 7.36). But for these gauges the departure
of the cCDF for synthetic and observed time series is more visible (especially for gauge R15).
In addition, the point of both curves intersection is shifted from 0.04 mm/min. to about 0.055
mm/min. and 0.1 mm/min. in case of gauges R06 and R15 respectively.

Owning in mind the rather limited size of accessible observational sets and to understand
better the magnitude of diagnosed differences between cCDFs for synthetic and observed time
series, distributions of P(R>r) for synthetic series R06s, R15s and R25s are additionally

compared to distributions produced for all 25 Warsaw rain gauges in Figs 7.38+7.40.
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Figure 7.38. The complementary cumulative distribution function (cCDF) calculated for the synthetic
precipitation time series R06s against the cCDFs for observed precipitation time series for all 25
Warsaw rain gauges
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Figure 7.39. The complementary cumulative distribution function (cCDF) calculated for the synthetic
precipitation time series R15s against the cCDFs for observed precipitation time series for all 25
Warsaw rain gauges
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Figure 7.40. The complementary cumulative distribution function (cCDF) calculated for the synthetic
precipitation time series R25s against the cCDFs for observed precipitation time series for all 25
Warsaw rain gauges

It is clear that the noticeable variability of cCDFs is natural inside the gauges distributed
over the whole area of Warsaw city. In practice, distribution of P(R>r) for synthetic series
R25s is completely positioned inside the group of Warsaw gauges distributions. The cCDF for
synthetic series R06s is also very close to the bunch of distributions originating from real
precipitation observations. Only for very specific gauge R15 located at the airport,
discrepancies in distributions of P(R>r) for synthetic and real Warsaw gauges distributions
are more pronounced. It is clear that the universal cascade generator for this gauge does not
capture well the heavy-tail observed in Warsaw rainfall data.

Nonetheless, obtained results for all three gauges should be evaluated at least as promising,
with respect to already published by Molnar and Burlando (2005), Licznar et al. (2011a,
2011b) distributions of P(R>r) for synthetic series generated by means of canonical and
microcanonical discrete cascade models. Above mentioned authors reported also the lack of
an ideal imitation of cCDFs for synthetic vs. observed precipitation series for a majority of
tested models, despite working in coarser time resolution of only with 5 or 10-minute time
series and implementing simple cascades, parametrized by numerous factors and capable only
to disaggregate quasi-daily precipitation totals.

The evaluation of performance of the universal continuous cascade models for two groups
of gauges RM23 and RM22, whose parameters are averaged for 23 rain gauges (excluding of
R15 and R25) and 22 rain gauges (excluding R06, R15 and R25) respectively, is conducted in
the same way, as for single rain gauges. The creation of these two models for two groups of
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gauges is guided by the assumption, that exclusion of outlaying rain gauges would allow to
develop models parametrized by average universal parameters, capable of generating
synthetic series preserving better statistical properties of precipitations throughout Warsaw.
The distributions of P(R>r) for synthetic series RM23s are compared to distributions derived
for all 25 Warsaw rain gauges in Fig. 7.41. As it might have been expected, the elimination of
specific gauges like R15 and R25 allows to create model for averaged parameters reproducing
quite well the distributions of non-zero rainfall intensities in synthetic series.
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Figure 7.41. The complementary cumulative distribution function (cCDF) calculated for the synthetic
precipitation time series RM23s against the cCDFs for observed precipitation time series for all 25
Warsaw rain gauges

Results presented for synthetic series RM22s in Fig. 7.42 are not only comparable but even
slightly better than already discussed results for synthetic series R06s. Distributions of P(R>r)
of synthetic time series RM22s are also very close to the bunch of distributions originating
from real precipitation series. Overestimation of occurrence frequency for the highest rainfall
intensities is only apparent. These findings are in logical consequence of the fact that the
gauge RO6 is located in the Warsaw city centre. But it has to be remembered that gauge R06
displayed simultaneously some outlying tendency diagnosed by clustering analysis. Thus,
performance of continuous cascade model parametrized for universal parameters average for
22 gauges (with additional exclusion of gauge R06) is even better. This model is capable of
generating synthetic series with distributions of P(R>r) close to the bunch of observed

precipitation distributions, also for a distribution tail, i.e. for highest rainfall intensities values.

106



RM22s against 25 observed time series
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Figure 7.42. The complementary cumulative distribution function (cCDF) calculated for the synthetic
precipitation time series RM22s against the cCDFs for observed precipitation time series for all 25
Warsaw rain gauges

Results found for models for groups of gauges RM23 and RM22 with respect to analysis of
cCDFs for synthetic and observed time series should be evaluated as acceptable and satisfying
the needs of urban hydrology. As suggested by Licznar (2010), some overprediction of high
intensity rainfall values in synthetic time series is acceptable if the major filed of synthetic
series application is the hydrodynamic simulation of urban drainage systems, for the purpose
of their design and hydraulic performance evaluation.

The second step of the evaluation of synthetic precipitation time series quality is the
assessment of the rainfall intermittency. It is made using MATLAB script EPO, calculating the
probability of no-rain occurrence E(po) for precipitation time series (synthetic and observed)
across timescales t = 1-2560 min (=43 hours).

The results of E(po) calculations for synthetic series for single gauges R06s, R15s, R25s
and for groups of gauges RMS23s and RM22s are shown in Figs 7.43+7.45, and Fig. 7.46 and
Fig. 7.47 respectively.
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RO06s against 25 observed time series
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Figure 7.43. Comparison of intermittency found for the synthetic time series R06s and for observed
precipitation time series for all 25 Warsaw rain gauges
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Figure 7.44. Rainfall intermittency calculated for the synthetic time series R15s against the all the observed
Warsaw rain gauges
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R25s against 25 observed time series
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Figure 7.45. Rainfall intermittency calculated for the synthetic time series R25s against the all the observed

Warsaw rain gauges
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Figure 7.46. Rainfall intermittency calculated for the synthetic time series RM23s against the all the observed

Warsaw rain gauges
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RM22s against 25 observed time series
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Figure 7.47. Rainfall intermittency calculated for the synthetic time series RM22s against the all the observed
Warsaw rain gauges

The results plotted for all gauges and groups of gauges in Figs 7.43+ 7.45, and Fig. 7.46
and Fig. 7.47 reveal a total lack of compatibility between synthetic and observed precipitation
time series with respect of rainfall intermittency. The intermittency of rainfall, measured as
the probability of a zero-rainfall occurrence for synthetic rainfall, is almost reduced to zero on
all plots with exception of gauge R15. But also in the case of gauge R15 and synthetic time
series R15s, the probability of a zero rainfall occurrence, even for the shortest time interval of
1-minute, does not exceed 0.2 and is still almost 5 times smaller than for the observed time
series. An explanation of these observations is found in Fig. 7.34, presenting the zoomed
section of synthetic time series dominated by small but still non-zero rainfall intensities. A
generation of such small precipitation intensity values could be considered as a peculiar
feature of continuous cascades. Theoretically, a simple ad hoc solution of this error might be
imposing some boundary rainfall intensity value below which all time series elements should
be zeroed. This solution has a clear disadvantage of reducing the total precipitation in a series.
Moreover, it should be not implemented since we are not able to answer the fundamental
question: to which extent arrival of very small precipitation intensity values in a series could
be a natural feature for precipitation process, and which are not able to be recorded due to
gauge resolution limits?

For these reasons, to correct a synthetic series, a special filtering algorithm FILTR in
MATLAB has been prepared. The functioning of this filter, at least to some level of

generality, reflects the functioning of electronic weighing type gauges. The following
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1-minute precipitation depths in series are accumulated by filter as precipitation in inner
container of the gauge. At the same time the following 1-minute precipitation depths in a
series are supplemented by zeros until the accumulated precipitation depth does not exceed
the resolution of gauge equal to 0.001 mm. In such cases the accumulated precipitation is
written in the resulting series as 1-minute precipitation depth adjusted to resolution of 0.001
mm. The remaining depth value less than 0.001 mm is accumulated with next precipitation
depths in original synthetic series. Obviously, the filtering algorithm FILTR does not change
the total precipitation depth in a series, and produces precipitation series with non-zero
rainfall intensities with resolution of 0.001 mm/min. as in the case of the Warsaw gauge
records. Synthetic precipitation time series postprocessed by the filtering algorithm FILTR are
afterwards named as RO6sf, R15sf, R25sf, RM23sf and RM22sf respectively for analysed
single gauges and gauges groups.

One can expect to observe some influence of filtering algorithm FILTR application for
already discussed probabilities of non-zero rainfall values occurrence P(R>r) in synthetic
series. In order to assess the magnitude of this influence, the cCDFs are calculated for
postprocessed synthetic series R0O6sf, R15sf, R25sf, RM23sf and RM22sf and compared with
the cCDFs for original synthetic precipitation series as well as recorded precipitation series
(see Figs 7.48+7.52). The results obtained for all synthetic series are consistent. They prove
that proposed filtering algorithm FILTR does not affect the distributions of P(R>r) for
synthetic series. The only observed modification is manifested by the minimal shift downward

of cCDFs sections for the smallest boundary values of r below 0.005 mm.
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P(R=>r)

Figure 7.48. The complementary cumulative distribution function (cCDF) calculated for the synthetic
precipitation time series R06s and R06sf against the cCDFs for observed precipitation time series for

PiR=r)

Figure 7.49. The complementary cumulative distribution function (cCDF) calculated for the synthetic
precipitation time series R15s and R15sf against the cCDFs for observed precipitation time series for

R06s and R0OBsf against 25 observed time series
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R25s and R25sf against 25 observed time series
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Figure 7.50. The complementary cumulative distribution function (cCDF) calculated for the synthetic
precipitation time series R25s and R25sf against the cCDFs for observed precipitation time series for

all 25 Warsaw rain gauges

RM23s and RM23sf against 25 observed time series
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Figure 7.51. The cumulative distribution functions calculated for the synthetic time series RM23s and
RM23sf after filtering against the cCDF all the observed Warsaw rain gauges. The graphs for data

before (in blue) and after filtering (in red) almost entirely coincide
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RM22s and RM22sf against 25 observed time series
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Figure 7.52. The cumulative distribution functions calculated for the synthetic time series RM22s and
RM22sf after filtering against the cCDF all the observed Warsaw rain gauges. The graphs for data
before (in blue) and after filtering (in red) almost entirely coincide

The effects of developed filtering algorithm FILTR on the preservation of the rainfall
intermittency in postprocessed synthetic time series could be seen in Figs 7.53+7.57. Is clear
that the application of filtering algorithm effectively increases probabilities of no-rain
occurrence E(po) in synthetic series across all timescales. Moreover, in postprocessed series
a natural phenomenon of E(po) values reduction with increasing time intervals is observed.
However, for most plots, E(po) values coincide with probabilities derived for the set of
precipitation time series recorded by 25 Warsaw gauges only for the shortest and longest time
interval. The only exception could be noticed for gauge R15 where almost all E(po) values for
different time intervals are located among E(po) values characterizing observed time series by
the Warsaw gauges. Still, the perfect fit between E(po) values calculated for synthetic times
series R15sf and observed time series originating from gauge R15 is not reached. In addition,
E(po) calculated for synthetic times series R15sf exceeds respective E(po) values for observed
time series. Concluding the discussion of intermittency in postprocessed synthetic time series,
it should be underlined that the noticeable underestimation of probabilities of no-rain
occurrence for time intervals at the range of 10 minutes to 640 minutes was also reported by
Licznar et al. (2011a) for a synthetic time series generated by means of discrete canonical
cascades models. It seems that only in case of discrete microcanonical cascade models one
can expect perfect projection of intermittency pattern of observed rainfall series. But it is
achieved in rather primitive manner, by forcing some certain frequencies of 0/1 or 1/0 breaks

(empirically estimated for observational series) at following cascade levels.
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RO6sf against 25 observed time series
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Figure 7.53. Comparison of intermittency found for the synthetic time series R06sf (after filtering) and for

observed precipitation time series for all 25 Warsaw rain gauges
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Figure 7.54. Comparison of intermittency found for the synthetic time series R15sf (after filtering) and for
observed precipitation time series for all 25 Warsaw rain gauges
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R25sf against 25 observed time series
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Figure 7.55. Comparison of intermittency found for the synthetic time series R25sf (after filtering) and for
observed precipitation time series for all 25 Warsaw rain gauges
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Figure 7.56. Rainfall intermittency calculated for the synthetic time series RM23sf after filtering against the
all the observed Warsaw rain gauges
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RM22sf against 25 observed time series
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Figure 7.57. Rainfall intermittency calculated for the synthetic time series RM22sf after filtering against the
all the observed Warsaw rain gauges
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8. Summary and final conclusions

In this dissertation, an attempt to assess the scaling and the intermittency parameters
variability over urban precipitation field of capital city of Poland, Warsaw, is made based on
precipitation records on the network of 25 electronic weighing gauges. The assessment is
based on the fractal and multifractal analysis techniques, not implemented never before for
such a large rainfall data collection in Poland. For this purpose, 1-minute precipitation year-
round time series recorded from September 2008 to November 2010 were analysed by using
the following fractal and multifractal methods: spectral density analysis, functional box-
counting method, trace moment method, probability distribution/multiple scaling and double
trace moment method. The multifractal analysis is conducted for a hierarchy of time scales
from 1 minute (A = 16384) to over 11 days (AL = 1) and their results are confronted together
and interpreted from perspective of electronic weighing gauges functioning.

Concluding the fractal and multifractal studies, the universal multifractal parameters a, C1
and H are estimated for the first time for a network of urban gauges in Poland. Subsequently,
derived universal multifractal parameters are used for taxonomy studies performed with
application of clustering methods focused on identification of rain gauges displaying
similarities as well as the outlaying ones. A discussion and interpretation of obtained results
are conducted on the base of previously published studies concerning variability of the
Warsaw precipitation field as well as based on an analysis of information about local
conditions of specific gauges’ exposure.

In the final part of the research, synthetic precipitation series are generated by means of
continuous universal random cascade models for the first time in Poland. Cascades generators
are parameterized by universal parameters derived for specific Warsaw rain gauges or rain
gauge clusters displaying similarity of multifractal parameters. The generated synthetic
precipitation time series are subject to statistical evaluation, performed by comparing
complementary cumulative distribution function (cCDF) and the intermittency (E(po))
calculated for synthetic vs. observed time series. Finally, a special filtering algorithm is
proposed in order to correct intermittency characteristics of synthetic precipitation time series.

Based on literature studies and performed complex studies of the Warsaw precipitation

time series, the following conclusions are formulated:

1. The 1-minute precipitation time series recorded on the network of 25 rain gauges in
Warsaw are a 1-dimensional multifractal set. Their proper analysis requires

application of fractal and multifractal techniques.
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The time structure of the recorded precipitation time series is characterized by a scale-
invariant behaviour, over a wide range of scales, corresponding to time scales from 1
minute to at least 11 days. Simultaneously simple scaling structure of analysed time
series is noticeable complicated by the scaling break, detected for scales corresponding
to times at the range from 30 minutes to 1 hour.

In the analysed precipitation sets, a multifractal first-order phase transformation is
detected. This statistical feature is characteristic for multifractal processes observed in
scales higher than the inner homogeneity scale of a process. This observation reveals
the presence of relevant metrological limitations in recording properly intermittency
and small scale variability of precipitation intensities by the electronic weighing rain
gauges installed on the Warsaw network. In addition, evident distortions of the
codimension functions c(y) and the moment scaling functions K(q) are originating
from the rain gauges limited precision at recording the smallest and the highest rainfall
intensities, as well as from imperfect recording of rapid variations of rainfall
intensities. To some extent, all these limitations could be explained by the diagnosed
step response error, typical for electronic weighing type gauges.

The degrees of multifractality o determined for precipitation series recorded by all 25
Warsaw rain gauges are at the range 0<a<1. Thus, point precipitation in Warsaw could
be considered as a (log) Lévy process with bounded singularities, presenting soft
behaviour (a dressed multifractal process).

As revealed by cluster analysis of universal multifractal parameters: o, H and Cy set,
the majority of Warsaw gauges display similarity of multifractal properties for
recorded rainfall time series. The same analysis showed outlying behavior for gauges
R06 and R15. Most probably the outlying behavior of these gauges, manifested by
miscellanies universal multifractal parameters could be at least partly explained by
untypical locations of measuring devices exposure.

Universal continuous cascades could be used in practice for generating synthetic
rainfall series of fine temporal resolution of 1-minute in Warsaw. Keeping in mind the
very close to zero values of parameter H, the generation of synthetic precipitation
could be realized as for a conservative process and for model parameterization on
knowledge of only: « and Cy values.

Based on the analysis of synthetic precipitation series analysis, by means of the
complementary cumulative distribution function (cCDF) of non-zero rainfall values,

the performance of continuous universal cascade models in preserving variability of
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temporal rainfall intensities for Warsaw gauges could be rated as at least good for all
analysed groups of gauges and specific gauges, with the only exception of the outlying
gauge R15.

Continuous universal cascade models developed for Warsaw gauges are not capable of
generating synthetic series with intermittency characteristics comparable to observed
precipitation time series, recorded with limited resolution of 1 mm/min. Developed
accumulation filtering algorithm FILTR allows for synthetic series postprocessing and
significantly corrects intermittency of rainfall at synthetic series. Still however the
probability of zero rain occurrence in postprocessed precipitation time series does not
fit exactly the same probability values derived for observational time series for all time
scales. There is a vivid need for future research concerning improvement of
intermittency preservation at synthetic precipitation series generated by continuous
universal cascade models

The general results of universal multifractal parameters variability analysis among the
Warsaw precipitation field, and results of the overall performance evaluation of
developed universal cascade models at the generation of synthetic precipitation series
suggest a large potential for the use of these models in urban hydrology. A practical
possibility of a generation of synthetic rainfall series, representative of almost the
entire city through a single continuous universal cascade model parametrized by only
two values and their further use for hydrodynamic drainage systems modelling, should

be explored more deeply in the future.
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9. List of appendices

Location of the Warsaw rain gauge network
Functional box-counting plots

Energy spectra computed by FFT method

Trace moment method plots

Probability distribution/multiple scaling method plots
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APPENDIX I.

LOCATION OF THE WARSAW RAIN GAUGE NETWORK

The rain gauge network consists in 25 rain gauges (here called R01, R02, ..., R25). The black arrows
indicate the distance from the closest surrounding objects (possible obstacles due to which height
precipitation shadow effect may occur). The numbers in rectangles show the height of the obstacles
above terrain level.

Figure 1.1. Location site of rain gauge RO1 of the Warsaw rain gauge network (in Wéycickiego St.)

[1]



Figure 1.2. Location site of rain gauge R02 of the Warsaw rain gauge network (in Rudzka St.)

[2]



Figure 1.3. Location site of rain gauge R03 of the Warsaw rain gauge network (in Arkuszowa St.)

[3]



Figure 1.4. Location site of rain gauge R04 of the Warsaw rain gauge network (in Gorczewska St.)

[4]



Figure 1.5. Location site of rain gauge RO5 of the Warsaw rain gauge network (in Ostroroga St.)

[5]



Figure 1.6. Location site of rain gauge R06 of the Warsaw rain gauge network (in Dobra/Karowa St.)

[6]



Figure 1.7. Location site of rain gauge RO7 of the Warsaw rain gauge network (in Koszykowa/Krzywickiego St.)

[7]



Figure 1.8. Location site of rain gauge R08 of the Warsaw rain gauge network (in Jerozolimskie Blvd/P. Tysiaclecia)

[8]



Figure 1.9. Location site of rain gauge R09 of the Warsaw rain gauge network (in Chroscickiego/Obywatelska St)

[9]



Figure 1.10. Location site of rain gauge R10 of the Warsaw rain gauge network (in Dzwonkowa St.)

[10]



Figure 1.11. Location site of rain gauge R11 of the Warsaw rain gauge network (in Grojecka/Kotorynskiego St.)

[11]



Figure 1.12. Location site of rain gauge R12 of the Warsaw rain gauge network (in Zaruskiego/Czerniakowska St.)

[12]



Figure 1.13. Location site of rain gauge R13 of the Warsaw rain gauge network (in Powsinska/Limanowskiego St.)

[13]



Figure 1.14. Location site of rain gauge R14 of the Warsaw rain gauge network (in Ken/Dolina Stuzewiecka St.)

[14]



Figure 1.15. Location site of rain gauge R15 of the Warsaw rain gauge network (in Wyrazowa St.)

[15]



Figure 1.16. Location site of rain gauge R16 of the Warsaw rain gauge network (in Przyczokowa/Vougla St.)

[16]



Figure 1.17. Location site of rain gauge R17 of the Warsaw rain gauge network (in Stryjefiskich St.)

[17]



Figure 1.18. Location site of rain gauge R18 of the Warsaw rain gauge network (in Mehoffera/Strumykowa St.)

[18]



Figure 1.19. Location site of rain gauge R19 of the Warsaw rain gauge network (in Borecka St. (Biatol¢ka))

[19]



Figure 1.20. Location site of rain gauge R20 of the Warsaw rain gauge network (in Rolanda/Rajmunda St.)

[20]



Figure 1.21. Location site of rain gauge R21 of the Warsaw rain gauge network (in Waszyngtona St.)

[21]



Figure 1.22. Location site of rain gauge R22 of the Warsaw rain gauge network (in Dzielnicowa St.)

[22]



Figure 1.23. Location site of rain gauge R23 of the Warsaw rain gauge network (in Chetmzynska/Gwarkow St.)

[23]



Figure 1.24. Location site of rain gauge R24 of the Warsaw rain gauge network (in Patriotow/Pajgcza St.)

[24]



Figure 1.25. Location site of rain gauge R25 of the Warsaw rain gauge network (in Bystawska St.)

[25]



Number of non-empty boxes

APPENDIX II.
FUNCTIONAL BOX-COUNTING PLOTS

Section A

Functional box-counting log-log plots obtained with 1-minute rainfall from Warsaw, from 2008 to
2010. A box of unit-size corresponds to 1 minutes. The plots display time scales from 1 minute up to
over 2 years for four different intensity thresholds, that is: 0, 0.04, 0.08 and 0.16 mm/min. The dotted

line underlines the linear relationship between the analyzed parameters.

. RO1
107 B T g
0 mmimin  H
0.04 mm/min [
0.08 mm/min | |
s 0.16 mm/min
10 = 3
=] |
O ]
.. ]
e, |
-
' T, -~
= . 1 hour E
- ]
- n Thew \|r ]
- i SN E
= Hoe
107 |- = SO =
| Ik T E
] = - 6 days E
—— ]
[ T ]
. i
-
L W 1
W, E
. .
. ]
"\“?; -
1 i
10 - g -
T M E
, g
il
100 1 | 1 1 1 11 111 | 1 1 1 11111 | 1 1 1 11 11 I| 1 1 1 1111 I| 1 1 1 1111 I| 1 1 1 1 1 IT*¢_‘|_
- 2 3 5 &
10° 10' 10 10° 10* 10° 10

Size of boxes (1 minute)

Figure I1.1. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R01
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Figure 11.3. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R03
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Figure 11.5. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R05
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Figure 11.6. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R07
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Figure 11.7. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R08

[29]



Number of non-empty boxes

Number of non-empty boxes

R09

F *  Ommmin
r B 0.04 mm/min []
L 0.08 mm/min | |
s 0.16 mm/min
10 E
[ ]
L e, -
[ '-s..\_‘\ i
4 h“\
10 . -
E he N 1 hour 3
- o -
= "-‘__" J( a
- . -..‘“. -
L - ", ]
3 | T
10 e [ ] e 3
F u - T 7
E [ T 6 days ]
L ] AE ]
[ s
[ .. ) ]
10° "-._ -
E .~ 3
E . 3
r T, ]
L “"'-.,. 4
.
- “\ T
1 “H.
0 Rty E
E ""'4.‘ |
E B ]
- ‘h;"“ -
L .~ ]
gy
- “5“\‘.‘ -
100 1 | 1 1 1 11111 | 1 1 1 | | | 1 1 1 1111 || 1 1 1 1111 || 1 1 1 1111 || 1 1 1 11 I.‘T“'J'.;‘_
- 2 3 s 5
10° 10’ 10 10° 10 10° 10

Size of boxes (1 minute)

Figure 11.8. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R09
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Figure 11.9. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R10
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Figure 11.13. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R14

[32]



Number of non-empty boxes

Number of non-empty boxes

2 *  Ommmin  H
r B 0.04 mm/min []
L 0.08 mm/min | |

0.18 mm/min
Fs E
ety E
[ . ]
L Yo J

“‘h“\
E o =
Em v, 1 hour 3
r [ ] e ]
Tk,
: u —. :
| ——
- i S
= ] e, -
E ] hael S E
E ] - i S 6 days E
L L n "**—..,__ 4
L ety i
| .
: i, J
E .. E
E " ]
- . -
L 8. ]
L "“\ -
"
\“'“
= o, —
E “EL. E
E "-.“' 3
E . ]
[ “H. B
_ "‘\,‘ —
~—

- -‘!""lb.. T
1 | 1 1 1 11111 | 1 1 1 11111 | 1 1 1 1111 I| 1 1 1 1111 I| 1 1 1 1111 I| 1 1 1 11 IT*"L.“_

? : 5 ]

10° 10’ 10 10° 10 10° 10

Size of boxes (1 minute)

Figure 11.14. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R16
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Figure 11.15. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R17
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Figure 11.16. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R18
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Figure 11.17. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R19
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Figure 11.18. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R20
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Figure 11.19. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R21
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Figure 11.20. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R22
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Figure 11.21. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R23
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Figure 11.22. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R24
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Section B

Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010. A box of unit-size

corresponds to 1 minutes. The log-log plots display time scales from 1 minute up to over 2 years for intensity threshold equal to 0 mm/min.

Table 11.1. Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010 and intensity threshold 0 mm/min

n RO1 | R02 | RO3 | R0O4 | RO5 | RO6 | RO7 | RO8 | RO9 | R10 | R11 | R12 | R13 | R14 | R15 | R16 | R17 | R18 | R19 | R20 | R21 | R22 | R23 | R24 | R25

1 62982 | 65056 | 75278 | 67622 | 40764 | 62207 | 63054 | 60302 | 46306 | 66844 | 68021 | 74929 | 54722 | 84808 | 39440 | 75133 | 66358 | 59848 | 57568 | 65007 | 67620 | 60116 | 59272 | 52723 | 61888

2 33987 | 35369 | 40626 | 36174 | 22191 | 33536 | 33934 | 32689 | 24812 | 35972 | 36914 | 40336 | 29759 | 46396 | 21564 | 40484 | 36032 | 32402 | 31126 | 34942 | 36214 | 32345 | 32333 | 28094 | 33039

4 18065 | 18966 | 21522 | 19020 | 11901 | 17786 | 18075 | 17493 | 13093 | 19045 | 19603 | 21429 | 15783 | 24885 | 11658 | 21334 | 19104 | 17384 | 16607 | 18462 | 19116 | 17093 | 17361 | 14705 | 17299

8 9792 | 10353 | 11559 | 10138 | 6478 | 9556 | 9776 | 9509 | 7000 | 10219 | 10517 | 11558 | 8478 | 13637 | 6428 | 11391 | 10306 | 9524 | 8987 | 9856 | 10279 | 9137 | 9449 | 7797 | 9180

16 5494 | 5934 | 6462 | 5612 | 3708 | 5332 | 5530 | 5367 | 3904 | 5708 | 5902 | 6468 | 4713 | 7830 | 3754 | 6300 | 5786 | 5455 | 5085 | 5474 | 5783 | 5068 | 5395 | 4266 | 5019

32 3270 | 3596 | 3854 | 3283 | 2279 | 3162 | 3308 | 3167 | 2273 | 3356 | 3504 | 3811 | 2758 | 4790 | 2340 | 3662 | 3441 | 3325 | 3046 | 3204 | 3423 | 2950 | 3235 | 2465 | 2881

64 2077 | 2312 | 2444 | 2040 | 1487 | 2019 | 2111 | 1977 | 1413 | 2110 | 2169 | 2375 | 1717 | 3093 | 1552 | 2281 | 2175 | 2169 | 1944 | 2013 | 2184 | 1843 | 2080 | 1499 | 1747

128 1385 | 1584 | 1638 | 1350 | 1029 | 1376 | 1423 | 1315 | 913 | 1407 | 1420 | 1559 | 1158 | 2093 | 1097 | 1504 | 1459 | 1501 | 1310 | 1331 | 1475 | 1216 | 1433 | 980 | 1142

256 971 | 1131 | 1145 | 928 | 728 | 954 | 1007 | 899 | 623 | 978 | 952 | 1065 | 815 | 1470 | 792 | 1052 | 1026 | 1084 | 932 | 931 | 1043 | 835 | 1021 | 672 | 767

512 706 | 811 | 829 671 | 546 | 690 | 735 | 649 | 456 | 713 | 682 752 | 592 | 1046 | 587 | 757 | 747 | 812 | 695 | 672 | 758 | 598 | 746 | 479 | 539

1024 523 | 591 | 596 | 491 | 395 | 503 | 527 | 463 | 331 | 518 | 483 | 532 | 434 | 719 | 438 | 543 | 541 | 601 | 518 | 495 | 552 | 433 | 547 | 351 | 386

2048 361 385 395 | 341 271 338 344 | 314 | 234 | 359 324 | 358 307 456 305 370 368 | 406 359 338 366 303 360 243 261

4096 229 239 237 222 167 216 215 198 147 231 202 230 196 266 201 232 228 247 226 212 220 196 226 157 163

8192 136 131 130 131 101 125 122 117 89 133 121 132 117 142 121 132 134 141 132 125 123 119 128 90 95

16384 70 68 68 70 54 65 63 64 50 70 65 70 63 71 66 70 70 71 70 66 66 64 67 47 52

32768 35 35 34 35 29 33 32 33 26 35 33 35 32 35 33 35 35 35 35 33 35 34 34 25 27

65536 17 17 17 17 15 17 16 16 13 17 17 17 16 17 16 17 17 17 17 17 17 17 17 12 15

131072 8 8 8 8 7 8 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 6 8
262144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4
524288 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1048576 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 11.23. Log-log plot of functional box-counting method for 1-minute rainfall time-series from Warsaw, for all the 25 rain gauges, and intensity threshold 0 mm/min
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Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010. A box of unit-size

corresponds to 1 minutes. The log-log plots display time scales from 1 minute up to over 2 years for intensity threshold equal to 0.04 mm/min.

Table 11.2. Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010 and intensity threshold 0.04 mm/min
n RO1 | RO2 | RO3 | RO4 | RO5 | RO6 | RO7 | RO8 | RO9 | R10 | R11 | R12 | R13 | R14 | R15 | R16 | R17 | R18 | R19 | R20 | R21 | R22 | R23 | R24 | R25

1 6483 | 6088 | 7095 | 6614 | 3895 | 6116 | 6670 | 6827 | 4768 | 6952 | 6378 | 6998 | 6192 | 7006 | 6073 | 7027 | 7226 | 6417 | 6287 | 6627 | 7156 | 6433 | 6149 | 6142 | 4225

2 4027 | 3883 | 4457 | 4113 | 2477 | 3840 | 4245 | 4308 | 2950 | 4281 | 3989 | 4325 | 3835 | 4358 | 3687 | 4409 | 4486 | 3989 | 3890 | 4128 | 4466 | 4021 | 3817 | 3795 | 2720

4 2567 | 2570 | 2874 | 2645 | 1630 | 2459 | 2774 | 2834 | 1889 | 2690 | 2536 | 2715 | 2412 | 2756 | 2303 | 2815 | 2852 | 2599 | 2443 | 2603 | 2882 | 2542 | 2424 | 2356 | 1768

8 1703 | 1795 | 1938 | 1761 | 1134 | 1639 | 1881 | 1935 | 1258 | 1771 | 1680 | 1787 | 1591 | 1835 | 1498 | 1871 | 1893 | 1774 | 1606 | 1712 | 1940 | 1698 | 1601 | 1530 | 1210

16 1205 | 1299 | 1386 | 1234 | 823 | 1158 | 1333 | 1364 | 879 | 1239 | 1167 | 1230 | 1111 | 1269 | 1034 | 1309 | 1322 | 1279 | 1114 | 1192 | 1359 | 1195 | 1115 | 1054 | 877

32 898 | 973 | 1048 | 911 | 630 | 865 | 981 | 997 | 654 | 903 | 842 | 888 | 810 | 936 | 745 | 960 | 976 | 964 | 805 | 877 | 988 | 873 | 818 | 764 | 661

64 677 | 755 | 797 | 688 | 489 | 665 | 746 | 741 | 504 | 678 | 628 | 662 | 614 | 712 | 565 | 744 | 740 | 753 | 618 | 667 | 758 | 659 | 616 | 571 | 510

128 541 | 599 | 607 | 532 | 391 | 528 | 597 | 557 | 395 | 530 | 492 | 512 | 485 | 550 | 432 | 581 | 567 | 601 | 488 | 523 | 597 | 511 | 480 | 439 | 408

256 435 | 491 | 487 | 439 | 318 | 425 | 480 | 436 | 323 | 427 | 391 | 416 | 404 | 442 | 334 | 465 | 452 | 481 | 388 | 427 | 483 | 410 | 393 | 344 | 328

512 364 | 408 | 399 | 360 | 274 | 356 | 390 | 357 | 261 | 360 | 320 | 338 | 328 | 367 | 272 | 373 | 364 | 402 | 323 | 356 | 388 | 336 | 327 | 277 | 262

1024 301 | 339 | 331 | 300 | 219 | 281 | 316 | 284 | 210 | 291 | 260 | 270 | 264 | 303 | 222 | 304 | 290 | 330 | 267 | 291 | 299 | 272 | 270 | 228 | 209

2048 230 | 259 | 249 | 228 | 168 | 223 | 239 | 213 | 166 | 232 | 202 | 209 | 202 | 238 | 174 | 238 | 222 | 261 | 215 | 216 | 231 | 214 | 210 | 178 | 167

4096 170 | 184 | 182 | 169 | 117 | 161 | 168 | 158 | 115 | 171 | 146 | 154 | 149 | 167 | 132 | 174 | 163 | 191 | 160 | 162 | 167 | 157 | 160 | 129 | 121

8192 113 | 113 | 113 | 109 80 109 | 108 | 102 79 114 99 107 99 110 95 112 | 107 | 123 | 110 | 109 | 107 | 103 | 107 84 85

16384 68 66 66 64 49 64 61 59 a7 66 60 64 57 65 56 65 64 69 64 64 63 59 62 46 52

32768 35 35 34 34 28 33 32 32 25 35 33 35 32 35 33 35 35 35 35 33 35 32 34 25 27

65536 17 17 17 17 15 17 16 16 13 17 17 17 16 17 16 17 17 17 17 17 17 16 17 12 15

131072 8 8 8 8 7 8 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 6 8
262144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4
524288 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1048576 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 11.24. Log-log plot of functional box-counting method for 1-minute rainfall time-series from Warsaw, for all the 25 rain gauges, and intensity threshold 0.04 mm/min
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Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010. A box of unit-size

corresponds to 1 minutes. The log-log plots display time scales from 1 minute up to over 2 years for intensity threshold equal to 0.08 mm/min.

Table 11.3. Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010 and intensity threshold 0.08 mm/min

n RO1 | RO2 | RO3 | R0O4 | RO5 | RO6 | RO7 | RO8 | RO9 | R10 | R11 | R12 | R13 | R14 | R15 | R16 | R17 | R18 | R19 | R20 | R21 | R22 | R23 | R24 | R25

1 2268 | 2088 | 2412 | 2396 | 1397 | 2136 | 2394 | 2536 | 1800 | 2454 | 2431 | 2402 | 2404 | 2567 | 2414 | 2453 | 2571 | 2188 | 2085 | 2253 | 2307 | 2195 | 2142 | 2111 | 1238

2 1400 | 1322 | 1488 | 1493 | 888 | 1335 | 1501 | 1549 | 1097 | 1496 | 1486 | 1493 | 1461 | 1582 | 1524 | 1529 | 1599 | 1366 | 1312 | 1396 | 1417 | 1372 | 1341 | 1321 | 792

4 918 | 886 | 975 | 964 | 590 | 883 | 992 | 1007 | 680 | 979 | 966 | 990 | 942 | 1035 | 1027 | 1023 | 1035 | 899 | 869 | 905 | 941 | 896 | 884 | 867 | 520

8 621 | 636 | 699 | 668 | 420 | 637 | 703 | 708 | 459 | 674 | 669 | 691 | 642 | 727 | 737 | 714 | 716 | 639 | 613 | 624 | 663 | 622 | 620 | 593 | 369

16 467 | 480 | 530 | 494 | 319 | 470 | 533 | 522 | 328 | 490 | 500 | 509 | 475 | 534 | 567 | 520 | 530 | 478 | 447 | 456 | 500 | 475 | 464 | 431 | 284

32 372 | 378 | 416 | 371 | 256 | 364 | 412 | 403 | 263 | 379 | 395 | 389 | 365 | 409 | 458 | 398 | 416 | 369 | 347 | 360 | 378 | 371 | 346 | 323 | 218

64 301 | 309 | 334 | 308 | 214 | 289 | 324 | 328 | 213 | 303 | 321 | 312 | 297 | 330 | 380 | 316 | 334 | 297 | 283 | 299 | 305 | 304 | 276 | 263 | 184

128 259 | 258 | 282 | 250 | 182 | 249 | 272 | 271 | 178 | 249 | 265 | 262 | 248 | 276 | 318 | 265 | 276 | 247 | 236 | 249 | 260 | 255 | 224 | 219 | 164

256 226 | 220 | 240 | 218 | 157 | 207 | 233 | 232 | 156 | 213 | 224 | 224 | 220 | 234 | 265 | 223 | 226 | 217 | 200 | 217 | 226 | 222 | 201 | 190 | 145

512 203 | 196 | 220 | 191 | 138 | 180 | 200 | 200 | 135 | 188 | 195 | 193 | 190 | 204 | 228 | 191 | 202 | 198 | 175 | 186 | 195 | 193 | 176 | 162 | 125

1024 180 | 175 | 194 | 171 | 122 | 156 | 179 | 171 | 114 | 166 | 170 | 163 | 167 | 181 | 192 | 167 | 171 | 176 | 155 | 160 | 168 | 170 | 158 | 141 | 113

2048 148 | 145 | 155 | 139 99 128 | 147 | 141 97 136 | 139 | 134 | 138 | 148 | 152 | 140 | 141 | 147 | 131 | 128 | 139 | 140 | 125 | 120 95

4096 114 | 119 | 120 | 110 80 102 | 110 | 112 78 108 | 113 | 106 | 106 | 111 | 115 | 110 | 106 | 115 | 105 | 102 | 104 | 106 | 101 94 75

8192 83 85 85 79 58 81 81 82 55 e 82 e 80 80 81 7 i 84 78 76 7 75 74 68 57

16384 53 53 56 49 39 49 48 53 34 49 53 48 49 48 49 49 46 53 48 50 49 48 a7 39 39

32768 32 32 32 32 25 31 30 31 22 31 32 30 31 30 31 30 28 32 30 29 31 31 30 24 24

65536 17 17 17 17 14 17 16 16 13 17 16 16 16 17 16 16 17 17 17 16 17 16 17 12 15

131072 8 8 8 8 7 8 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 6 8
262144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4
524288 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1048576 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 11.25. Log-log plot of functional box-counting method for 1-minute rainfall time-series from Warsaw, for all the 25 rain gauges, and intensity threshold 0.08 mm/min
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Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010. A box of unit-size

corresponds to 1 minutes. The log-log plots display time scales from 1 minute up to over 2 years for intensity threshold equal to 0.16 mm/min.

Table 11.4. Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010 and intensity threshold 0.16 mm/min

n RO1 | RO2 | RO3 | RO4 | RO5 | RO6 | RO7 | RO8 | RO9 | R10 | R11 | R12 | R13 | R14 | R15 | R16 | R17 | R18 | R19 | R20 | R21 | R22 | R23 | R24 | R25

1 798 | 774 | 882 | 861 | 479 | 781 | 894 | 950 | 695 | 936 | 946 | 870 | 970 | 991 | 944 | 919 | 955 | 709 | 698 | 777 | 824 | 848 | 756 | 751 | 394

2 497 | 501 | 554 | 537 | 305 | 495 | 554 | 597 | 434 | 572 | 589 | 548 | 589 | 607 | 598 | 566 | 582 | 455 | 454 | 489 | 512 | 536 | 461 | 466 | 249

4 336 | 341 | 364 | 360 | 212 | 331 | 372 | 398 | 286 | 376 | 394 | 368 | 378 | 398 | 409 | 364 | 380 | 314 | 319 | 324 | 337 | 366 | 303 | 308 | 164

8 241 | 249 | 266 | 250 | 159 | 245 | 261 | 297 | 198 | 260 | 281 | 264 | 272 | 275 | 302 | 264 | 267 | 238 | 242 | 243 | 244 | 262 | 219 | 222 | 120

16 188 | 200 | 208 | 189 | 126 | 184 | 196 | 226 | 145 | 197 | 220 | 203 | 206 | 205 | 240 | 198 | 210 | 196 | 186 | 183 | 190 | 207 | 175 | 171 | 100

32 157 | 169 | 164 | 150 | 109 | 150 | 157 | 189 | 118 | 160 | 175 | 169 | 168 | 160 | 203 | 164 | 171 | 155 | 155 | 149 | 160 | 172 | 141 | 139 | 85

64 138 | 147 | 139 | 133 | 94 | 131 | 128 | 156 | 103 | 136 | 145 | 138 | 142 | 136 | 173 | 140 | 144 | 133 | 141 | 127 | 136 | 143 | 124 | 112 | 72

128 126 | 135 | 124 | 112 | 86 | 116 | 112 | 135 | 90 | 114 | 130 | 122 | 124 | 120 | 160 | 126 | 127 | 120 | 126 | 114 | 123 | 128 | 110 | 99 | 65

256 116 | 122 | 112 | 103 | 79 | 102 | 100 | 123 | 81 | 103 | 115|112 |113|109 | 141 | 116 | 112 | 111 | 115|107 | 108 | 115 | 102 | 95 | 62

512 111 {114 | 107 | 98 | 77 | 94 | 93 | 113 | 74 | 95 | 109 | 100 | 104 | 98 | 132 | 106 | 104 | 104 | 106 | 101 | 99 | 107 | 95 | 83 | 58

1024 (103 (105|102 | 92 | 71 | 84 | 89 |106 | 69 | 89 |101| 91 | 95 | 92 |119| 95 | 93 | 98 | 99 | 94 | 88 | 99 | 88 | 74 | 55

2048 91 [ 89 | 84 |81 |63 | 74|82 |94 |61 |79 |9 |78 |83 |80 |98 |83 |77 |87 |8 |81 |8L]|88 ]| 75|66 |48

4096 80 | 79 | 73 | 68 | 53 | 62 | 68 | 79 | 51 | 68 | 73 | 65 | 68 | 68 | 82 | 73 | 64 | 74 | 69 | 69 | 67 | 71 | 60 | 52 | 39

8192 62 | 60 | 56 | 55 | 42 | 49 | 52 | 63 | 39 | 54 | 57 | 54 | 58 | 54 | 63 | 56 | 51 | 57 | 54 | 55 | 54 | 56 | 47 | 41 | 33

16384 | 40 | 39 | 37 | 34 | 29 | 32 |31 |40 | 24 | 34 |38 | 35|39 |34 |40 |35 (33|37 |3 |36 |36 |36 31|26 |22

32768 | 24 | 25 | 24 | 23 | 21 | 23 |22 |28 |16 | 21 |24 |23 |25 |22 |26 |24 |23 | 25|23 |23 |25 |24 |21 | 17 | 15

65536 14 | 15|13 |13 |14 |15 |13 | 15|10 |12 |15 | 13 (15 |13 | 14 | 14 | 14 | 14 | 14 | 14 | 15 | 14 | 13 9 10

131072 | 8 8 8 7 7 8 7 7 6 7 8 8 8 6 8 8 8 8 8 7 8 8 8 5 6
262144 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4
524288 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1048576 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[44]



10

10

Number of non-empty boxes

10

All Warsaw rain gauge, intensity threshold: 0.16 mm/min

10°

10° 10*

Size of boxes (1 minute)

10

107

Figure 11.26. Log-log plot of functional box-counting method for 1-minute rainfall time-series from Warsaw, for all the 25 rain gauges, and intensity threshold 0.16 mm/min
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APPENDIX III.
ENERGY SPECTRA COMPUTED BY FFT METHOD

Section A

Energy spectra obtained for 1-minute rainfall time-series from Warsaw, recorded from September
2008 to November 2010. The scaling exponent is calculated for two different scaling regimes.
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Figure 111.1. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for
rain gauge RO1
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Figure 111.2. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for
rain gauge R02
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Figure 111.3. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for
rain gauge R03
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Figure 111.4. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for

rain gauge R04
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Figure 111.5. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for

rain gauge R05
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Figure 111.6. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for

rain gauge RO7
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Figure 111.7. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for

rain gauge R08
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Figure 111.8. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for
rain gauge R09
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Figure 111.9. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for
rain gauge R10
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Figure 111.10. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010,

for rain gauge R11
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Figure 111.11. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010,

for rain gauge R12
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Figure 111.12. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010,

for rain gauge R13
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Figure 111.13. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010,

for rain gauge R14

[52]



10" 1 Ll

Ll Ll Ll Ll L1l

w0t

10°

10
f(1/h)

107"

10°

10'

10°

Figure 111.14. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010,

for rain gauge R16
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Figure 111.15. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010,

for rain gauge R17
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Figure 111.16. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010,

for rain gauge R18
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Figure 111.17. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010,

for rain gauge R19
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Figure 111.18. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010,

for rain gauge R20
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Figure 111.19. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010,

for rain gauge R21
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Figure 111.20. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010,
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Figure 111.21. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010,

for rain gauge R23

[56]



R24

10° 1 I

RN R | S S N AN N1 S AR R 111 B W W R TT B R I RN

1 11111 || 1 1
107 107 10° 10"

f(1/h)

10 w*

10°

Figure 111.22. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010,

for rain gauge R24
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Section B

Energy spectra obtained for 1-minute rainfall time-series from Warsaw, recorded in 2009. The
spectra are computed for data divided into summer (b) and winter (c) season. The intersection of
trend lines of two scaling regimes gives the break point.
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Figure 111.23. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R01 in 2009. Summer season
(upper graph) and winter season (lower graph)
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Figure 111.24. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R02 in 2009. Summer season
(upper graph) and winter season (lower graph)
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Figure 111.25. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R03 in 2009. Summer season

(upper graph) and winter season (lower graph)
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Figure 111.26. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R04 in 2009. Summer season

(upper graph) and winter season (lower graph)
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Figure 111.27. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R05 in 2009. Summer season

(upper graph) and winter season (lower graph)

[62]



, RO7b - summer season 2009

T T T
Ll

T T T
1
1
}
(]
1
1
[
1
1
1
=

nl ‘ | 'W" i s

T T T T
i
Lol

T T T T T T
"

-
Ll

-
Lol

10'7 1 Lol 1 Lol Lol 1 Lol Ll 1 Ll 1 [ |

10 107 10° 107" 10° 10’ 10°

f(hours'1)

. RO7c - winter season 2009

10 T | T T T T T T T T T T T T T T T T Tl T T T T T LI I I A

L1

o S W M

g

’
Lol

.,

10'7 1 Lol 1 Lol IR 1 | 1 Lol Lol 1 T

10 107 10" 107" 10° 10' 10°

f(hours'1)

Figure 111.28. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R07 in 2009. Summer season
(upper graph) and winter season (lower graph)
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Figure 111.29. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R08 in 2009. Summer season

(upper graph) and winter season (lower graph)
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Figure 111.30. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R09 in 2009. Summer season
(upper graph) and winter season (lower graph)
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Figure 111.31. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R10 in 2009. Summer season

(upper graph) and winter season (lower graph)
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Figure 111.32. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R11 in 2009. Summer season

(upper graph) and winter season (lower graph)
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Figure 111.33. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R12 in 2009. Summer season

(upper graph) and winter season (lower graph)
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Figure 111.34. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R13 in 2009. Summer season

(upper graph) and winter season (lower graph)
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Figure 111.35. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R14 in 2009. Summer season
(upper graph) and winter season (lower graph)
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Figure 111.36. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R16 in 2009. Summer season

(upper graph) and winter season (lower graph)

[71]



R17b - summer season 2009

Lol Lol Lol R L1

-3 7 -1 ]

0 10 10 10 10
f(hours’ﬂ)

R17c - winter season 2009

=

vl vl s vl vl i

Ll L il Lol Lo vl Lol
107 10° 107 107 10°
f(hours'1)

10

10°

Figure 111.37. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R17 in 2009. Summer season

(upper graph) and winter season (lower graph)
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Figure 111.38. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R18 in 2009. Summer season
(upper graph) and winter season (lower graph)
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Figure 111.39. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R19 in 2009. Summer season
(upper graph) and winter season (lower graph)
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Figure 111.40. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R20 in 2009. Summer season

(upper graph) and winter season (lower graph)
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Figure 111.41. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R21 in 2009. Summer season
(upper graph) and winter season (lower graph)
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Figure 111.42. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R22 in 2009. Summer season
(upper graph) and winter season (lower graph)
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Figure 111.43. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R23 in 2009. Summer season
(upper graph) and winter season (lower graph)
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Figure 111.44. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R24 in 2009. Summer season

(upper graph) and winter season (lower graph)
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Section C

Energy spectra obtained for 1-minute rainfall time-series from Warsaw, recorded from September
2008 to November 2010. The scaling exponent is calculated for all the recorded period.
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Figure 111.45. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge RO1 with the overall slope
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Figure 111.46. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R02 with the overall slope
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Figure 111.47. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R03 with the overall slope
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Figure 111.48. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R04 with the overall slope
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Figure 111.49. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R05 with the overall slope
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Figure 111.50. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R07 with the overall slope
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Figure 111.51. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R08 with the overall slope
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Figure 111.52. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R09 with the overall slope
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Figure 111.53. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R10 with the overall slope
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Figure 111.54. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R11 with the overall slope
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Figure 111.55. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R12 with the overall slope
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Figure 111.56. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R13 with the overall slope
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Figure 111.57. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R14 with the overall slope
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Figure 111.58. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R16 with the overall slope
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Figure 111.59. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R17 with the overall slope
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Figure 111.60. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R18 with the overall slope
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Figure 111.61. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R19 with the overall slope
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Figure 111.62. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R20 with the overall slope
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Figure 111.63. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R21 with the overall slope
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Figure 111.64. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R22 with the overall slope
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Figure 111.65. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R23 with the overall slope
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Figure 111.66. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R24 with the overall slope
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APPENDIX IV.
TRACE MOMENT METHOD PLOTS

Section A

Log-log plots of the relation between the average g order moments of the rainfall intensity & and the
scale parameter A obtained by the trace moment method for 1-minute rainfall from Warsaw, from 2008
to 2010. The analysis is performed for time scales from 1 minute up to 16384 minutes (11.4 days) for
order moments g smaller than 1 (on the left) and greater than 1 (on the right side).
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Figure 1V.1. Log-log plot of the mean g moments of the rainfall intensity ¢, against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R01, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.2. Log-log plot of the mean @ moments of the rainfall intensity ¢; against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R02, for g<1 (on left) and for g>1 (on right). The time scales range

from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.3. Log-log plot of the mean g moments of the rainfall intensity ¢; against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R03, for g<1 (on left) and for g>1 (on right). The time scales range

from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.4. Log-log plot of the mean g moments of the rainfall intensity ¢, against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R04, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure IV.5. Log-log plot of the mean @ moments of the rainfall intensity ¢; against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge RO05, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.6. Log-log plot of the mean g moments of the rainfall intensity ¢, against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R07, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure IV.7. Log-log plot of the mean @ moments of the rainfall intensity ¢; against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R08, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.8. Log-log plot of the mean g moments of the rainfall intensity ¢, against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R09, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.9. Log-log plot of the mean @ moments of the rainfall intensity ¢; against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R10, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.10. Log-log plot of the mean g moments of the rainfall intensity ¢, against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R11, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.11. Log-log plot of the mean g moments of the rainfall intensity ¢; against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R12, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.12. Log-log plot of the mean g moments of the rainfall intensity ¢; against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R13, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.13. Log-log plot of the mean g moments of the rainfall intensity ¢; against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R14, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.14. Log-log plot of the mean g moments of the rainfall intensity ¢, against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R16, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.15. Log-log plot of the mean g moments of the rainfall intensity ¢, against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R17, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.17. Log-log plot of the mean g moments of the rainfall intensity ¢; against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R19, for g<1 (on left) and for g>1 (on right). The time scales range

from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.18. Log-log plot of the mean g moments of the rainfall intensity ¢; against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R20, for g<1 (on left) and for g>1 (on right). The time scales range

from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.19. Log-log plot of the mean g moments of the rainfall intensity ¢, against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R21, for g<1 (on left) and for g>1 (on right). The time scales range

from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.20. Log-log plot of the mean g moments of the rainfall intensity ¢; against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R22, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.21. Log-log plot of the mean g moments of the rainfall intensity ¢, against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R23, for g<1 (on left) and for g>1 (on right). The time scales range
from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure 1V.22. Log-log plot of the mean g moments of the rainfall intensity ¢; against the scale coefficient A for 1-minute
precipitation data series from Warsaw rain gauge R24, for g<1 (on left) and for g>1 (on right). The time scales range

from A = 16384 (1 minute) to A = 1 (11.4 days)
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Section B

Empirical moments scaling function plots obtained by the trace moment method for 1-minute rainfall
from Warsaw, from 2008 to 2010, for time scales from 1 minute up to 16384 minutes (11.4 days).
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Figure 1V.23. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge RO1 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)

R02

Figure 1V.24. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R02 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 1V.25. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R03 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)

RO4

Figure 1V.26. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R04 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 1VV.27. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R05 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 1V.28. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from

Warsaw rain gauge R07 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 1V.29. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R08 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)

R0O9

Figure 1VV.30. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R09 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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R10

Warsaw rain gauge R11 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 1VV.31. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R10 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 1V.32. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
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Figure 1VV.33. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data
Warsaw rain gauge R12 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 1V.34. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data
Warsaw rain gauge R13 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 1VV.35. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R14 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)

R16

Figure 1V.36. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R16 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 1VV.37. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R17 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 1V.38. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R18 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 1V.39. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R19 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 1V.40. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R20 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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R21

Figure 1V.41. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R21 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)

R22

Figure 1V.42. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R22 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 1V.43. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R23 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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Figure 1V.44. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from
Warsaw rain gauge R24 for time scales from A = 16384 (1 minute) to A =1 (11.4 days)
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APPENDIX V.
PROBABILITY DISTRIBUTION/MULTIPLE SCALING METHOD PLOTS

Section A

Log-log plots of the probability of exceeding rainfall-intensity levels for different values of singularity
y relation with scale parameter A, obtained for the 1-minute precipitation intensity time-series from
Warsaw, from 2008 to 2010.

The graphs refer only to sample singularity orders y (to be read in the legend). The dotted line in the
plots underlines the almost exact linear fitting for the specific case of y = 0.4.
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Figure V.1. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R0O1. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.2. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R02. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.3. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R03. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.4. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R04. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.5. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R05. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.6. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R0O7. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.7. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R08. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.8. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R09. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.9. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R10. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.10. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R11. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.11. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R12. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)

[119]



log(Prie, =3.1)

*

R13

= T T T
0.5 e, —
e
% | S
.
_{-.___- - F Y '
TRl FY
A v . — | —
+ S F ' i
_—
v + '*-...ﬂ“ 'y ' ' '
4 .
v + h*h""--.. 4 ' ' ' '
-y + + h*‘““'n “ A ]
e A
v e A
+ . . N
N + . Tk 4
= ol e _
A, T slope = 0.477
y * m—. = -
% v + --.*,__“
a Sae
= . -4
2 v + Tven
- 25k . e
+
' -
+
-3 L 4 * —
*
+ .
L v
» +
A v
asH 4 +
N v
+
v
| | | | | | | | =
05 1 1.5 2 2.5 3 3.5 4
log(2.)

Figure V.12. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R13. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.13. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R14. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.14. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R16. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.15. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R17. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.16. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R18. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.17. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R19. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.18. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R20. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.19. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R21. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.20. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R22. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.21. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R23. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Figure V.22. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity y relation
against scale parameter A, obtained for 1-minute precipitation data series from Warsaw rain gauge R24. The time
scales range from A = 16384 (1 minute) to A = 1 (11.4 days)
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Section B

Empirical codimension function plots obtained for the 1-minute rainfall intensity time-series from Warsaw, from 2008 to 2010, for time scales
from A = 16384 (1 min.) up to A = 1 (16384 min. = 11.4 days). For singularity orders, y>yp, the fitting lines (blue lines in figures) and their
equations are visible on the graphs.
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Figure V.23. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge RO1 and R02, for time scales from
1 minute 11.4 days
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Figure V.24. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R03, R04 and R05, for time scales from
1 minute 11.4 days
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Figure V.25. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R07, R08 and R09, for time scales from
1 minute 11.4 days
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Figure V.26. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R10, R11 and R12, for time scales from
1 minute 11.4 days
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Figure V.27. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R13, R14 and R16, for time scales from
1 minute 11.4 days
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Figure V.28. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R17, R18 and R19, for time scales from
1 minute 11.4 days
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Figure V.29. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R20, R21 and R22, for time scales from
1 minute 11.4 days
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Figure V.30. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R23 and R24, for time scales from
1 minute 11.4 days
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APPENDIX VI.

log(|K{am)l)

DOUBLE TRACE MOMENT METHOD RESULTS

Section A

Plots of the relation between log(|[K(q,n|) and log(n) for selected moments order g, obtained for the 1-
minute rainfall intensity time-series from Warsaw, from 2008 to 2010, for time scales from A = 16384
(1 min.) up to A =1 (16384 min. = 11,4 days).
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Figure VI1.1. DTM plots of log|K(g,n)| against log(n) for selected order moments q obtained for 1-minute precipitation data

series from Warsaw rain gauge R01
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Figure V1.3. DTM plots of log|K(g,n)| against log(n) for selected order moments g obtained for 1-minute precipitation data
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Figure V1.4. DTM plots of log|K(g,n)| against log(n) for selected order moments q obtained for 1-minute precipitation data
series from Warsaw rain gauge R04
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Figure V1.5. DTM plots of log|K(g,n)| against log(n) for selected order moments g obtained for 1-minute precipitation data
series from Warsaw rain gauge R05
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Figure V1.6. DTM plots of log|K(q,n)| against log(n) for selected order moments ¢ obtained for

series from Warsaw rain gauge R07

1-minute precipitation data
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Figure V1.7. DTM plots of log|K(g,n)| against log(n) for selected order moments g obtained for 1-minute precipitation data

series from Warsaw rain gauge R08
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Figure V1.8. DTM plots of log|K(q,n)| against log(n) for selected order moments q

series from Warsaw rain gauge R09

obtained for 1-minute precipitation data
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Figure V1.9. DTM plots of log|K(g,n)| against log(n) for selected order moments q obtained for 1-minute precipitation data

series from Warsaw rain gauge R10

[138]




R11

0 T T T T
R . . . . . N * q=09
. R : B g=11
> * + L + + + ® g=12
0.2 ; + . w 3 x x % “ A g=13
. . x vy Y ¥ ¥ vy ¥ ¥ + g=14
R > . v + + + + + + 4 g=15
04 . » + n + « < < < < a + g=16
04 v -
. . . . . N > e : « ¥ oq=17
» > > > > > > L 4 % v + 4 + + + + + + * gq=18
LA S S S A * 4+ g=19
06k * # * * * “ - - + R R N . . a Bog=20
v v v v v v A N + 4 . " + g=21
= + + + + + + + P « i
o +
T 08 L L L 4 L L - . N . - * * * » L4
g 4+ 4+ o+ + o+ o+ * N o
A
A A A A A A 4o 4 A .
»*
. . [} | | | [ ] [ ] |}
a2k . * » * M M L . % _
]
*
]
14 *
_ \ .
" = = ] ™ = ] u
15 | | | | | | | | |
- 0.8 0.6 04 0.2 0 0.2 04 06 0.8 1
log(n)

Figure V1.10. DTM plots of log|K(g,n)| against log(n) for selected order moments q obtained for 1-minute precipitation
data series from Warsaw rain gauge R11
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Figure V1.11. DTM plots of log|K(g,n)| against log(n) for selected order moments q obtained for 1-minute precipitation
data series from Warsaw rain gauge R12
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Figure VI1.13. DTM plots of log|K(g,n)| against log(n) for selected order moments ¢ obtained for 1-minute precipitation
data series from Warsaw rain gauge R14
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Figure V1.14. DTM plots of log|K(q,n)| against log(n) for selected order moments ¢ obtained for 1-minute precipitation

data series from Warsaw rain gauge R16
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Figure V1.15. DTM plots of log|K(g,n)| against log(n) for selected order moments q obtained for 1-minute precipitation

data series from Warsaw rain gauge R17
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Figure V1.16. DTM plots of log|K(q,n)| against log(n) for selected order moments q obtained for 1-minute precipitation

data series from Warsaw rain gauge R18
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Figure V1.17. DTM plots of log|K(q,n)| against log(n) for selected order moments q obtained for 1-minute precipitation

data series from Warsaw rain gauge R19
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Figure VI1.18. DTM plots of log|K(g,n)| against log(n) for selected order moments q obtained for 1-minute precipitation
data series from Warsaw rain gauge R20
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Figure V1.19. DTM plots of log|K(g,n)| against log(n) for selected order moments g obtained for 1-minute precipitation
data series from Warsaw rain gauge R21
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Figure V1.20. DTM plots of log|K(q,n)| against log(n) for selected order moments ¢ obtained for 1-minute precipitation

data series from Warsaw rain gauge R22
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Figure V1.21. DTM plots of log|K(q,n)| against log(n) for selected order moments q obtained for 1-minute precipitation

data series from Warsaw rain gauge R23

[144]




R24

0 T T
* g=09
+ - H g=11
+ - . N + »> - -
N T T L TR B e
+ + + + + + + & g=13
. : ; . N . . * - L1+ a=1a
s
» vy ¥ v v hi 4 g=15
. . = L4 A L + + + q=186
+ + + -
. N > < ¥+ + o+t « 4| v oemT
+ + . + + * > » * - - P P L | o g=18
051 > » > > > > . + M v + « « - + g=19
+ ¢+ 4 YO . + % . F -
. . . . . w v + - 4 + + 4 > q=20
x
=21
= ¥y ¥ ¥ ¥ ¥y v v M + a " ) QR
= + * 4 A 4 4 a4 a4
o + + + + + + + P A
4 a *
= 4 4 4 4 4 44 4 i *
o + * * * L ] - ™ L] .
* * * * * * * A .
A
A A Y A A F'y A A & . ]
* [ ]
. [ . (]
e * & @ e ® @ . r " = "
(]
*
(]
*
v ¥
15 ™ ™ ™ ™ ] i [ | L I I I l \
= 08 06 04 02 0 02 04 06 08 1
log(n)

Figure V1.22. DTM plots of log|K(g,n)| against log(n) for selected order moments g obtained for 1-minute precipitation
data series from Warsaw rain gauge R24
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Section B

Critical moments gmin and gmax estimated for plots breaks from the graphs presented in Section A, and
below, the Lévy index o and the mean values of the codimension C; for selected moments order g.

Table Vl.1a. Critical moments gmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R01

R1
Minimal critical moment Qmin Maximal critical moment Qmax
Curve for q
log(n) n Omin = qn log(n) n Omax = qn

0.90 0.1 1.26 1.13 0.5 3.16 2.85
1.10 0.0 1.00 1.10 0.4 251 2.76
1.20 0.0 1.00 1.20 0.4 2.51 3.01
1.30 0.0 1.00 1.30 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.1 0.79 1.19 0.3 2.00 2.99
1.60 -0.1 0.79 1.27 0.3 2.00 3.19
1.70 -0.1 0.79 1.35 0.3 2.00 3.39
1.80 -0.1 0.79 1.43 0.2 1.58 2.85
1.90 -0.2 0.63 1.20 0.2 1.58 3.01
2.00 -0.2 0.63 1.26 0.2 1.58 3.17
2.10 -0.2 0.63 1.33 0.2 1.58 3.33
Average 1.24 Average 3.00

Standard deviation 0.10 Standard deviation 0.24

Table VI.1b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R01

R1
Curve for q K(q,1) a C

1.10 -1.387 0.834 0.394
1.20 -1.074 0.816 0.392
1.30 -0.885 0.792 0.392
1.40 -0.748 0.825 0.390
1.50 -0.639 0.820 0.392
1.60 -0.548 0.811 0.394
1.70 -0.469 0.799 0.397
1.80 -0.401 0.840 0.394
1.90 -0.339 0.761 0.405
2.00 -0.284 0.760 0.407
2.10 -0.234 0.757 0.409

Average 0.801 0.397
Standard deviation 0.030 0.007
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Table V1.2a. Critical moments gmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R02

R2
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Omin = qn log(n) n Qmax = qn)

0.90 0.0 1.00 0.90 0.5 3.16 2.85
1.10 -0.1 0.79 0.87 0.4 2.51 2.76
1.20 -0.1 0.79 0.95 0.4 2.51 3.01
1.30 -0.1 0.79 1.03 0.4 2.51 3.27
1.40 -0.2 0.63 0.88 0.4 2.51 3.52
1.50 -0.2 0.63 0.95 0.3 2.00 2.99
1.60 -0.2 0.63 1.01 0.3 2.00 3.19
1.70 -0.2 0.63 1.07 0.3 2.00 3.39
1.80 -0.2 0.63 1.14 0.3 2.00 3.59
1.90 -0.2 0.63 1.20 0.2 1.58 3.01
2.00 -0.3 0.50 1.00 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.2 1.58 3.33
Average 1.01 Average 3.17

Standard deviation 0.10 Standard deviation 0.26

Table VI.2b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R02

R2
Curve for g K(qg,1) o C1

1.10 -1.390 0.828 0.391
1.20 -1.076 0.821 0.390
1.30 -0.886 0.809 0.391
1.40 -0.747 0.748 0.397
1.50 -0.636 0.797 0.396
1.60 -0.543 0.796 0.399
1.70 -0.464 0.791 0.403
1.80 -0.394 0.784 0.407
1.90 -0.331 0.818 0.405
2.00 -0.275 0.724 0.420
2.10 -0.225 0.726 0.423

Average 0.785 0.402
Standard deviation 0.037 0.011
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Table V1.3a. Critical moments gmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R03

R3
Curve for g Minimal critical moment gmin Maximal critical moment Qmax
log(n) n Qmin = qn| log(n) n Omax = qn

0.90 0.0 1.00 0.90 0.5 3.16 2.85
1.10 -0.1 0.79 0.87 0.4 2,51 2.76
1.20 -0.1 0.79 0.95 0.4 2.51 3.01
1.30 -0.1 0.79 1.03 0.4 2,51 3.27
1.40 -0.2 0.63 0.88 0.4 2.51 3.52
1.50 -0.2 0.63 0.95 0.3 2.00 2.99
1.60 -0.2 0.63 1.01 0.3 2.00 3.19
1.70 -0.2 0.63 1.07 0.3 2.00 3.39
1.80 -0.2 0.63 1.14 0.3 2.00 3.59
1.90 -0.2 0.63 1.20 0.3 2.00 3.79
2.00 -0.3 0.50 1.00 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.2 1.58 3.33
Average 1.01 Average 3.24

Standard deviation 0.10 Standard deviation 0.31

Table VI.3b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R03

R3
Curve for q K(qg,1) o C1

1.10 -1.405 0.856 0.378
1.20 -1.090 0.853 0.376
1.30 -0.900 0.844 0.377
1.40 -0.761 0.778 0.382
1.50 -0.651 0.819 0.381
1.60 -0.558 0.820 0.384
1.70 -0.478 0.818 0.387
1.80 -0.408 0.812 0.390
1.90 -0.345 0.805 0.394
2.00 -0.289 0.742 0.405
2.10 -0.238 0.745 0.407

Average 0.808 0.387
Standard deviation 0.039 0.011
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Table V1.4a. Critical moments gmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R04

R4
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Qmin = qn| log(n) n Omax = qn

0.90 0.0 1.00 0.90 0.5 3.16 2.85
1.10 -0.1 0.79 0.87 0.4 2,51 2.76
1.20 -0.1 0.79 0.95 0.4 2.51 3.01
1.30 -0.1 0.79 1.03 0.4 2,51 3.27
1.40 -0.1 0.79 1.11 0.4 2.51 3.52
1.50 -0.2 0.63 0.95 0.3 2.00 2.99
1.60 -0.2 0.63 1.01 0.3 2.00 3.19
1.70 -0.2 0.63 1.07 0.3 2.00 3.39
1.80 -0.2 0.63 1.14 0.3 2.00 3.59
1.90 -0.3 0.50 0.95 0.2 1.58 3.01
2.00 -0.3 0.50 1.00 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.2 1.58 3.33
Average 1.00 Average 3.17

Standard deviation 0.08 Standard deviation 0.26

Table VI.4b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R04.

R4
Curve for q K(qg,1) o C1

1.10 -1.412 0.689 0.375
1.20 -1.101 0.692 0.372
1.30 -0.915 0.690 0.372
1.40 -0.779 0.683 0.372
1.50 -0.672 0.652 0.375
1.60 -0.583 0.657 0.376
1.70 -0.507 0.658 0.377
1.80 -0.440 0.657 0.379
1.90 -0.380 0.579 0.390
2.00 -0.326 0.586 0.392
2.10 -0.277 0.591 0.393

Average 0.648 0.379
Standard deviation 0.043 0.008
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Table V1.5a. Critical moments gmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R05

R5
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Qmin = qn log(n) n Omax = qn

0.90 -0.1 0.79 0.71 0.5 3.16 2.85
1.10 -0.1 0.79 0.87 0.4 2,51 2.76
1.20 -0.2 0.63 0.76 0.4 2.51 3.01
1.30 -0.2 0.63 0.82 0.4 2,51 3.27
1.40 -0.2 0.63 0.88 0.4 2.51 3.52
1.50 -0.2 0.63 0.95 0.4 2,51 3.77
1.60 -0.2 0.63 1.01 0.4 2.51 4.02
1.70 -0.2 0.63 1.07 0.3 2.00 3.39
1.80 -0.3 0.50 0.90 0.3 2.00 3.59
1.90 -0.3 0.50 0.95 0.3 2.00 3.79
2.00 -0.3 0.50 1.00 0.3 2.00 3.99
2.10 -0.3 0.50 1.05 0.3 2.00 4.19
Average 0.92 Average 3.51

Standard deviation 0.11 Standard deviation 0.47

Table VI. 5b. Lévy indexes o and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R05

R5
Curve for q K(qg,1) o C1

1.10 -1.370 0.833 0.410
1.20 -1.057 0.754 0.410
1.30 -0.869 0.762 0.409
1.40 -0.731 0.766 0.410
1.50 -0.622 0.766 0.412
1.60 -0.530 0.764 0.414
1.70 -0.452 0.796 0.413
1.80 -0.382 0.713 0.426
1.90 -0.321 0.717 0.429
2.00 -0.265 0.719 0.431
2.10 -0.214 0.719 0.434

Average 0.755 0.418
Standard deviation 0.037 0.010
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Table VI1.7a. Critical moments gmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R07

R7
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Qmin = qn log(n) n Omax = qn

0.90 0.0 1.00 0.90 0.5 3.16 2.85
1.10 -0.1 0.79 0.87 0.4 2,51 2.76
1.20 -0.1 0.79 0.95 0.3 2.00 2.39
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.2 0.63 0.95 0.3 2.00 2.99
1.60 -0.2 0.63 1.01 0.2 1.58 2.54
1.70 -0.2 0.63 1.07 0.2 1.58 2.69
1.80 -0.2 0.63 1.14 0.2 1.58 2.85
1.90 -0.2 0.63 1.20 0.2 1.58 3.01
2.00 -0.3 0.50 1.00 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.1 1.26 2.64
Average 1.02 Average 2.77

Standard deviation 0.10 Standard deviation 0.22

Table VI.7b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R07

R7
Curve for q K(qg,1) o C1

1.10 -1.396 0.740 0.388
1.20 -1.081 0.809 0.386
1.30 -0.891 0.804 0.387
1.40 -0.752 0.792 0.389
1.50 -0.642 0.725 0.396
1.60 -0.551 0.755 0.396
1.70 -0.472 0.756 0.399
1.80 -0.403 0.753 0.401
1.90 -0.342 0.747 0.404
2.00 -0.288 0.669 0.416
2.10 -0.238 0.658 0.420

Average 0.746 0.398
Standard deviation 0.049 0.011
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Table V1.8a. Critical moments gmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R08

R8
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Qmin = qn| log(n) n Omax = qn

0.90 0.0 1.00 0.90 0.5 3.16 2.85
1.10 -0.1 0.79 0.87 0.4 2,51 2.76
1.20 -0.1 0.79 0.95 0.4 2.51 3.01
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.2 0.63 0.95 0.3 2.00 2.99
1.60 -0.2 0.63 1.01 0.3 2.00 3.19
1.70 -0.2 0.63 1.07 0.3 2.00 3.39
1.80 -0.2 0.63 1.14 0.3 2.00 3.59
1.90 -0.2 0.63 1.20 0.3 2.00 3.79
2.00 -0.3 0.50 1.00 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.2 1.58 3.33
Average 1.02 Average 3.12

Standard deviation 0.10 Standard deviation 0.36

Table VI.8b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R08

R8
Curve for q K(qg,1) o C1

1.10 -1.399 0.726 0.386
1.20 -1.086 0.723 0.385
1.30 -0.898 0.715 0.385
1.40 -0.761 0.766 0.383
1.50 -0.653 0.697 0.389
1.60 -0.562 0.698 0.391
1.70 -0.485 0.696 0.393
1.80 -0.417 0.691 0.396
1.90 -0.357 0.685 0.398
2.00 -0.303 0.636 0.407
2.10 -0.253 0.639 0.408

Average 0.697 0.393
Standard deviation 0.037 0.009
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Table V1.9a. Critical moments gmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R09

R9
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Omin = qn log(n) n Qmax = qn)

0.90 0.0 1.00 0.90 0.5 3.16 2.85
1.10 -0.1 0.79 0.87 0.4 2.51 2.76
1.20 -0.1 0.79 0.95 0.3 2.00 2.39
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.2 0.63 0.95 0.3 2.00 2.99
1.60 -0.2 0.63 1.01 0.2 1.58 2.54
1.70 -0.2 0.63 1.07 0.2 1.58 2.69
1.80 -0.2 0.63 1.14 0.2 1.58 2.85
1.90 -0.2 0.63 1.20 0.2 1.58 3.01
2.00 -0.3 0.50 1.00 0.1 1.26 2.52
2.10 -0.3 0.50 1.05 0.1 1.26 2.64
Average 1.02 Average 2.72

Standard deviation 0.10 Standard deviation 0.19

Table VI1.9b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R09

R9
Curve for g K(qg,1) o C1

1.10 -1.397 0.745 0.387
1.20 -1.084 0.789 0.384
1.30 -0.895 0.792 0.384
1.40 -0.757 0.788 0.385
1.50 -0.648 0.719 0.391
1.60 -0.557 0.728 0.393
1.70 -0.479 0.734 0.394
1.80 -0.411 0.736 0.396
1.90 -0.350 0.735 0.398
2.00 -0.296 0.623 0.415
2.10 -0.247 0.633 0.416

Average 0.729 0.395
Standard deviation 0.057 0.011
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Table V1.10a. Critical moments qmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R10

R10
Curve for g Minimal critical moment Qmin Maximal critical moment qmax
log(n) n Omin = qn log(n) n Qmax = qn)

0.90 0.0 1.00 0.90 0.5 3.16 2.85
1.10 -0.1 0.79 0.87 0.4 2.51 2.76
1.20 -0.1 0.79 0.95 0.4 2.51 3.01
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.2 0.63 0.95 0.3 2.00 2.99
1.60 -0.2 0.63 1.01 0.3 2.00 3.19
1.70 -0.2 0.63 1.07 0.3 2.00 3.39
1.80 -0.2 0.63 1.14 0.3 2.00 3.59
1.90 -0.2 0.63 1.20 0.2 1.58 3.01
2.00 -0.3 0.50 1.00 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.2 1.58 3.33
Average 1.02 Average 3.06

Standard deviation 0.10 Standard deviation 0.29

Table VI.10b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R10

R10
Curve for q K(g,1) o C1

1.10 -1.396 0.737 0.388
1.20 -1.082 0.732 0.387
1.30 -0.894 0.785 0.385
1.40 -0.757 0.781 0.386
1.50 -0.648 0.710 0.392
1.60 -0.557 0.709 0.395
1.70 -0.479 0.706 0.397
1.80 -0.411 0.700 0.400
1.90 -0.350 0.726 0.399
2.00 -0.296 0.647 0.412
2.10 -0.246 0.649 0.413

Average 0.717 0.396
Standard deviation 0.044 0.010
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Table VI1.11a. Critical moments qmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R11

R11
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Omin = qn log(n) n Qmax = qn)

0.90 0.0 1.00 0.90 0.4 2.51 2.26
1.10 -0.1 0.79 0.87 0.4 2.51 2.76
1.20 -0.1 0.79 0.95 0.3 2.00 2.39
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.1 0.79 1.19 0.3 2.00 2.99
1.60 -0.2 0.63 1.01 0.3 2.00 3.19
1.70 -0.2 0.63 1.07 0.3 2.00 3.39
1.80 -0.2 0.63 1.14 0.3 2.00 3.59
1.90 -0.2 0.63 1.20 0.2 1.58 3.01
2.00 -0.3 0.50 1.00 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.2 1.58 3.33
Average 1.04 Average 2.96

Standard deviation 0.10 Standard deviation 0.41

Table VI.11b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R11

R11
Curve for g K(qg,1) o C1

1.10 -1.396 0.737 0.388
1.20 -1.082 0.732 0.387
1.30 -0.894 0.785 0.385
1.40 -0.757 0.781 0.386
1.50 -0.648 0.773 0.387
1.60 -0.557 0.709 0.395
1.70 -0.479 0.706 0.397
1.80 -0.411 0.700 0.400
1.90 -0.350 0.726 0.399
2.00 -0.296 0.647 0.412
2.10 -0.246 0.649 0.413

Average 0.722 0.395
Standard deviation 0.047 0.010
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Table VI1.12a. Critical moments qmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R12

R12
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Omin = qn log(n) n Qmax = qn)

0.90 0.0 1.00 0.90 0.4 2.51 2.26
1.10 -0.1 0.79 0.87 0.4 2.51 2.76
1.20 -0.1 0.79 0.95 0.3 2.00 2.39
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.1 0.79 1.19 0.3 2.00 2.99
1.60 -0.2 0.63 1.01 0.3 2.00 3.19
1.70 -0.2 0.63 1.07 0.3 2.00 3.39
1.80 -0.2 0.63 1.14 0.3 2.00 3.59
1.90 -0.2 0.63 1.20 0.3 2.00 3.79
2.00 -0.2 0.63 1.26 0.2 1.58 3.17
2.10 -0.2 0.63 1.33 0.2 1.58 3.33
Average 1.09 Average 3.02

Standard deviation 0.14 Standard deviation 0.47

Table VI.12b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R12

R12
Curve for g K(qg,1) o C1

1.10 -1.414 0.824 0.371
1.20 -1.099 0.876 0.368
1.30 -0.909 0.880 0.367
1.40 -0.770 0.876 0.368
1.50 -0.660 0.866 0.370
1.60 -0.568 0.792 0.378
1.70 -0.488 0.788 0.381
1.80 -0.418 0.781 0.384
1.90 -0.356 0.772 0.388
2.00 -0.301 0.809 0.385
2.10 -0.250 0.802 0.388

Average 0.824 0.377
Standard deviation 0.042 0.009
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Table V1.13a. Critical moments qmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R13

R13
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Qmin = qn log(n) n Omax = qn

0.90 -0.1 0.79 0.71 0.5 3.16 2.85
1.10 -0.1 0.79 0.87 0.4 2,51 2.76
1.20 -0.2 0.63 0.76 0.3 2.00 2.39
1.30 -0.2 0.63 0.82 0.3 2.00 2.59
1.40 -0.2 0.63 0.88 0.3 2.00 2.79
1.50 -0.2 0.63 0.95 0.2 1.58 2.38
1.60 -0.2 0.63 1.01 0.2 1.58 2.54
1.70 -0.2 0.63 1.07 0.2 1.58 2.69
1.80 -0.2 0.63 1.14 0.2 1.58 2.85
1.90 -0.3 0.50 0.95 0.2 1.58 3.01
2.00 -0.3 0.50 1.00 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.2 1.58 3.33
Average 0.94 Average 2.78

Standard deviation 0.13 Standard deviation 0.29

Table VI.13b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R13

R13
Curve for q K(qg,1) o C1

1.10 -1.365 0.718 0.418
1.20 -1.049 0.709 0.419
1.30 -0.859 0.714 0.421
1.40 -0.720 0.714 0.424
1.50 -0.610 0.741 0.425
1.60 -0.519 0.743 0.427
1.70 -0.441 0.741 0.429
1.80 -0.373 0.736 0.432
1.90 -0.313 0.666 0.443
2.00 -0.259 0.665 0.445
2.10 -0.211 0.663 0.447

Average 0.710 0.430
Standard deviation 0.032 0.010
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Table VI1.14a. Critical moments qmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R14

R14
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Qmin = qn log(n) n Omax = qn

0.90 0.0 1.00 0.90 0.4 2.51 2.26
1.10 -0.1 0.79 0.87 0.3 2.00 2.19
1.20 -0.1 0.79 0.95 0.3 2.00 2.39
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.1 0.79 1.19 0.2 1.58 2.38
1.60 -0.2 0.63 1.01 0.2 1.58 2.54
1.70 -0.2 0.63 1.07 0.2 1.58 2.69
1.80 -0.2 0.63 1.14 0.2 1.58 2.85
1.90 -0.2 0.63 1.20 0.1 1.26 2.39
2.00 -0.2 0.63 1.26 0.1 1.26 2.52
2.10 -0.3 0.50 1.05 0.1 1.26 2.64
Average 1.07 Average 2.52

Standard deviation 0.12 Standard deviation 0.21

Table VI.14b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R14

R14
Curve for q K(qg,1) o C1

1.10 -1.413 0.859 0.371
1.20 -1.097 0.864 0.370
1.30 -0.906 0.859 0.371
1.40 -0.766 0.847 0.373
1.50 -0.655 0.903 0.371
1.60 -0.563 0.807 0.381
1.70 -0.483 0.808 0.383
1.80 -0.414 0.806 0.386
1.90 -0.352 0.806 0.387
2.00 -0.297 0.807 0.389
2.10 -0.247 0.705 0.404

Average 0.825 0.380
Standard deviation 0.051 0.011
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Table VI1.16a. Critical moments qmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R16

R16
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Qmin = qn log(n) n Omax = qn

0.90 0.0 1.00 0.90 0.5 3.16 2.85
1.10 -0.1 0.79 0.87 0.4 2,51 2.76
1.20 -0.1 0.79 0.95 0.3 2.00 2.39
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.2 0.63 0.95 0.3 2.00 2.99
1.60 -0.2 0.63 1.01 0.2 1.58 2.54
1.70 -0.2 0.63 1.07 0.2 1.58 2.69
1.80 -0.2 0.63 1.14 0.2 1.58 2.85
1.90 -0.2 0.63 1.20 0.2 1.58 3.01
2.00 -0.3 0.50 1.00 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.2 1.58 3.33
Average 1.02 Average 2.83

Standard deviation 0.10 Standard deviation 0.27

Table VI.16b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R16

R16
Curve for q K(qg,1) o C1

1.10 -1.418 0.748 0.369
1.20 -1.105 0.803 0.366
1.30 -0.916 0.805 0.365
1.40 -0.778 0.799 0.366
1.50 -0.669 0.723 0.373
1.60 -0.577 0.736 0.374
1.70 -0.499 0.742 0.376
1.80 -0.430 0.743 0.378
1.90 -0.369 0.741 0.380
2.00 -0.315 0.658 0.393
2.10 -0.265 0.659 0.395

Average 0.742 0.376
Standard deviation 0.050 0.010
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Table VI1.17a. Critical moments qmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R17

R17
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Qmin = qn log(n) n Omax = qn

0.90 0.0 1.00 0.90 0.4 2.51 2.26
1.10 -0.1 0.79 0.87 0.3 2.00 2.19
1.20 -0.1 0.79 0.95 0.3 2.00 2.39
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.2 0.63 0.95 0.2 1.58 2.38
1.60 -0.2 0.63 1.01 0.2 1.58 2.54
1.70 -0.2 0.63 1.07 0.2 1.58 2.69
1.80 -0.2 0.63 1.14 0.2 1.58 2.85
1.90 -0.2 0.63 1.20 0.2 1.58 3.01
2.00 -0.2 0.63 1.26 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.2 1.58 3.33
Average 1.05 Average 2.68

Standard deviation 0.12 Standard deviation 0.36

Table VI.17b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R17

R17
Curve for q K(qg,1) o C1

1.10 -1.399 0.760 0.385
1.20 -1.085 0.759 0.384
1.30 -0.896 0.749 0.385
1.40 -0.758 0.733 0.388
1.50 -0.648 0.708 0.392
1.60 -0.557 0.712 0.394
1.70 -0.479 0.710 0.397
1.80 -0.411 0.704 0.400
1.90 -0.350 0.695 0.403
2.00 -0.296 0.684 0.406
2.10 -0.248 0.620 0.416

Average 0.712 0.395
Standard deviation 0.040 0.010
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Table V1.18a. Critical moments qmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R18

R18
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Qmin = qn| log(n) n Omax = qn

0.90 0.0 1.00 0.90 0.5 3.16 2.85
1.10 0.0 1.00 1.10 0.4 2,51 2.76
1.20 -0.1 0.79 0.95 0.4 2.51 3.01
1.30 -0.1 0.79 1.03 0.4 2,51 3.27
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.1 0.79 1.19 0.3 2.00 2.99
1.60 -0.1 0.79 1.27 0.3 2.00 3.19
1.70 -0.2 0.63 1.07 0.3 2.00 3.39
1.80 -0.2 0.63 1.14 0.2 1.58 2.85
1.90 -0.2 0.63 1.20 0.2 1.58 3.01
2.00 -0.2 0.63 1.26 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.2 1.58 3.33
Average 1.11 Average 3.05

Standard deviation 0.11 Standard deviation 0.22

Table VI1.18b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R18

R18
Curve for q K(qg,1) o C1

1.10 -1.386 0.891 0.394
1.20 -1.072 0.826 0.393
1.30 -0.883 0.816 0.393
1.40 -0.745 0.887 0.390
1.50 -0.634 0.879 0.391
1.60 -0.542 0.866 0.394
1.70 -0.462 0.789 0.404
1.80 -0.392 0.810 0.405
1.90 -0.330 0.811 0.408
2.00 -0.273 0.809 0.410
2.10 -0.222 0.713 0.427

Average 0.827 0.401
Standard deviation 0.052 0.011

[161]



Table V1.19a. Critical moments qmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R19

R19
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Qmin = qn| log(n) n Omax = qn

0.90 0.0 1.00 0.90 0.5 3.16 2.85
1.10 0.0 1.00 1.10 0.4 2,51 2.76
1.20 -0.1 0.79 0.95 0.3 2.00 2.39
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.1 0.79 1.19 0.3 2.00 2.99
1.60 -0.1 0.79 1.27 0.3 2.00 3.19
1.70 -0.1 0.79 1.35 0.3 2.00 3.39
1.80 -0.2 0.63 1.14 0.2 1.58 2.85
1.90 -0.2 0.63 1.20 0.2 1.58 3.01
2.00 -0.2 0.63 1.26 0.2 1.58 3.17
2.10 -0.2 0.63 1.33 0.2 1.58 3.33
Average 1.15 Average 2.94

Standard deviation 0.14 Standard deviation 0.30

Table VI.19b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R19

R19
Curve for q K(qg,1) o C1

1.10 -1.389 0.927 0.391
1.20 -1.077 0.880 0.387
1.30 -0.888 0.896 0.384
1.40 -0.751 0.901 0.383
1.50 -0.641 0.899 0.383
1.60 -0.549 0.892 0.385
1.70 -0.470 0.879 0.388
1.80 -0.400 0.810 0.398
1.90 -0.338 0.815 0.400
2.00 -0.281 0.817 0.402
2.10 -0.230 0.815 0.405

Average 0.867 0.391
Standard deviation 0.043 0.008
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Table V1.20a. Critical moments qmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R20

R20
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Qmin = qn log(n) n Omax = qn

0.90 -0.1 0.79 0.71 0.4 2.51 2.26
1.10 -0.1 0.79 0.87 0.4 2,51 2.76
1.20 -0.1 0.79 0.95 0.3 2.00 2.39
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.1 0.79 1.19 0.3 2.00 2.99
1.60 -0.2 0.63 1.01 0.2 1.58 2.54
1.70 -0.2 0.63 1.07 0.2 1.58 2.69
1.80 -0.2 0.63 1.14 0.2 1.58 2.85
1.90 -0.2 0.63 1.20 0.2 1.58 3.01
2.00 -0.2 0.63 1.26 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.1 1.26 2.64
Average 1.05 Average 2.73

Standard deviation 0.15 Standard deviation 0.26

Table VI.20b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R20

R20
Curve for q K(qg,1) o C1

1.10 -1.391 0.862 0.390
1.20 -1.076 0.924 0.387
1.30 -0.885 0.926 0.386
1.40 -0.745 0.919 0.387
1.50 -0.633 0.906 0.390
1.60 -0.540 0.850 0.398
1.70 -0.459 0.857 0.400
1.80 -0.389 0.858 0.403
1.90 -0.326 0.856 0.405
2.00 -0.270 0.851 0.408
2.10 -0.219 0.736 0.427

Average 0.868 0.398
Standard deviation 0.054 0.012

[163]



Table VI1.21a. Critical moments qmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R21

R21
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Qmin = qn| log(n) n Omax = qn

0.90 0.0 1.00 0.90 0.4 2.51 2.26
1.10 -0.1 0.79 0.87 0.3 2.00 2.19
1.20 -0.1 0.79 0.95 0.3 2.00 2.39
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.2 0.63 0.95 0.2 1.58 2.38
1.60 -0.2 0.63 1.01 0.2 1.58 2.54
1.70 -0.2 0.63 1.07 0.2 1.58 2.69
1.80 -0.2 0.63 1.14 0.2 1.58 2.85
1.90 -0.2 0.63 1.20 0.2 1.58 3.01
2.00 -0.2 0.63 1.26 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.1 1.26 2.64
Average 1.05 Average 2.63

Standard deviation 0.12 Standard deviation 0.30

Table VI.21b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R21

R21
Curve for q K(qg,1) o C1

1.10 -1.399 0.978 0.381
1.20 -1.082 0.988 0.379
1.30 -0.890 0.987 0.379
1.40 -0.748 0.976 0.381
1.50 -0.635 0.901 0.389
1.60 -0.540 0.912 0.391
1.70 -0.459 0.917 0.394
1.80 -0.387 0.917 0.397
1.90 -0.323 0.912 0.401
2.00 -0.266 0.905 0.404
2.10 -0.215 0.789 0.423

Average 0.926 0.393
Standard deviation 0.058 0.013
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Table V1.22a. Critical moments qmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R22

R22
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Qmin = qn| log(n) n Omax = qn

0.90 0.0 1.00 0.90 0.4 2.51 2.26
1.10 -0.1 0.79 0.87 0.4 2,51 2.76
1.20 -0.1 0.79 0.95 0.3 2.00 2.39
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.2 0.63 0.88 0.3 2.00 2.79
1.50 -0.2 0.63 0.95 0.2 1.58 2.38
1.60 -0.2 0.63 1.01 0.2 1.58 2.54
1.70 -0.2 0.63 1.07 0.2 1.58 2.69
1.80 -0.2 0.63 1.14 0.2 1.58 2.85
1.90 -0.2 0.63 1.20 0.2 1.58 3.01
2.00 -0.3 0.50 1.00 0.2 1.58 3.17
2.10 -0.3 0.50 1.05 0.1 1.26 2.64
Average 1.01 Average 2.67

Standard deviation 0.10 Standard deviation 0.27

Table VI.22b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R22

R22
Curve for q K(qg,1) o C1

1.10 -1.389 0.784 0.394
1.20 -1.074 0.844 0.391
1.30 -0.883 0.841 0.392
1.40 -0.744 0.763 0.398
1.50 -0.634 0.778 0.400
1.60 -0.542 0.786 0.402
1.70 -0.463 0.789 0.404
1.80 -0.393 0.788 0.406
1.90 -0.332 0.784 0.409
2.00 -0.277 0.704 0.422
2.10 -0.227 0.687 0.426

Average 0.777 0.404
Standard deviation 0.048 0.011
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Table V1.23a. Critical moments qmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R23

R23
Curve for g Minimal critical moment Qmin Maximal critical moment max
log(n) n Qmin = qn| log(n) n Omax = qn

0.90 -0.1 0.79 0.71 0.4 2.51 2.26
1.10 -0.1 0.79 0.87 0.3 2.00 2.19
1.20 -0.1 0.79 0.95 0.3 2.00 2.39
1.30 -0.1 0.79 1.03 0.3 2.00 2.59
1.40 -0.1 0.79 1.11 0.3 2.00 2.79
1.50 -0.2 0.63 0.95 0.3 2.00 2.99
1.60 -0.2 0.63 1.01 0.2 1.58 2.54
1.70 -0.2 0.63 1.07 0.2 1.58 2.69
1.80 -0.2 0.63 1.14 0.2 1.58 2.85
1.90 -0.2 0.63 1.20 0.2 1.58 3.01
2.00 -0.2 0.63 1.26 0.2 1.58 3.17
2.10 -0.2 0.63 1.33 0.1 1.26 2.64
Average 1.05 Average 2.68

Standard deviation 0.17 Standard deviation 0.30

Table VI1.23b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R23

R23
Curve for q K(qg,1) o C1

1.10 -1.390 0.770 0.393
1.20 -1.077 0.784 0.391
1.30 -0.888 0.789 0.390
1.40 -0.751 0.786 0.390
1.50 -0.642 0.711 0.397
1.60 -0.552 0.717 0.399
1.70 -0.474 0.724 0.400
1.80 -0.405 0.727 0.402
1.90 -0.345 0.727 0.404
2.00 -0.290 0.724 0.406
2.10 -0.241 0.717 0.409

Average 0.743 0.398
Standard deviation 0.032 0.007
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Table VI1.24a. Critical moments qmin and gmax estimated for selected values of order moment g, obtained for 1-minute
precipitation data series from Warsaw rain gauges R24

R24
Curve for g Minimal critical moment Qmin Maximal critical moment Qmax
log(n) n Qmin = qn log(n) n Omax = qn

0.90 0.00 1.00 0.90 0.4 2.51 2.26
1.10 -0.10 0.79 0.87 0.3 2.00 2.19
1.20 -0.10 0.79 0.95 0.3 2.00 2.39
1.30 -0.10 0.79 1.03 0.3 2.00 2.59
1.40 -0.10 0.79 1.11 0.3 2.00 2.79
1.50 -0.20 0.63 0.95 0.3 2.00 2.99
1.60 -0.20 0.63 1.01 0.3 2.00 3.19
1.70 -0.20 0.63 1.07 0.2 1.58 2.69
1.80 -0.20 0.63 1.14 0.2 1.58 2.85
1.90 -0.20 0.63 1.20 0.2 1.58 3.01
2.00 -0.20 0.63 1.26 0.2 1.58 3.17
2.10 -0.20 0.63 1.33 0.2 1.58 3.33
Average 1.07 Average 2.79

Standard deviation 0.14 Standard deviation 0.37

Table VI1.24b. Lévy indexes a and the mean values of process codimension C; calculations for 1-minute precipitation data
series from Warsaw rain gauges R24

R24
Curve for q K(qg,1) o C1

1.10 -1.390 0.770 0.393
1.20 -1.077 0.784 0.391
1.30 -0.888 0.789 0.390
1.40 -0.751 0.786 0.390
1.50 -0.642 0.711 0.397
1.60 -0.552 0.711 0.399
1.70 -0.474 0.724 0.400
1.80 -0.405 0.727 0.402
1.90 -0.345 0.727 0.404
2.00 -0.290 0.724 0.406
2.10 -0.241 0.719 0.409

Average 0.743 0.398
Standard deviation 0.032 0.007
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