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Summary: Finite mixtures of probability distributions may be successfully used in the 
modeling of probability distributions of losses. These distributions are typically heavy 
tailed and positively skewed. Finding the distribution that fits loss data well is often 
difficult. The paper shows that the use of mixed models can significantly improve the 
goodness-of-fit of the loss data. The paper also presents an algorithm to find estimates of 
parameters of mixture distribution and gives an illustrative example. The analytical 
approach is probably the most often used in practice and certainly the most frequently 
adopted in the actuarial literature. It is reduced to finding a suitable analytical expression 
which fits the observed data well. For parameters estimation we use the maximum 
likelihood method applying the Newton-Raphson and EM algorithm. Computations of 
goodness-of-fit can be judged using the Akaike information criterion. 

Keywords: finite mixture of distributions, loss distribution, maximum likelihood 
estimate, EM algorithm. 

1. Introduction 

Many problems in actuarial science involve the building of a 
mathematical model that can be used to forecast or predict insurance 
costs. Hence modeling is an important procedure for actuaries so that 
they can estimate the degree of uncertainty as to when a claim will be 
made and how much will be paid. In particular, the modeling of claims 
and outstanding claims lead to the pricing of insurance premiums and 
an estimation of claim reserving, respectively. The most useful 
approach to uncertainty representation is through probability, so we will 
concentrate on probability models. Loss distribution, as any other 
probability distribution, is completely determined by the cumulative 
distribution F(x) or density functions f(x). 

Fitting an adequate loss distribution to real insurance data sets is a 
relevant problem and not an easy task in actuarial literature. Since it is 
well recognized that the loss distribution is strongly skewed with 
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heavy tails, different candidates for claim severity distribution have 
been considered in the applications: the log-Normal, the Burr, the 
Weibull, the Gamma and the Pareto distribution in the context of 
Extreme Value Theory, see for example [McNeil 1997] and [Embrechts, 
Klüppelberg, Mikosch 1997]. 

Finite mixtures of probability distributions may be successfully 
used in the modeling of probability distributions of loss. [Bernardi, 
Maruotti, Lea 2012] propose a mixture of Skew Normal densities for 
modeling the loss distribution to deal with data displaying large and 
positive skewness as well as a wide right tail. 

2. Loss distribution 

The lognormal, Pareto, Burr, Weibull, and gamma distributions are 
typical candidates for claim size distributions to be considered in this 
paper. 

2.1. Lognormal distribution 

Two parameter lognormal distribution is given by the density 
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If a random variable Y has a lognormal distribution, LN(µ, σ2), 
then a variable log(Y) has a normal distribution with expectation µ and 
variance σ2. In empirical studies of wage and income, distributions are 
considered as three-parameter distribution, in which in addition to µ 
and σ there is a third parameter τ. The parameter τ is the theoretical 
minimal value of Y. The k-th raw moment mk of the log-normal variate 
can be easily derived using the results for normal random variables: 
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The maximum likelihood estimates m and s2 for the parameter µ 
and the parameter σ are 
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The log-normal distribution is very useful in the modeling of claim 
sizes. It is right-skewed, has a thick tail and fits many situations well. 
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2.2. Gamma distribution 

The gamma (more precisely, the Pearson type III) distribution is 
certainly among the five most popular distributions in applied 
statistics when unimodal and positive data are available.  

The density of the gamma distribution is 
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where α, β > 0, with α being a shape and β a scale parameter. The 
likelihood equations for a simple random sample of size n are 
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These can be solved iteratively, and indeed procedures for 
estimation in the gamma distribution are nowadays available in many 
statistical software packages. The k-th raw moment can be easily 
derived from the Laplace transform: 
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2.3. Pareto distribution 

The density of a Pareto distribution is 
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The Pareto distribution is defined in terms of its c.d.f. 
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Clearly, the shape parameter α and the scale parameter λ are both 
positive. The k-th raw moment:.  
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The expected value of a Pareto random variable distribution is 

 1
1
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α
λXE .  (10) 

The variance of a Pareto random variable distribution is 
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Hence the Pareto distribution has very heavy tails. The method of 
moments estimators are given by: 
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Note that the estimators are well defined only when 0ˆ2ˆ 2
12 >− mm . 

Unfortunately there are no closed form expressions for the maximum 
likelihood estimators and they can only be evaluated numerically. 

Suppose that a variable X has (conditional on β) an exponential 
distribution with mean β–1. Further, suppose that β itself has a gamma 
distribution. The unconditional distribution of X is a mixture and is 
called the Pareto distribution. Moreover, it can be shown that if X is an 
exponential random variable and Y is a gamma random variable, then 
X/Y is a Pareto random variable.  

As in the log-normal distribution, the Laplace transform does not 
have a closed form representation and the moment generating function 
does not exist. Moreover, like the exponential pdf, the Pareto density 
is monotone decreasing, which may not be adequate in some practical 
situations. 

2.4. Burr distribution 

The c.d.f.’s of all Burr distributions satisfy the differential equation 

 )()](1)[()( xgxFxFxF −=′ .  (14) 

where F is distribution and g is some non-negative function. The most 
widely known of the (non-uniform) Burr distributions is the Burr XII 
distribution, frequently just called the Burr distribution. The density is 
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The k-th raw moment 
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exists only for αθ<k .The maximum likelihood and method of 
moments estimators for the Burr distribution can only be evaluated 
numerically. 

Experience has shown that the Pareto formula is often an 
appropriate model for the claim size distribution, particularly where 
exceptionally large claims may occur. However, there is sometimes a 
need to find heavy tailed distributions which offer greater flexibility 
than the Pareto law, including a non-monotone pdf. Such flexibility is 
provided by the Burr distribution and its additional shape parameter 

0>θ . If Y has the Pareto distribution, then the distribution of 
θ/1XY =  is known as the Burr distribution. 

2.5. Weibull distribution 

If V is an exponential variable, then the distribution of 
1

, 0X V τ τ= > , 
is called the Weibull (or Frechet) distribution. The density is given by: 

 0,)( 1 >= −− xexxf xτβττβ . (17) 

The k-th raw moment can be shown to be 
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As in the Burr distribution, the maximum likelihood and method 
of moments estimators can only be evaluated numerically. 

3. Maximum likelihood method 
To use the method of maximum likelihood, one first specifies the joint 
density function for all observations. For an independent and 
identically distributed sample, this joint density function is 
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The maximum likelihood estimate (MLE) of θ is the value of θ that 
maximises (19) it is the value that makes the observed data the “most 
probable”. Rather than maximising this product which can be quite 
tedious, one often uses the fact that the logarithm is an increasing 
function so it will be equivalent to maximise the log likelihood. As the 
sample size increases to infinity, sequences of maximum-likelihood 
estimators have the following properties [Fisz 1969]: consistency, 
asymptotic normality, efficiency, it achieves the Cramér–Rao lower 
bound when the sample size tends to infinity. 

4. Finite mixture models 

Suppose X to be a non-negative random variable with continuous 
distribution. The density function f is given as a weighted average of K 
component densities )( θxf j with mixing proportions jπ  [Jajuga 1990] 
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and component densities )( jj xf θ  depend on p-dimensional (in general 

unknown) vector parameters jθ . For the estimation of unknown 
parameters (from a random sample xi, i = 1,…,n) the maximum 
likelihood estimation is usually used in order to obtain the estimate of 
the parameter. From (19) it follows that the likelihood function is 
equal to 
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Now, we want to maximize the complete data log likelihood  
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Lagrange multiplier. This gives us the likelihood function of: 
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First, we have to find the partial first derivatives of 0L  and set 
them equal to zero. 

The task of maximizing the likelihood function can be solved 
using the EM algorithm. This is a numeric procedure that consists of 
two steps. The first step is called Expectation (probabilities πj are 
estimated) and the second one Maximization, where estimated values 
from the first step are used in order to establish new approximations of 
parameters θ . These two steps are repeated until a solution is found. 
Generally, the EM algorithm does not guarantee the absolute 
maximum of the logarithmic likelihood function, but only the local 
extreme [Titterington, Smith, Makov 1985]. In the model for complete 
data associated with the model, each random vector Ci = (Xi; Zi), 
where ),...2,1,( KjZZ iji == and }1,0{∈ijZ  is a Bernoulli random 
variable indicating that individual i comes from component j. Since 
each individual comes from exactly one component, this implies 

∑
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1and jijZP π== )1( . The complete-data density for one 

observation is thus  
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Instead of the observed log-likelihood, the EM algorithm 
iteratively maximizes the operator 

 [ ]),)(log)( )()( tt xChEQ θθθ θ= . (25) 

where )(tθ  is the current value θ at iteration t, and the expectation is 
with respect to the distribution )|( xckθ of c given x, for the value 

)(tθ  of the parameter.  
E-step: compute )( )(tQ θθ  

M-step: set )(maxarg )()1( tt Q θθθ ψθ∈
+ = . 

E-step: Calculate the “posterior” probabilities (conditional on the 
data and )(tθ ) of component inclusion, 
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for ni ,...,2,1=  and Kj ,...,2,1= . 

Numerically, it can be dangerous to implement Equation 26 
exactly as written due to the possibility of the indeterminate form 0/0 
in cases where xi is so far from any of the components that all 

)()(
i

t
j xf ′  values result in a numerical underflow to zero. Thus, many 

of the routines in mix-tools [Benaglia et al. 2009] actually use the 
equivalent expression 
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M-step for π  
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5. Fitting loss distributions 

Fitting distributions to data is a common task in statistics and consists in 
choosing a probability distribution modeling the random variable, as 
well as finding the parameter estimates for that distribution. The fitdistr 
function estimates distribution parameters by maximizing the likelihood 
function. For the log-Normal, exponential and Poisson distributions 
fitdistr function used the closed-form MLEs. For all other distributions, 
direct optimization of the log-likelihood is performed using optim. The 
estimated standard errors are taken from the observed information 
matrix, calculated by a numerical approximation. For one-dimensional 
problems the Nelder-Mead method is used, and for multi-dimensional 
problems the BFGS method. The default method is an implementation 
of that of [Nelder, Mead 1965], that uses only function values and is 
robust but relatively slow. It will work reasonably well for non-
differentiable functions. BFGS is a quasi-Newton method (also known 
as a variable metric algorithm), specifically as published simultaneously 
in 1970 by Broyden, Fletcher, Goldfarb and Shanno. This uses function 
values and gradients to build up a picture of the surface to be optimized. 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/optim.html


ŚLĄSKI 
PRZEGLĄD 
STATYSTYCZNY 

Nr  15(21) 

 

 

 

  

 

Loss modeling with mixtures distributions in R package 191 

We conducted the analysis for two datasets. The first is the Danish 
fire losses dataset. These data describe large fire insurance claims in 
Denmark from Thursday 3rd January 1980 to Monday 31st December 
1990. The data are contained in a numeric vector. The dates of each 
observation are contained in a times attribute. The second data (AutoBi) 
are from the Insurance Research Council (IRC), a division of the 
American Institute for Chartered Property Casualty Underwriters and the 
Insurance Institute of America. The data, collected in 2002, contains 
information on demographic information about the claimant, attorney 
involvement and the economic loss (LOSS, in thousands), among other 
variables. We consider here a sample of n = 1340 losses from a single 
state. Computations of goodness-of-fit can be judged using the Akaike 
information criterion. 
 AIC = −2*l(ψ) + 2*k. (29) 
where l(ψ) – log-likelihood function, k-number of parameters. 

If different models are compared, the smaller the value of AIC, the 
better fit. When fitting continuous distributions, two goodness-of-fit 
statistics: Cramer-von Mises and Kolmogorov-Smirnov are classically 
considered. 

On the basis of the table above, we conclude that the best quality 
of the fit to the empirical data was obtained in the case of distribution 
Burr XII, and the worst for the Weibull and gamma distribution. 

The more points that are close to the line, the better fit the 
distribution. The pp-plot reveals that only the Burr distribution 
sufficiently fits the data. 

We repeat the previously described procedures for data AutoBi. 
 
 

Table 1. Goodness-of-fit statistics. Data: Danish 

Theoretical 
distribution AIC Kolmogorov-Smirnov 

statistic 
Cramer-von Mises 

statistic 

Lognormal 8119.795 0.137 14.791 

Gamma 9538.921 0.201 37.075 

Burr XII 6859.522 0.026   0.294 

Pareto 9249.666 0.312 37.717 

Weibull 9611.243 0.273 36.261 

Source: own calculations. 
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Fig. 1. Histogram and empirical cumulative distribution of Danish Loss  
Source: own elaboration. 
 

 

Fig. 2. Fitted CDFs on Danish. (yellow color: empirical cumulative distribution  
of Danish Loss)  

Source: own elaboration. 



ŚLĄSKI 
PRZEGLĄD 
STATYSTYCZNY 

Nr  15(21) 

 

 

 

  

 

Loss modeling with mixtures distributions in R package 193 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Theoretical probabilities  

Source: own elaboration. 

 

 
Fig. 4. Histogram and empirical cumulative distribution of AutoBi Loss 

Source: own elaboration. 
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Table 2. Goodness-of-fit statistics. Data: AutoBi 

Theoretical  
distribution AIC Kolmogorov-Smirnov 

statistic 
Cramer-von 

Mises statistic 

Lognormal 6345.768 0.091   3.017 
Gamma 6942.452 0.187 11.404 

Burr XII 6292.309 0.066   1.669 
Pareto 6295.842 0.067   1.687 
Weibull 6592.228 0.114   4.551 

Source: own calculations. 

 
Fig. 5. Fitted CDFs on AutoBi (yellow color: empirical cumulative distribution 
of Danish Loss)  

Source: own elaboration. 
 

On the basis of Table 2, we conclude that the best quality of the fit 
to the empirical data obtained in the case of distribution Burr XII and 
the worst for the gamma distribution. 
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Fig. 6. Theoretical probabilities  

Source: own elaboration. 

6. Modeling the loss distributions using mixture densities 

We first tried to use a mixture of gamma distribution and a Pareto 
distribution to fit the Danish Loss distribution [Charpentier 2014]. 
This example of more interest in actuarial science is the mixture of a 
light-tailed and heavy-tailed claim distribution. Let us take, for 
example, the mixture of a gamma distribution ),( λνG  and a Pareto 
distribution ),( θαP . The density is given by 

11

( ) (1 ) ,
( )

v v xx ef x p p
v x

θλλ α θ
Γ θ θ

+− −  = + −  +   
where (0,1), .p x R+∈ ∈  

When fitted alone, the parameters of the gamma distribution are 
estimated as ˆˆ( , ) (1.298; 0.383)α λ =  and the parameters of the Pareto 

[Goulet 2016] distribution are estimated as )841.13;368.5()ˆ,ˆ( =θα . 
When used in the mixture, we get applying function optim in R package 

1 1 2 2
ˆ ˆˆ ˆˆ( , , , , ) (0.684; 10.871; 6.544; 5.418; 30.07).p α θ α λ =  
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As only the shape parameter 2α̂  is of similar amplitude, only 
heavy-tailed distributions (like the Pareto) are appropriate for this 
dataset. The resulting goodness-of-fit is weak. (see Table 3). 
Optimization is based on quasi-Newton algorithms. 

The parameters of the mixture of gamma distribution is estimated 
using the function gammmixEM. The function implements the EM 
algorithm in mix-tools package. Set the following parameter estimates  

1 2 1 2 1 20.41 0.59, 12.823, 1.487, 0.025, 0.001.π π α α β β= = = = = =  

The AIC criterion values lead to the conclusion that the quality of 
fit in the case of mixtures (AIC = 8972.02) is better than in the case of 
a single distribution (AIC = 9538.921). 

Table 3. Goodness-of-fit statistics using mixture of distributions. Data: Danish 

Theoretical  
distribution AIC Kolmogorov-Smirnov 

statistic 
Cramer-von Mises 

statistic 
Mixture Gamma-Pareto 7493.181 0.102 2.979 
Mixture Gamma 7743.327 0.119 9.735 
Burr XII 6859.522 0.026 0.294 
Mixture Burr XII 6758.085 0.053 1.470 
Mixture lognormal 7152.251 0.052 0.856 

Source: own calculations. 

 
Fig. 7. Theoretical probabilities  

Source: own elaboration. 



ŚLĄSKI 
PRZEGLĄD 
STATYSTYCZNY 

Nr  15(21) 

 

 

 

  

 

Loss modeling with mixtures distributions in R package 197 

We repeat the previously described procedures for data AutoBi. 
The obtained results are shown in Table 4. 

Table 4. Goodness-of-fit statistics using mixture of distributions Date: AutoBi 

Theoretical  
distribution AIC Kolmogorov-Smirnov 

statistic 
Cramer-von Mises 

statistic 
Mixture Gamma-Pareto 6161.064 0.027 0.124 
Mixture Gamma 6261.004 0.052 1.028 
Burr XII 6292.309 0.066 1.669 
Mixture Burr XII 6156.531 0.030 0.173 
Mixture lognormal 6145.624 0.021 0.071 

Source: own calculations. 

The parameters of the mixture of gamma distribution is estimated 
using the function gammmixEM. The function implements the EM 
algorithm in a mix-tools package. Set the following parameter 
estimates  

1 2 1 2 1 20.82 0.18, 1.73 0.11, 1.11, 233.23π π α α β β= = = = = = . 
The AIC criterion values lead to the conclusion that the quality of 

fit in the case of mixtures (AIC = 6739.23) is better than in the case of 
a single distribution (AIC = 6942.452). 

 

 
Fig. 8. Theoretical probabilities  

Source: own elaboration. 
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7. Conclusions 

In this paper we propose a mixture of densities for modeling the loss 
distribution to deal with data displaying large and positive skewness 
as well as a wide right tail. To see how different distributions fit the 
data, we compare the log likelihood from the fitdistr function and EM 
algorithm. 

The Burr XII distribution fits best the data in both the considered 
examples of the empirical data. A mixture of distributions Burr XII 
and mixtures log-normal distributions gave a comparable or better fit 
to the empirical data than the distribution of Burr XII. 

Mixtures of gamma distributions, whose parameters were estimated 
using the Newton-Raphson algorithm, better fit the empirical data than 
mixtures of gamma distributions whose parameters were estimated 
using the EM algorithm. 
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MODELOWANIE STRAT ZA POMOCĄ MIESZANEK ROZKŁADÓW 
W ŚRODOWISKU R 

Streszczenie: Skończone mieszanki rozkładów można wykorzystać do modelowania 
rozkładów szkód w ubezpieczeniach. Rozkłady te najczęściej mają grube ogony i 
prawostronną asymetrię. Dopasowanie rozkładu teoretycznego do empirycznego rozkładu 
strat jest z reguły zadaniem trudnym. W artykule pokazano, że zastosowanie mieszanek 
rozkładów polepsza jakość dopasowania rozkładów teoretycznych do empirycznych 
rozkładów strat. Ponadto przedstawiono algorytm służący do estymacji parametrów 
mieszanek rozkładów i przykłady zastosowań mieszanek rozkładów. Podejście 
analityczne jest prawdopodobnie najczęściej stosowane w praktyce i na pewno najczęściej 
znajduje się w literaturze aktuarialnej. Dla oszacowania parametrów używamy metody 
największej wiarygodności, stosując algorytmy Newtona-Raphsona i EM. Jakość 
dopasowania porównujemy, stosując kryterium AIC. 

Słowa kluczowe: skończone mieszanki rozkładów, rozkłady strat, metoda największej 
wiarygodności, algorytm EM. 

 

 

 

 

 

 

 

 

 

 

 

 




