e-Informatica Software Engineering Journal, Volume 6, Issue 1, 2012, pages: 71-77, DOI 10.5277/e-Inf120106

On Principles of Software Engineering — Role
of the Inductive Inference

Ladislav Samuelis*
*Faculty of Electrical Engineering and Informatics, Technical University of KoSice

Ladislav.Samuelis@tuke.sk

Abstract

This paper highlights the role of the inductive inference principle in software engineering. It takes
the challenge to settle differences and to confront the ideas behind the usual software engineering
concepts. We focus on the inductive inference mechanism’s role behind the automatic program
construction activities and software evolution. We believe that the revision of rather In old ideas
in the new context of software engineering could enhance our endeavour and that is why deserves

more attention.

1. Introduction - beyond software,
beyond engineering

Before getting into details of the role of inductive
inference in software engineering, we make some
explanatory notes on the notions of software
and engineering as it appears in the title of this
contribution.

We can observe plenty of interpretations of
the software and software engineering throughout
the history of computing. Searching the origin
of the word software F.R. Shapiro states that it
appears for the first time in the work of John
W. Tukey. He used that term in the context of
computing in an article of the American Math-
ematical Monthly, in 1958! The quote is as fol-
lows [1, p. 1]:

Today the ’software’ comprising the care-

fully planned interpretive routines, com-

pilers, and other aspects of automative
programming are at least as important

to the modern electronic calculator as

its hardware of tubes, transistors, wires,

tapes, and the like.

In 2008, the work of Leon J. Osterweil [2]
appears. He suggests that there may exist other
types of software besides computer software. He

identifies parallels between computer software
and other societal artefacts as laws, processes,
recipes, instructions, and suggests that there are
similar parallels in the ways, in which these arte-
facts are built and evolved.

There are 50 years between these two
above-mentioned interpretations of the word
software. The ’semantic gap’ between the ideas
that is behind this word has been widened enor-
mously in time. The notion has gained more
specific meanings during its life-span and it is
expected to keep narrowing down. There are
no signs that a rather ’calm’ period of soft-
ware ’evolution’ would come. On the contrary,
as we may conclude from the recent perva-
sively distributed and service-oriented software
development.

Recently there has been an incredible increase
in the performance of hardware. This increase it-
self is the reason for the incredible growth of soft-
ware complexity. The Wirth’s, or rather Reiser’s
law’: Software is getting slower, faster than hard-
ware is getting faster [3], allegorically points to
the same fact.

After revealing partially the roots of the no-
tion of software, we may focus on the notion
of engineering. The question is as follows:

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_6/eInformatica2012Art6.pdf

72

Ladislav Samuelis

What feature of software enables us ’to

engineer’ it?

We can find a comprehensive answer to this
question in the work of Wei-Lung Wang [4]:

The key reason is that software is a tangi-

ble form of mathematics that lends itself

to being engineered. At its core, a pro-

gram is an abstract sequence of instruc-

tions that performs some computation.

But when the program is realized on a

computer, it becomes an information tool

with its own use-feedback cycle. It changes
from an ethereal entity to a tangible tool
and its actions can be observed. Instead

of mathematically proving the results of

a program, we can simply run it on some

sets of inputs and observe its behaviour.

This tangibility (or 'executability’) is both

software’s strength and Achilles heel.

We accept that this specific feature of observ-
ability in the material world is the essence of the
software engineering. In other words, this tan-
gibility or executability enables specific ways of
experimentation, which is the basis for observing
the behaviour of the software by perception. In
this way, we may create highly complex mod-
els that can be fully mapped into a computer
representation and this model can be ’executed’.

Experiences gained from these observations
also trigger needs for deeper understanding of
the implemented ideas. We may say that observa-
tion by perception supports the comprehension
of the modelled reality. This opposite process
is program comprehension; when the task is to
'understand’ (or to gain a mental image of) the
computer model from the implemented code.

Of course, there also exist attempts that
search a single unified theory of software en-
gineering. For example, the contribution of P.
Johnson and M. Ekstedt, presented at the recent
International Conference on Software Engineer-
ing Advances [5], outlines the requirements for
such a unified theory.

The statement of M. Jackson [6] is against a
unified theory. He says that software engineer-
ing is a clumsy notion. He supports this obser-
vation with the fact that software engineering
is split into various topics (e.g, compiler engi-

neering, operating systems, database engineer-
ing, etc.) and in this way it does not cover any
knowledge gained from solved problems. In other
words, software engineering is an abstraction
and every successful area of software engineering
immediately changes to set up an independent
specialization.

A recent article from M.S. Mahoney [7] char-
acterizes the history of software engineering in
the following way:

Historians and software engineers are both

looking for a history of software engineer-

ing. For historians, it is a matter of finding

a point of perspective from which to view

an enterprise that is still in the process of

defining itself. For software engineers, it

is the question of finding a usable past, as

they have sought to ground their vision of

the enterprise on historical models taken
from science, engineering, industry, and
other professions.

These contradictory views and motivations
of experts outline the broad diversity of research
and ought to remind us to be careful with apply-
ing theory for building software.

2. The role of the inductive inference
in automatic program construction

Automatic program construction has been a goal
of the first programmer who faced with diffi-
culties of programming. This activity has been
spreading over the history of software engineering
with various intensity and it acts like a moving
target that constantly shifts in order to reflect
changing requirements.

Much of what was originally conceived of
as automatic programming was achieved a long
time ago. In 1958 this term was mentioned for
the first time in connection with the compiler
construction. On the other hand, current expec-
tations regarding its potential are often based
on an idealized view of reality and some of them
probably cannot be met. Nevertheless, a number
of important developments are in progress in
research efforts and in commercially available
systems.

On Principles of Software Engineering — Role of the Inductive Inference 73

The term automatic program construction (or
program synthesis) is used to refer to the study
and implementation of methods for automating
a significant part of the process of developing
and maintaining software within the context of
software life-cycle.

A broader goal of this field is to make com-
puter programs significantly easier by means of
automation selected software development pro-
cess. More specific goals include increasing soft-
ware productivity, lowering costs, increasing reli-
ability, making more complex systems tractable,
and allowing users to focus more on solving prob-
lems rather than on the details of implementa-
tion.

The big challenges for automatic program
construction are defined, for example, by L. Mc-
Laughlin [8] in the following manner:

— to produce good runtime performance;

— to produce code that someone can look at,
deal with, and understand;

— to ensure the code that is provably correct.

Every point deserves its own ‘science’ and the
emergent research fields on automatic program
synthesis follow roughly these criteria too.

The freedom of language selection allows us-
ing more declarative and less procedural specifi-
cation. In other words, the specification is closer
to the what (end-user defined) and the implemen-
tation is closer to the how end of the spectrum.
A more technical characterization of the ‘gap’
between specification and implementation is that
there is less detailed information content in the
specification than in the implementation. The
program synthesis process consists of filling in
this gap with details that are omitted from the
specification.

The automated synthesis of programs has its
roots in artificial intelligence too. It is interesting
to observe the mutual influence and synergy of
ideas stemming from the field of software engi-
neering and artificial intelligence. In particular,
the task of inference of grammars from pattern
analyses triggered the research on programming
by examples [9)].

In general, we distinguish two main methods
in software development. Deductive methods -
deduction is basically a problem of searching for

an inference path from some initial set of facts
to a goal fact. This fundamental mechanism is
behind the deductive approach to automatic pro-
gramming. In principle any method of automated
deduction can be used to support automatic pro-
gramming. For example, programming language
PROLOG [10] (in fact, its inference engine) repre-
sents a deductive system. Despite its limitations,
PROLOG remains among the most popular lan-
guages today, with many free and commercial
implementations available. One of the challenges
in research is to combine automated deduction
with other methods.

Inductive methods - inductive inference is
based in building models on the basis of expe-
rienced facts. Let us suppose that we have a
mental model at our disposal. In the next step
we may apply the standard scientific approach,
which consists of finding metrics, finding other
descriptions (or refinement of the model) and
based on these new models to infer the future
behaviour of the observed object. These three
mental activities are, in fact, the inductive infer-
ence activities. In other words, finding metrics
(or measurable features, data, observable signs,
etc. on the model or on its output data) is indis-
pensable for the description (or modelling). This
activity is based on collecting individual data in
order to create a hypothesis (model) with the
process of generalization. We create model not
only for the description of the actual systems
but also for prediction. It means that the in-
ferred model can serve for the prediction the
system’s behaviour in the future. An example of
the application of the inductive inference is the
‘programming by examples’ where the examples
serve for building models or rules (in this specific
case a grammar).

Many areas exist where demonstration of an
example is a suitable tool for automating tasks.
For example, paths of robots represent linear
plans and the task is to construct program or
the sequence of learning objects represent the
progress of the student in the learning material
and the task is to construct the navigation plan
(learning by watching or incremental learning).
Programming by examples roots in the incremen-
tal learning, which was elaborated in 1970s and

74

Ladislav Samuelis

1980s [11]. The structures of the systems devoted
to synthesis of programs by examples are similar
to the structure of linguistic pattern recognition
systems [11].

It is evident that during the construction of
the final model, a new instruction of the example
could completely modify the existing model (due
to the inductive inference principle). This fact
deserves special awareness in the application of
inductive inference.

In summary, knowledge of the part, which
may be represented at whatever level of granu-
larity, serve for the development of rules. In fact
these rules may serve as basis for a new deductive
system. For example, knowledge condensed in
software design patterns represent higher level
granularity of knowledge and these artefacts may
also serve for building new system.

We may conclude that automatic program
construction during the 1980s was more or less
about the optimization of loops. In other words,
the discovery and the implementation of reusable
code segments was in fact the discovery of loops.

3. Notes on software evolution

In the 1950s, the term automatic computing
referred to almost any work related with a
computer. We tend to forget that before the
object-oriented approach the methodology of au-
tomatic program construction was also associ-
ated with the idea of ‘construction of programs
by examples’.

The research on automating programming be-
fore object-orientation was influenced to a great
extent by results gained in artificial intelligence
research ([12], and [13]).

There are plenty of articles and a special IEEE
conference [14] devoted to software evolution. Re-
search on software evolution is discussed in many
software related disciplines. In any case, software
evolution is equal to comprehension. This idea is
briefly expressed by Jazayeri M. [15] as:

Not the software itself evolves, but our un-

derstanding and the comprehension of the

reality.

This is in compliance with the idea that our
understanding of the domain problem incremen-
tally evolves and learning is an indispensable
part of program comprehension.

The complexity of understanding and main-
taining a program is proportional to its size and
complexity. F. Brooks in the well-known paper
‘No Silver Bullet‘ [16], argues that programming
is inherently complex. Whether we use a machine
language or a high-level programming language,
in general, we cannot simplify a program below
a certain threshold that he calls an ‘essential
program complexity’ The two main factors that
determine this complexity threshold are:

— the complexity of a problem and its solution
at the conceptual level, and

— the complexity of the infrastructure and the
environment which has to be taken into ac-
count when solving problems by a program
at operational level.

These two factors cannot be clearly separated
from each other in program components, which
constrains our efforts in using conventional de-
composition (‘divide and conquer’) in combating
software complexity. Very often, we cannot cre-
ate a software conform like LEGO models unlike
hardware constructions [17]. This difficulty of
achieving clean decomposability is an important
difference between hardware and software. An-
other important difference is that we do not try
to change hardware so often and in such radical
ways as we do software. The difficulty of clearly
separating concerns by means of decomposability
necessarily hinders changeability.

The inductive inference (or incrementality)
appears in various contexts in the relatively short
history of software engineering. This fact seems
natural because software development processes
like comprehension, design, refinement and real-
ization are done iteratively and incrementally in
practice. Due to this common fact incrementality
notion is applied superficially in software engi-
neering literature. We note that programming
cannot be fully automated, since a computer
must at least be told what to do. Only a human
being is able to create ideas and tell it what to
do. It is hoped that as technology progresses,

On Principles of Software Engineering — Role of the Inductive Inference 75

the required details on how to do the task will
steadily decrease.

4. The ubiquity of the inductive
inference

The following remarks show the wide range of the
usage of incrementality notion. A brief historical
overview of the ‘Incremental and Iterative Devel-
opment’ is presented in the work of C. Larman
and V. Basili [18]. This work summarizes the role
of the iterative and incremental software develop-
ment through significant software projects since
the mid of 1950s. It focuses on the incrementality
utility, applied in software engineering processes,
from the managerial point of view. It describes
the driving thoughts and misbelieves, which were
behind the practices applied in the past decades
in the field of software engineering.

We accept in general that comprehension is
also a continuous iterative and incremental pro-
cess. The fact that problem solving does not
progress in a linear manner from one activity to
the next is highlighted as the conjecture:

Empirically based models mature from un-

derstanding to explaining and predicting

capability.

This conjecture is explained in the handbook
of authors A. Endres and D. Rombach [19, p.273],
which is devoted to the empirical aspects of soft-
ware engineering.

Inductive inference plays an important role in
practical software engineering. At present time
the incremental change in object-oriented pro-
grams are in focus (for example [20]). These
activities investigate the impact of adding new
functionalities into the code and finding the
relevant program dependencies. Incrementality
is important in software visualization too [21],
where the aim is to get a better comprehension of
the software behaviour by representing complex
structures graphically.

The objective of the software development is
to model a certain aspect or abstraction of real-
ity as stated by B.Meyer in his work ‘Reality: a
cousin twice removed’ [22]. Software engineering,
as every engineering discipline, is characterized

by trials and errors, which are necessary steps for
clarifying the comprehension of the requirements,
design and implementation. On the other hand
we have to note that the incrementality principle
has its mathematical roots and is explained in the
theory of inductive inference [23]. Incremental
software development is sometimes called ‘build
a little, test a little’. We can see the similarity be-
tween building concepts and models in software
engineering and building hypotheses in mathe-
matics. This process is very clearly highlighted
in Pélya’s classic work, ‘How to Solve It’ [24].

The empirical evidence from the real-world
software suggests that learning or incremen-
tal program development is possible only when
the data are presented incrementally. For in-
stance, programming languages dispose with con-
structs, which help postpone solving some issues.
A good example is the exception mechanism
in object-oriented programming. This process
makes, of course, the software more complex and
drifts away from the original design. These facts
may lower the quality of the software but it is the
task of the validation and verification to ensure
the formal quality software.

To sum up, the inductive inference is ubiqui-
tous in software engineering. With each step we
discover new requirements, analyze, plan, imple-
ment and test them. Every iteration adds new
insights and the system grows or logically clarifies
this way. In other words, software programs are
too complex for getting correct details on any
artefacts without some amount of experimenta-
tion. The software developers’ ideas evolve as
they progress.

5. Conclusion

This paper looks into the question: What s the
role of inductive inference in software engineer-
ing? Its specific aim is to highlight the hidden
role of inductive inference phenomenon behind
the wide variety of software engineering concepts.
It opens with automatic program construction
and proceeds to the software evolution concept.
Analysing the inductive inference in a sterile en-
vironment is not unusual. We take the challenge

76

Ladislav Samuelis

to settle out differences and confront the ideas be-
hind the usual software engineering concepts in a
turbulent and impure environment of recent soft-
ware engineering activities. This approach might
help in developing a more condensed foresight
and provoke constructive thinking. We know that
we did not invent a new solution to an existing
problem; but we rather revised old ideas and
analyzed them in recently applied software engi-
neering practices. Practice generates always new
problems and the task of software engineers is
permanent strive for the identification essential
concepts as it is expressed in the Semat initia-
tive [25].

Acknowledgment

This work is supported by the Slovak Scientific
Grant Agency: KEGA 040TUKE-4/2011: Mod-
ern software engineering in education - struc-
ture and implementation of software engineer-
ing subjects for university informatics study pro-
gramies.

References

[1] F. S. Preston, F. R. Shapiro, and L. R. Johnson,
“Comments, queries, and debate,” IEEE Annals
of the History of Computing, Vol. 22, No. 2, pp.
69-71, 2000.

[2] L. J. Osterweil, “What is software?” Auto-
mated Software Engineering, Vol. 15, No. 3, pp.
261-273, 2008.

[3] N. Wirth, “A plea for lean software,” IEEE Com-
puter, Vol. 28, No. 2, pp. 64-68, 2006.

[4] W. Wei-Lung, “Beware the engineering
metaphor,” Commun. ACM, Vol. 45, No. 5, pp.
27-29, 2002.

[5] P. Johnson and M. Eckstedt, “In search of a
unified theory of software engineering,” in In-
ternational Conference on Software Engineering
Advances, ICSEA, 2007, p. 5.

[6] M. Jackson, “Will there ever be software engi-
neering?” IEEE Software, Vol. 15, No. 1, pp.
36-39, 1998.

[7] M. S. Mahoney, “Finding a history for software
engineering,” IEEE Annals of the History of
Computing, Vol. 26, No. 1, pp. 819, 2004.

[8] L. McLaughlin, “Automated programming: The
next wave of developer power tools,” IEEE Soft-

[18]

[19]

ware, Vol. 23, No. 3, pp. 91-93, 2006.

H. Liebermann, Ed., Your Wish is My
Command- Programming by Example, Automatic
programming, Encyclopedia of Artificial Intelli-
gence. Morgan Kaufmann/San Francisco, Febru-
ary 2001.

R. A. Kowalski, “The early years of logic pro-
gramming,” Commun. ACM, Vol. 31, No. 1, pp.
38-43, 1988.

A. Cypher, D. C. Halbert, D. Kurlander,
H. Lieberman, D. Maulsby, B. A. Myers, and
A. Turransky, Eds., Watch What I Do: Program-
ming by Demonstration. Cambridge University
Press, 1993, ch. Programming by demonstration.
J. S. Poulin, “Technical opinion: reuse: been
there, done that,” Commun. ACM, Vol. 42, No. 5,
pp. 98-100, 1999.

Z. Manna and R. J. Waldinger, “Toward au-
tomatic program synthesis,” Commun. ACM,
Vol. 14, No. 3, pp. 151-165, 1971.

ACM, “IWPSE ’01: Proceedings of the 4th in-
ternational workshop on principles of software
evolution,” New York, NY, USA, 2001, confer-
ence Chair-Tamai, Tetsuo.

M. Jazayeri, “Species evolve, individuals age,”
in International Workshop on Principles of Soft-
ware Evolution. ACM, September 5-6, Lisbon
2005.

J. F. P. Brooks, “No silver bullet essence and
accidents of software engineering,” Computer,
Vol. 20, No. 4, pp. 10-19, April 1987.

A. Ran, “Software isn‘t built from lego blocks,”
in ACM Symposium on Software Reusability,
1999, pp. 164-169.

C. Larman and V. R. Basili, “Iterative and incre-
mental development: A brief history,” Computer,
Vol. 36, No. 6, pp. 47-56, June 2003.

A. Endres and D. Rombach, A Handbook of Soft-
ware and Systems Engineering; Empirical obser-
vations, laws and theories. Pearson, Addison
Wesley, 2003.

V. Rajlich and P. Gosavi, “Incremental change in
object-oriented programming,” IEEFE Software,
Vol. 21, No. 4, pp. 62-69, Jul/Aug 2004.

C. Knight and M. Munro, “Visual information-
amplifying and foraging,” in Proceedings of SPIE,
San Jose, USA, volume 4032. International So-
ciety for Optical Engineering, January 2001, pp.
88-98.

B. Meyer, “Reality: A cousin twice removed,”
IEEE Computer, Vol. 29, No. 7, pp. 96-97, July
1996.

D. Angluin and C. H. Smith, “Inductive infer-
ence: Theory and methods,” Computing Surveys,

On Principles of Software Engineering — Role of the Inductive Inference

7

Vol. 15, No. 3, pp. 283-269, September 1983. [25] 1. Jacobson, “Discover the essence of software
[24] G. Polya, How to solve it: A New Aspect of Math-

engineering,” CSI Communications, pp. 12-14,
ematical Method, 2nd ed. Princeton University July 2011.
Press, 1957.

	Introduction - beyond software, beyond engineering
	The role of the inductive inference in automatic program construction
	Notes on software evolution
	The ubiquity of the inductive inference
	Conclusion
	Acknowledgment
	References

