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Abstract
In recent years, JavaScript-based attacks have become one of the most common and successful
types of attack. Existing techniques for detecting malicious JavaScripts could fail for different
reasons. Some techniques are tailored on specific kinds of attacks, and are ineffective for others.
Some other techniques require costly computational resources to be implemented. Other techniques
could be circumvented with evasion methods. This paper proposes a method for detecting malicious
JavaScript code based on five features that capture different characteristics of a script: execution
time, external referenced domains and calls to JavaScript functions. Mixing different types of
features could result in a more effective detection technique, and overcome the limitations of
existing tools created for identifying malicious JavaScript. The experimentation carried out suggests
that a combination of these features is able to successfully detect malicious JavaScript code (in
the best cases we obtained a precision of 0.979 and a recall of 0.978).

1. Introduction

JavaScript [1] is a scripting language usually em-
bedded in web pages with the aim of creating
interactive HTML pages. When a browser down-
loads a page, it parses, compiles, and executes the
script. As with other mobile code schemes, ma-
licious JavaScript programs can take advantage
of the fact that they are executed in a foreign
environment that contains private and valuable
information. As an example, a U.K. researcher
developed a technique based on JavaScript tim-
ing attacks for stealing information from the
victim machine and from the sites the victim
visits during the attack [2]. JavaScript code is
used by attackers for exploiting vulnerabilities
in the user’s browser, browser’s plugins, or for
tricking the victim into clicking on a link hosted
by a malicious host. One of the most widespread
attacks accomplished with malicious JavaScript
is drive-by-download [3, 4], consisting of down-
loading (and running) malware on the victim’s

machine. Another example of JavaScript-based
attack is represented by scripts that abuse sys-
tems resources, such as opening windows that
never close or creating a large number of pop-up
windows [5].

JavaScript can be exploited for accomplish-
ing web based attacks also with emerging web
technologies and standards. As an example, this
is happening with Web Workers [6], a technology
recently introduced in HTML 5. A Web Worker
is a JavaScript process that can perform com-
putational tasks, and send and receive messages
to the main process or to other workers. A Web
Worker differs from a worker thread in Java or
Python in a fundamental aspect of the design:
there is no sharing of the state. Web Workers
were designed to execute portions of JavaScript
code asynchronously, without affecting the per-
formance of the web page. The operations per-
formed byWebWorkers are therefore transparent
from the point of view of the user who remains
unaware of what is happening in the background.
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The literature offers many techniques to de-
tect malicious JavaScripts, but all of them show
some limitations. Some existing detection solu-
tions leverage previous knowledge about malware,
so they could be very effective against well-known
attacks, but they are ineffective against zero-day
attacks [7]. Another limitation of many detectors
of malicious JavaScript code is that they are
designed for recognizing specific kinds of attack,
thus for circumventing them, attackers usually
mix up different attack’s types [7]. This paper
proposes a method to detect malicious JavaScript
that consists of extracting five features from the
web page under analysis (WUA in the remaining
of the paper), and using them for building a
classifier. The main contribution of this method
is that the proposed features are independent of
the technology used and the attack implemented.
So it should be robust against zero-day attacks
and JavaScripts which combine different types
of attacks.

1.1. Assumptions and Research
Questions

The features have been defined on the basis of
three assumptions. One assumption is that a ma-
licious website could require more resources than
a trusted one. This could be due to the need to
iterate several attempts of attacks until at least
one succeeds, to executing botnets functions, or
to examining and scanning machine resources.
Based on this assumption, two features have been
identified. The first feature (avgExecTime) com-
putes the average execution time of a JavaScript
function. As discussed in [8, 9], the malware is
expected to be more resource-consuming than a
trusted application. The second feature (maxEx-
ecTime) computes the maximum execution time
of JavaScript function.

The second assumption is that a malicious
web page generally calls a limited number of
JavaScript functions to perform an attack. This
could have different justifications, i.e. a malicious
code could perform the same type of attacks
over and over again with the aim of maximizing
the probability of success: this may mean that
a reduced number of functions is called many

times. Conversely, a benign JavaScript usually
exploits more functions to implement the busi-
ness logic of a web application [10]. One feature
has been defined on this assumption (funcCalls)
that counts the number of function calls done by
each JavaScript.

The third assumption is that a JavaScript
function can make use of malicious URLs for
many purposes, i.e. performing drive-by down-
load attacks or sending data stolen from the
victim’s machine. The fourth feature (totalUrl)
counts the total number of the URLs into a
JavaScript function, while the fifth feature (ex-
tUrl) computes the percentage of URLs outside
the domain of the WUA.

We build a classifier by using these five fea-
tures in order to distinguish malicious web appli-
cations from trusted ones; the classifier runs six
classification algorithms.

The paper poses two research questions:
– RQ1: can the five features be used for discrim-

inating malicious from trusted web pages?
– RQ2: does a combination of the features exist

that is more effective than a single feature to
distinguish malicious web pages from trusted
ones?

The paper proceeds as follows: next section dis-
cusses related work; the following section illus-
trates the proposed method; the fourth section
discusses the evaluation, and, finally, conclusions
are drawn in the last section.

2. Related Work

A number of approaches have been proposed
in the literature to detect malicious web pages.
Traditional anti-virus tools use static signatures
to match patterns that are commonly found in
malicious scripts [11]. As a countermeasure, com-
plex obfuscation techniques have been devised
in order to hide malicious code to detectors that
scan the code for extracting the signature. Black-
listing of malicious URLs and IPs [7] requires
that the user trusts the blacklist provider and
entails high costs for management of database,
especially for guaranteeing the dependability of
the information provided. Malicious websites, in
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fact, change frequently the IP addresses espe-
cially when they are blacklisted.

Others approaches have been proposed
for observing, analysing, and detecting
JavaScript attacks in the wild, for exam-
ple, using high-interaction honeypots [12–
14] and low-interaction honeypots [15–17].
High-interaction honey-clients assess the sys-
tem integrity, by searching for changes to the
registry entries, and to the network connections,
alteration of the file system, and suspect usage of
physical resources. This category of honey-clients
is effective, but entails high computational costs:
they have to load and run the web applica-
tion for analysing it, and nowadays websites
contain a large number of heavy components.
Furthermore, high-interaction honey-clients are
ineffective with time-based attacks, and most
honey-clients’ IPs are blacklisted in the deep
web, or they can be identified by an attacker
employing CAPTCHAs [7].

Low-interaction honey-clients reproduce au-
tomatically the interaction of a human user with
the website, within a sandbox. These tools com-
pare the execution trace of the WUA with a
sample of signatures: this makes this technique
to fail against zero-day attacks.

Different systems have been proposed for
off-line analysis of JavaScript code [3, 18–20].
While all these approaches are successful with re-
gard to the malicious code detection, they suffer
from a serious weakness: they require a signifi-
cant time to perform the analysis, which makes
them inadequate for protecting users at run-time.
Dewald [21] proposes an approach based on a
sandbox to analyse JavaScript code by merging
different approaches: static analysis of source
code, searching forbidden IFrames and dynamic
analysis of JavaScript code’s behaviour.

Concurrently to these offline approaches, sev-
eral authors focused on the detection of spe-
cific attack types, such as heap-spraying at-
tacks [22,23] and drive-by downloads [24]. These
approaches search for symptoms of certain at-
tacks, for example the presence of shell-code in
JavaScript strings. Of course, the main limitation
is that such approaches cannot be used for all
the threats.

Recent work has combined JavaScript anal-
ysis with machine learning techniques for deriv-
ing automatic defences. Most notably are the
learning-based detection systems Cujo [25], Zoz-
zle [26], and IceShield [27]. They classified mal-
ware by using different features, respectively:
q-grams from the execution of Javascript, con-
text’s attributes obtained from AST and some
DOM tree’s characteristics. Revolver [28] aims
at finding high similarity between the WUA and
a sample of known signatures. The authors ex-
tract and compare the AST structures of the two
JavaScripts. Blanc et al. [29] make use of AST
fingerprints for characterizing obfuscating trans-
formations found in malicious JavaScripts. The
main limitation of this technique is the high false
negatives rate due to the quasi similar subtrees.

Clone detection is a direction explored by
some researchers [2, 30], consisting on finding
similarity among WUA and known JavaScript
fragments. This technique can be effective in
many cases but not all, because some attacks
can be completely original.

Wang et al. [31] propose a method for
blocking JavaScript extensions by intercepting
Cross-Platform Component Object Model calls.
This method is based on the recognition of pat-
terns of malicious calls; misclassification could
occur with this technique so innocent JavaScript
extensions could be signaled as malicious. Barua
et al. [32] also faced the problem of protect-
ing browsers from JavaScript injections of ma-
licious code by transforming the original and
legitimate code with a key. By this way, the
injected code is not recognized after the deci-
phering process and thus detected. This method
is applicable only to the code injection attacks.
Sayed et al. [33] deal with the problem of de-
tecting sensitive information leakage performed
by malicious JavaScript. Their approach relies
on a dynamic taint analysis of the web page
which identifies those parts of the information
flow that could be indicators of a data theft.
This method does not apply to those attacks
which do not entail sensitive data exfiltration.
Schutt et al. [34] propose a method for early
identification of threats within javascripts at
runtime, by building a classifier which uses the
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events produced by the code as features. A rel-
evant weakness of the method is represented
by evasion techniques, described by authors
in the paper, which are able to decrease the
performance of the classification. Tripp et al.
[35] substitute concrete values with some spe-
cific properties of the document object. This
allows for a preliminary analysis of threats
within the JavaScript. The method seems to
not solve the problem of code injection. Xu
and colleagues [36] propose a method which
captures some essential characteristics of obfus-
cated malicious code, based on the analysis of
function invocation. The method demonstrated
to be effective, but the main limitation is its
purpose: it just detects obfuscated (malicious)
JavaScripts, but does not recognize other kinds
of threats.

Cova et al. [3] make use of a set of features to
identify malicious JavaScript including the num-
ber and target of redirections, the browser per-
sonality and history-based differences, the ratio
of string definition and string uses, the number
of dynamic code executions and the length of
dynamically evaluated code. They proposed an
approach based on an anomaly detection system;
our approach is similar but different because uses
the classification.

Wang et al. [37] combine static analysis and
program execution to obtain a call graph using
the abstract syntax tree. This could be very ef-
fective with attacks that reproduce other attacks
(this practice is very common among inexperi-
enced attackers, known also as “script-kiddies”)
but it is ineffective with zero-day attacks.

Yue et al. [38] focus on two types of insecure
practices: insecure JavaScript inclusion and inse-
cure JavaScript dynamic generation. Their work
is a measurement study focusing on the counting
of URLs, as well as on the counting of the eval()
and the document.write() functions.

Techniques known as language-based sand-
boxing [33, 39–42] aimed at isolating the un-
trusted JavaScript content from the original
webpage. BrowserShield [43], FBJS from Face-
book [44], Caja from Google [45], and AD-
safe which is widely used by Yahoo [39], are
examples of this technique. It is very effec-

tive when coping with widget and mashup
webpages, but it fails if the web page con-
tains embedded malicious code. A relevant lim-
itation of this technique is that third par-
ties’ developers are forced to use the Soft-
ware Development Kits delivered by sandboxes’
producers.

Ismail et al. [46] developed a method which
detects XSS attacks with a proxy that analy-
ses the HTTP traffic exchanged between the
client (web browser) and the web application.
This approach has two main limitations. Firstly,
it only detects reflected XSS, also known as
non-persistent XSS, where the attack is per-
formed through a single request and response.
Second, the proxy is a possible bottleneck for
performance as it has to analysing all the re-
quests and responses transmitted between the
client and the server. In [47], Kirda et al. propose
a web proxy that analyses dynamically generated
links in web pages and compares those links with
a set of filtering rules for deciding if they are
trusted or not. The authors leverage a set of
heuristics to generate filtering rules and then
leave the user to allow or disallow suspicious
links. A drawback of this approach if that involv-
ing users might negatively affect their browsing
experience.

3. The Proposed Method

Our method extracts three classes of features
from a web application: JavaScript execution
time, calls to JavaScript functions and URLs
referred by the WUA’s JavaScript.

To gather the required information we use:
1. dynamic analysis, for collecting information

about the execution time of JavaScript code
within the WUA and the called functions;

2. static analysis, to identifying all the URLs
referred in the WUA within and outside the
scope of the JavaScript.

The first feature computes the average execution
time required by JavaScript function:

avgExecTime = 1
n

n∑
k=1

ti
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where: ti is the execution time of the i-th
JavaScript function, and n is the number of
JavaScript functions in the WUA.

The second feature computes the maximum
execution time of all JavaScript functions:

maxExecTime = max(ti)
where ti is the execution time of the i-th
JavaScript function in the WUA.

The third feature computes the number of
functions calls made by the JavaScript code:

funcCalls =
n∑

i=1
ci

where n is the is the number of JavaScript func-
tions in the WUA, and ci is the number of calls
for the i-th function.

The fourth feature computes the total number
of URLs retrieved in a web page:

totalUrl =
m∑

i=0
ui

where: ui is the number of times the i-th url
is called by a JavaScript function and m is the
number of different urls referenced within the
WUA.

The fifth feature computes the percentage of
external URLs referenced within the JavaScript:

extUrl =

j∑
k=0

uk

m∑
i=0

ui

∗ 100

where: uk is the number of times the k-th url is
called by a JavaScript function, for j different
external URLs referenced within the JavaScript,
while ui is the number of times the i-th url is
called by a JavaScript function, form total URLs
referenced within the JavaScript.

We used these features for building several
classifiers. Specifically, six different algorithms
were run for the classification, by using the Weka
suite [48]: J48, LADTree, NBTree, RandomFor-
est, RandomTree and RepTree.

3.1. Implementation

The features extracted from the WUA by dy-
namic analysis were:
– execution time;
– calls to javascript function;
– number of function calls made by the

javascript code.
The features extracted from the WUA by static
analysis were:
– number of URLs retrieved in the WUA;
– URLs referenced within the WUA.
The dynamic features were captured with
Chrome developer [49], a publicly available tool
for profiling Web Applications. Each WUA was
opened with a Chrome browser for a fixed time
of 50 seconds, and the Chrome developer tool
performed a default exploration of the WUA,
mimicking user interaction and collecting the
data with the Mouse and Keyboard Recorder
tool [50], a software able to record all mouse and
keyboard actions, and then repeat all the actions
accurately.

The static analysis aimed at capturing all the
URLs referenced in the JavaScript files included
in the WUA. URLs were recognized through
regular expressions: when an URL was found, it
was compared with the domain of the WUA: if
the URL’s domain was different from the WUA’s
domain, it was tagged as an external URL.

We have created a script to automate the data
extraction process. The script takes as input a
list of URLs to analyse and perform the following
steps:
– step 1: start the Chrome browser;
– step 2: start the Chrome Dev Tools on the

panel Profiles;
– step 3: start the tool for profiling;
– step 4: confirm the inserted URL as parame-

ter to the browser and waiting for the time
required to collect profiling data;

– step 5: stop profiling;
– step 6: save data profiling in the file system;
– step 7: close Chrome;
– step 8: start the Java program to parse pro-

filing saved;
– step 9: extract the set of dynamic features;
– step 10: save source code of the WUA;
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– step 11: extract the set of static features;
– step 12: save the values of the features ex-

tracted into a database.
The dynamic features of the WUA are extracted
from the log obtained with the profiling.

4. Experimentation

The aim of the experimentation is to evaluate the
effectiveness of the proposed features, expressed
through the research questions RQ1 and RQ2.

The experimental sample included a set of
5000 websites classified as “malicious”, while the
control sample included a set of 5000 websites
classified as “trusted”.

The trusted samples includes URLs belonging
to a number of categories, in order to make the
results of experimentation independent of the
type of web-site: Audio-video, Banking, Cook-
ing, E-commerce, Education, Gardening, Gov-
ernment, Medical, Search Engines, News, News-
papers, Shopping, Sport News, Weather.

As done by other authors [33] the trusted
URLs were retrieved from the repository “Alexa”
[51], which is an index of the most visited web-
sites. For the analysis, the top ranked websites
for each category were selected, which were
mostly official websites of well-known organi-
zations. In order to have a stronger guaran-
tee that the websites were not phishing web-
sites or did not contain threats, we submit-
ted the URLs to a web-based engine, Virus-
Total [52], which checks the reliability of the
web sites, by using anti-malware software and
by searching the web site URLs and IPs
in different blacklists of well-known antivirus
companies.

The “malicious” sample was built from the
repository hpHosts [53], which provides a clas-
sification of websites containing threats sorted
by the type of the malicious attack they per-
form. Similarly to the trusted sample, websites
belonging to different threat’s type were chosen,
in order to make the results of the analysis in-
dependent of the type of threat. We retrieved
URLs from various categories: sites engaged in
malware distribution, in selling fraudulent ap-

plications, in the use of misleading marketing
tactics and browser hijacking, and sites engaged
in the exploitation of browser and OS vulner-
abilities. For each URL belonging to the two
samples, we extracted the five features defined
in section 3.

Two kinds of analysis were performed on
data: hypothesis testing and classification. The
test of hypothesis was aimed at understanding
whether the two samples show a statistically
significant difference for the five features. The
features that yield the most relevant differences
between the two samples were then used for the
classification.

We tested the following null hypothesis:
H0 : malware and trusted websites have sim-

ilar values of the proposed features.
The H0 states that, given the i-th feature fi,

if fiT denotes the value of the feature fi measured
on a trusted web site, and fiM denoted the value
of the same feature measured on a malicious web
site:

σ(fiT ) = σ(fiM ) for i = 1, . . . , 5

being σ(fi) the means of the (control or experi-
mental) sample for the feature fi.

The null hypothesis was tested with
Mann-Whitney (with the p-level fixed to 0.05)
and with Kolmogorov-Smirnov Test (with the
p-level fixed to 0.05). Two different tests of hy-
potheses were performed in order to have a
stronger internal validity since the purpose is
to establish that the two samples (trusted and
malicious websites) do not belong to the same
distribution.

The classification analysis was aimed at
assessing whether the features where able to
correctly classify malicious and trusted WUA.
Six algorithms of classification were used: J48,
LadTree, NBTree, RandomForest, RandomTree,
RepTree. Similarly to hypothesis testing, differ-
ent algorithms for classification were used for
strengthening the internal validity.

These algorithms were first applied to each
of the five features and then to the groups of
features. As a matter of fact, in many cases a
classification is more effective if based on groups
of features rather than a single feature.
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4.1. Analysis of Data

Figure 1 illustrates the boxplots of each feature.
Features avgExecTime, maxExecTime and func-
Calls exhibit a greater gap between the distribu-
tions of the two samples.

Features totalUrl, and extUrl do not exhibit
an evident difference between trusted and mali-
cious samples. We recall here that totalUrl counts
the total number of URLs in the JavaScript,
while extUrl is the percentage of URLs outside
the WUA domain contained in the script. A pos-
sible reason why these two features are similar
for both the samples is that trusted websites may
include external URLs due to external banners
or to external legal functions and components
that the JavaScript needs for execution (images,
flash animation, functions of other websites that
the author of the WUA needs to recall). Using
external resources in a malicious JavaScript is not
so uncommon: examples are drive by download
and session hijacking. External resources can be
used when the attacker injects a malicious web
page into a benign website and needs to lead the
website user to click on a malicious link (which
can not be part of the benign injected website).

We expect that extending this analysis to the
complete WUA (not limited to JavaScript code)
could produce different results: this goal will be
included in the future work.

On the contrary, features avgExecTime, max-
ExecTime and funcCalls seem to be more ef-
fective in distinguishing malicious from trusted
websites, which supports our assumptions.

Malware requires more execution time than
trusted script code because of many reasons
(avgExecTime, maxExecTime). Malware may re-
quire more computational time for performing
many attempts of the attack till it succeeds. Ex-
amples may be: complete memory scanning, al-
teration of parameters, and resources occupation.

Some kinds of malware aim at obtaining the
control of the victim machine and the command
centre, once infected the victim, could occupy
computational resources of the victim for sending
and executing remote commands. Furthermore,
some other kinds of malware could require time
because they activate secondary tasks like down-
loading and running additional malware, as in
the case of drive-by-download.

The feature funcCalls suggests that trusted
websites have a larger number of functions called

Figure 1. Boxplots of features
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or function-calls. Our hypothesis for explaining
this finding is that trusted websites need calling
many functions for executing the business logic
of the website, like data field controls, third party
functions such as digital payment, elaborations of
user inputs, and so on. On the contrary, malicious
websites have the only goal to perform the at-
tack, so they are poor of business functions with
the only exception for the payload to execute.
Instead, they perform their attack at regular
intervals; for this reason malicious WUAs show a
higher value of avgExecTime and maxExecTime
with respect to the trusted ones.

In order to optimize the client-server interac-
tion, the trusted website could have many func-
tions but usually with a low computational time,
in order to avoid impacting on the website usabil-
ity. This allows, for example, performing controls,
such as data input validation, on the client side
and sending to the server only valid data.

The hypothesis test produced evidence that
the features have different distributions in the
control and experimental sample, as shown in
Table 1.

Summing up, the null hypothesis can be re-
jected for the features avgExecTime, maxExec-
Time, funcCalls, totalUrl and extUrl.

With regard to classification, the train-
ing set T consisted of a set of labelled web
applications (WUA, l) where the label l ∈
{trusted,malicious}. For each WUA we built a
feature vector F ∈ Ry, where y is the number of
the features used in training phase (1 ≤ y ≤ 5).
To answer to RQ1 we performed five different
classifications each with a single feature (y = 1),
while for RQ2 we performed three classifications
with 2 ≤ y ≤ 5).

We used k-fold cross-validation: the dataset
was randomly partitioned into k subsets of data.
A single subsets of data was retained as the

validation data for testing the model, while the
remaining k − 1 subsets was used as training
data. We repeated the process k times, each of
the k subsets of data was used once as validation
data. To obtain a single estimate we computed
the average of the k results from the folds.

Specifically, we performed a 10-fold cross val-
idation. Results are shown in Table 2. The rows
represent the features, while the columns repre-
sent the values of the three metrics used to eval-
uate the classification results (precision, recall
and roc-area) for the recognition of malware and
trusted samples. The Recall has been computed
as the proportion of examples that were assigned
to class X, among all examples that truly belong
to the class, i.e. how much part of the class was
captured. The Recall is defined as:

Recall = tp

tp+ fn

where tp indicates the number of true positives
and fn is the number of false negatives.

The Precision has been computed as the pro-
portion of the examples that truly belong to class
X among all those which were assigned to the
class, i.e.:

Precision = tp

tp+ fp

where fp indicates the number of false positives.
The Roc Area is the area under the ROC

curve (AUC), it is defined as the probability that
a randomly chosen positive instance is ranked
above randomly chosen negative one. The classi-
fication analysis with the single features suggests
several considerations.

With regards to the recall:
– generally the classification of malicious web-

sites is more precise than the classification of
trusted websites.

Table 1. Results of the test of the null hypothesis H0

Variable Mann-Whitney Kolmogorov-Smirnov
avgExecTime 0.000000 p<.001
maxExecTime 0.000000 p<.001
funcCalls 0.000000 p<.001
totalUrl 0.000000 p<.001
extUrl 0.002233 p<.001
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Table 2. Precision, Recall and RocArea obtained by classifying Malicious and Trusted dataset, using the
single features of the model, with the algorithms J48, LadTree, NBTree, RandomForest, RandomTree and

RepTree.

Features Algorithm Precision Recall RocArea
Malware Trusted Malware Trusted Malware Trusted

J48 0.872 0.688 0.597 0.898 0.741 0.741
LADTree 0.836 0.691 0.606 0.881 0.789 0.789

avgExecT ime NBTree 0.872 0.686 0.59 0.895 0.771 0.771
RandomForest 0.744 0.758 0.759 0.744 0.762 0.762
RandomTree 0.773 0.762 0.762 0.763 0.766 0.766
RepTree 0.971 0.735 0.704 0.819 0.725 0.725
J48 0.657 0.635 0.606 0.684 0.675 0.675
LADTree 0.638 0.663 0.69 0.606 0.691 0.691

maxExecT ime NBTree 0.672 0.634 0.587 0.713 0.654 0.654
RandomForest 0.683 0.703 0.718 0.667 0.775 0.775
RandomTree 0.678 0.708 0.731 0.653 0.782 0.782
RepTree 0.663 0.686 0.706 0.641 0.724 0.724
J48 0.928 0.677 0.582 0.876 0.722 0.722
LADTree 0.816 0.678 0.587 0.868 0.75 0.75

funcCalls NBTree 0.824 0.677 0.582 0.896 0.727 0.727
RandomForest 0.784 0.719 0.629 0.772 0.672 0.672
RandomTree 0.782 0.683 0.646 0.765 0.696 0.696
RepTree 0.763 0.675 0.686 0.788 0.787 0.787
J48 0.615 0.552 0.381 0.762 0.603 0.603
LADTree 0.566 0.555 0.511 0.609 0.6 0.6

totalUrl NBTree 0.607 0.533 0.284 0.717 0.565 0.565
RandomForest 0.624 0.653 0.689 0.585 0.691 0.691
RandomTree 0.619 0.655 0.7 0.57 0.691 0.691
RepTree 0.617 0.609 0.595 0.631 0.66 0.66
J48 0.514 0.7 0.993 0.061 0.527 0.527
LADTree 0.51 0.704 0.972 0.066 0.512 0.512

extUrl NBTree 0.514 0.716 0.992 0.062 0.527 0.527
RandomForest 0.513 0.513 0.992 0.061 0.532 0.532
RandomTree 0.514 0.787 0.993 0.061 0.527 0.527
RepTree 0.514 0.597 0.593 0.561 0.527 0.527

This could be due to the fact that some
trusted websites have values for the features
comparable with the ones measured for ma-
licious ones. This is evident by looking at
the boxplots (figure 1), which show an area
of overlapping between the boxplots of the
trusted and malicious websites. The prob-
lem is that some trusted websites could have
values comparable with the malware while
others do not. As a matter of fact, some
trusted WUAs can contain more business
functions than other ones, and require more
client machine resources, and so on. This de-
pends on the specific business goals of each
trusted website. And, consequently, on the
type and numbers of the functions that must

be implemented for supporting the business
goals. Except for funcCalls, the trusted web-
sites’ sample include a greater number of
outliers than the malware sample, which is
the main cause of the misclassifications of
trusted websites and supports our explana-
tion.

– the feature extUrl is the best in terms
of recall regarding the malicious websites;
in fact, its value is 0.993 using the algo-
rithms of classification J48 and RandomTree.
This feature is able to reduce the false neg-
atives in malicious detection because ex-
ternal URLs are commonly used by mali-
cious websites, for the reasons previously dis-
cussed.
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– regarding the recall inherent the recogni-
tion of the trusted websites, the best fea-
ture is avgExecTime (recall is 0.898 with
the J48 classification algorithm). This con-
firms the conjecture that malicious scripts
tend to be more resource demanding than
trusted ones.

With regards to the precision:
– the features avgExecTime and funcCalls are

the best for the detection of the malicious
JavaScript, with values, respectively of 0.971
(with the algorithm RepTree) and 0.928 (with
the algorithm J48). This strengthens the con-
jecture that trusted websites make use of less
computational time and a larger number of
functions than malicious websites.

– the precision in the classification of sites
categorized as trusted shows the maximum
value 0.787 (classification of the feature ex-
tUrl with the algorithm RandomTree). This
value is largely unsatisfactory, and it will be
improved by using combinations of features,
as discussed later in this section.

With regards to the roc area:
– the performances of all the algorithms are

pretty the same for malware and trusted ap-
plications.

– the feature avgExecTime presents the max-
imum roc-area value equal to 0.789 with
LADTree algorithm. Reasons have been dis-
cussed previously, even if it cannot be consid-
ered a good value.
In order to make the classification more ef-

fective, we run the classification algorithms by
using groups of features. The first group includes
the features avgExecTime and funcCalls, while
the second includes avgExecTime, funcCalls, and
extUrl. Finally, the last group is made up of
all the five features extracted. The groups were
made on the basis of the classification results of
individual features, in order to improve both the
precision and the recall of the classification.

avgExecTime and funcCalls were the best in
class, so we grouped them together. In particular,
these features were grouped together in order to
obtain the maximum precision value for detecting
malicious web applications.

avgExecTime, funcCalls, and extUrl were
grouped together in order to obtain the max-
imum precision value in the detection of trusted
applications. We excluded maxExecTime and
totalUrl from the second phase of classification,
because they produced the worst results in the
first phase of classification.

The classification of the groups of features
confirms (shown in Table 3) our expectations.
The first set of features, avgExecTime and func-
Calls, presents the maximum precision regarding
malicious websites, corresponding to 0.982 with
the classification algorithm J48, while in the de-
tection of the trusted web sites the precision is
0.841 with the classification algorithm REPTree.
Compared to the individual features we have
therefore an improvement, in fact avgExecTime
had a precision of 0.971 while funcCalls showed a
precision 0.928 in the recognition of malware web-
sites. The recall for malicious websites is 0.873
with the classification algorithm J48, while for
trusted sites it is 0.897 with the classification
algorithm NBTree. With respect to the recog-
nition of malicious websites we have registered
an improvement, as with individual features the
obtained values were respectively 0.762 (avgEx-
ecTime) and 0.686 (funcCalls). With respect to
the trusted websites, the situation is pretty sim-
ilar, as the values of single features were 0.898
(avgExecTime) and 0.896 (funcCalls), i.e. slightly
greater.

The second group (avgExecTime, funcCalls,
extUrl) is very close to the first group (two values
are slightly higher and two are slightly lower), but
precision and recall are higher than the second
group.

We can conclude that the best classification
is based on
– avgExecTime, funcCalls, i.e. the average ex-

ecution time (avgExecTime) and the cumu-
lative number of function calls done by each
portion of JavaScript code (funcCalls);

– avgExecTime, funcCalls, extUrl, i.e. the set of
the features of the first group classified along
with the percentage of external domain URLs
that do not belong to the Web Application’s
domain (extUrl).
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Table 3. Precision, Recall and RocArea obtained by classifying Malicious and Trusted dataset, using the
three groups of features of the model, with the algorithms J48, LadTree, NBTree, RandomForest,

RandomTree and RepTree

Features Algorithm Precision Recall RocArea
Malware Trusted Malware Trusted Malware Trusted

J48 0.982 0.823 0.873 0.88 0.888 0.888
LADTree 0.87 0.801 0.784 0.873 0.872 0.857

avgExecT ime NBTree 0.848 0.686 0.59 0.897 0.779 0.779
funcCalls RandomForest 0.84 0.825 0.815 0.797 0.985 0.985

RandomTree 0.824 0.818 0.779 0.768 0.977 0.977
RepTree 0.871 0.841 0.824 0.856 0.913 0.913
J48 0.873 0.842 0.835 0.879 0.885 0.885
LADTree 0.86 0.801 0.784 0.873 0.857 0.857

avgExecT ime NBTree 0.848 0.69 0.599 0.893 0.789 0.789
funcCalls RandomForest 0.969 0.978 0.978 0.969 0.985 0.985
extUrl RandomTree 0.97 0.979 0.98 0.97 0.979 0.979

RepTree 0.867 0.852 0.849 0.87 0.918 0.918
J48 0.875 0.878 0.879 0.874 0.922 0.922

avgExecT ime LADTree 0.858 0.804 0.788 0.87 0.858 0.858
maxExecT ime NBTree 0.847 0.72 0.657 0.881 0.827 0.827
funcCalls RandomForest 0.979 0.984 0.985 0.979 0.992 0.992
totalUrl RandomTree 0.982 0.978 0.978 0.982 0.98 0.98
extUrl RepTree 0.877 0.871 0.87 0.879 0.927 0.927

Although the proposed features show to be ef-
fective in detecting malicious javascript, mis-
classification occurs however. The explanation
maybe the following: each feature represents an
indicator of the possibility that the JavaScript
is malicious, rather than offering the certainty.
The fact that in average a malicious JavaScript
requires a longer execution time (as shown by
boxplots) does not mean that all the benign
JavaScripts require a small execution time (as
outliers in boxplots show). Many payloads con-
tained in malicious javascript entail a long time
to be executed, but also some business logic
of benign javascripts may require long time to
be executed. For instance, a benign javascript
may contain a multimedia file. The same ex-
planation applies to justify the presence of mis-
classification for all the other features. Benign
files could have a smaller fragmentation because
they have a simpler business logic or because
of the style of the programmer who has written
the code.

Finally, the number of the external URLs may
be high in a benign websites for several reasons:
the benign websites make use of many resources
or services hosted in other websites, or it has
many advertisement links in its pages.

5. Conclusion and Future Work

In this paper we propose a method for detecting
malicious websites that uses a classification based
on five features.

Current detection’s techniques usually fail
against zero-day attacks and websites that merge
several techniques. The proposed method should
overcome these limitations, since its independent
of the implementation of the attack and the type
of the attack.

The selected features, combining static and
dynamic analysis, respectively compute the aver-
age and maximum execution time of a JavaScript
function, the number of functions invoked by
the JavaScript code, and finally the number and
the percentage of the URLs contained in the
JavaScript code, but that are outside the domain
of the WUA.

The analysis of data collected by analysing a
sample of 5000 trusted and 5000 untrusted web-
sites demonstrated that considering groups of
features for classifications, rather than single fea-
tures, produces better performances. As matter
of fact the group (avgExecTime and funcCalls)
and the group (avgExecTime, funcCalls, extUrl)
produce high values of precision and recall, both
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for the recognition of malicious websites, and for
trusted websites. Regarding to the second group
(avgExecTime, funcCalls, extUrl), the precision is
0.979 for malware websites and 0.969 for trusted
ones. The recall is 0.978 for malware websites
and 0.969 for trusted ones.

In summary, the two groups of features
seem effective for detecting current malicious
JavaScripts.

Possible evasion techniques that attackers
can assume against this detection method are
the following.

Concerning avgExecTime and funcCalls, the
attacker should reduce the time of scripts ex-
ecution and improve the fragmentation of the
code. The first workaround is very difficult to
implement, because the large amount of time is
often a needed condition of the attacks performed.
Improving the fragmentation of code is possible,
but as the attacker should produce a number of
functions similar to a typical trusted website, the
required effort could make very expensive the
development of the malicious website, and this
could be discouraging. As shown in the boxplot
(figure 1), the gap to fill is rather large. Our
opinion is that extUrl is the weakest feature and
so the easiest to evade, but it must be consid-
ered that in the group of features (avgExecTime,
funcCalls, extUrl) the strength of the other ones
may compensate its weakness.

Obfuscation is an evasion technique that
could be effective especially with regards to
funcCalls, totalUrl and extUrl features; future
works will address this problem by studying:
i) the impact of obfuscated JavaScript on the
classification performances of our method; and
ii) de-obfuscation methods to precisely cal-
culate these features. Many benign websites
may make use of external libraries which are
highly time-consuming. In a future work we
will investigate the possibility to recognize these
time-consuming external libraries in order to ex-
clude them from the computation of the feature.
Additionally we plan to enforce the reliability
of our findings by extending the experimenta-
tion to a larger sample, in order to enforce the
external validity. Another improvement of our
method consists of extending the search of URLs

to the complete WUA, and not limiting it to the
JavaScript scope.
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