
e-Informatica Software Engineering Journal, Volume 4, Issue 1, 2010

The Evolution of Complexity in Apple Darwin:
A Common Coupling Point of View

Liguo Yu∗
∗Computer Science and Informatics, Indiana University South Bend

ligyu@iusb.edu

Abstract
Common coupling increases the interdependencies between software modules. It should be avoided
if possible. In previous work, we presented two types of categorization of common coupling, one is
for single-kernel-based software, one is for multi-kernel-based-software. In this paper, we analyze
the relationships between these two types of categorization and apply them to study the evolution
of the complexity of Apple Darwin. The same conclusion about Darwin’s evolution is drawn
based on the two types of categorization of common coupling: From version XNU-517 to version
XNU-792, Darwin has restructured to reduce the number of difficulty-inducing high category
(level) global variables in order to reduce the system complexity. However, due to the definition-use
dependencies, the complexity of Darwin induced by global variables has increased from version
XNU-517 to version XNU-792.

1. Introduction

Coupling measures the degree of dependencies
between two software modules [9, 6, 5]. Strong
coupling indicates a high degree of dependen-
cies while loose coupling indicates a low de-
gree of dependencies. High degree of dependency
makes the software modules difficult to main-
tain and reuse. For example, to identify the
origin of a fault, the best practice is to sepa-
rate modules and test each of them individu-
ally. Loose coupling with low degree of depen-
dencies can make the fault isolation process eas-
ier, while strong coupling with high degree of
dependencies will make this process tedious and
time/effort consuming. Consider reuse, it is eas-
ier to reuse a module that has loose coupling
and is weakly dependent on others than a mod-
ule that has strong coupling and is tightly de-
pendent on others. Therefore, from the view-
point of maintenance and reuse, a good soft-
ware system should have low coupling between
modules.

The software couplings can be divided as
data coupling (simple data are passed as param-
eters in a function call), stamp coupling (data
structures are passed as parameters in a func-
tion call), external coupling (two modules access
the same file/database), and common coupling
(two modules access the same global variable),
in which, common coupling is considered to be a
strong form of coupling. That is, common cou-
pling induces high degree of dependencies be-
tween software modules and accordingly makes
software modules difficult to understand, main-
tain, and reuse [8, 7].

Software evolution is inevitable. On the
one hand, software needs to continually sat-
isfy customers’ functional requirements and
non-function requirements. On the other hand,
software needs to promptly adapt to the changes
of hardware and system environments. There-
fore, with the evolution of a software system,
new features and new modules to support new
hardware, are continually added to the source
code. Both the size of the product and the com-



48 Liguo Yu

plexity of the product are expected to increase
as new versions are developed and released. At
the same time, to make the system align with its
original quality design, the code structure needs
to be monitored and examined frequently, and
restructuring should be taken as needed to re-
duce the system complexity in order to achieve
high maintainability and reusability. One way to
reduce the system complexity is to replace ex-
isting strong couplings or new strong couplings
introduced in the evolution process with loose
couplings.

In this paper, we use common coupling as
a measure of the system complexity and study
how it changes with the evolution of a software
system. The study is performed on Apple Dar-
win, an open-source operating system. The ob-
jective of this study is to understand the chang-
ing patterns of software complexity under the
dual effects of size increasing and code restruc-
turing in the evolution process.

The remainder of the paper is organized as
follows: Section 2 describes kernel-based soft-
ware. Section 3 reviews the categorizations of
common coupling. Section 4 presents the study
of the evolution of Darwin. The conclusions and
limitations appear in Section 5.

2. Kernel-Based Software

Many software products, such as operating
systems and database systems, are called
kernel-based software [2]. That is, the software
system consists of architecture and/or platform
independent kernel modules, together with spe-
cific architecture and/or platform dependent
nonkernel modules [8, 1]. Software product line
is another example of kernel-based system, in
which, the core assets are considered as kernel
modules, and custom assets are considered as
nonkernel modules. Figure 1 depicts the produc-
tion of kernel-based software: Each implemen-
tation/installation of kernel-based software in-
volves the use of all kernel modules and optional
nonkernel modules.

In previous work [17], we identified two types
of kernel-based software, single-kernel-based

Figure 1. Depiction of the production of
kernel-based software

software and multi-kernel-based software. In
a kernel-based software system, if all the
kernel modules are included in one compo-
nent and the rest nonkernel modules are
included in another component, we call it
single-kernel-based software. Figure 2 shows the
structure of a single-kernel-based software sys-
tem, in which circles represent kernel modules,
squares represent nonkernel modules, and rect-
angles represent components. In other words, in
single-kernel-based systems, kernel modules and
nonkernel modules are clearly separated into two
components, kernel component and nonkernel
component [17]. Examples of single-kernel-based
systems are Linux and BSDs.

Figure 2. Depiction of single-kernel-based software

In a kernel-based software system, if the
kernel modules are included in more than
one component, we refer to that system as
multi-kernel-based software. Figure 3 shows a
multi-kernel-based software system, in which,
kernel modules (represented with circles) and
nonkernek modules (represented with squares)
coexist in multiple components. These compo-
nents that consist of both kernel modules and
nonkernel modules are called kernel-based com-
ponents and are represented with triple line rect-



The Evolution of Complexity in Apple Darwin: A Common Coupling Point of View 49

angles. We use the term outer component to re-
fer to the software component external to the
kernel-based components. The outer component
consists of no kernel modules and is represented
with a dashed triple line rectangle. Examples of
multi-kernel-based software are Apple Darwin
and TrustedBSD SED Darwin [10].

Figure 3. Depiction of multiple-kernel-based
software

3. Categorizations of Common
Coupling in Kernel-Based Software

In previous work, we presented two types of cat-
egorization of common coupling, one is within a
single-kernel-based software system [15, 13, 16],
and one is within a multiple-kernel-based soft-
ware system [17]. These categorizations provide
two approaches to measuring the maintenance
effort and reuse effort of a kernel-based soft-
ware system [14, 12]. These categorizations are
reviewed here to provide the background knowl-
edge about this research. Both of these catego-
rizations are related with the definition-use anal-
ysis of global variables [15, 17].

3.1. Definition-use Analysis

The occurrence of a variable in a source code
statement is related with one of the two tasks:
reading the value of the variable or writing a
value to the variable. Writing a value to a vari-

able is called definition of a variable. The most
common form of variable definition is an assign-
ment statement, such as x = 10. Reading the
value of a variable is called use of a variable.
The use of a variable is a statement that utilizes
the value of the variable, such as print(x). From
the declaration of a variable to the destruction of
that variable, each time the variable is invoked,
it is either assigned a new value (a definition) or
its present value is used (a use).

Common coupling induces dependen-
cies between software modules through the
definition-use of a global variable. For exam-
ple, if module M1 defines a global variable
and module M2 uses that global variable, we
say that module M2 is dependent on M1 via
common coupling. This dependency induced by
definition-use of a global variable has effects on
both software maintenance and reuse. Consider-
ing maintenance, if changes are made to module
M1, attentions must be given to module M2 to
examine the effects of such changes and if neces-
sary, corresponding changes should be made on
M2. For reuse, if we want to reuse module M2,
we must consider either reusing M1 together
with M2 (because M2 is dependent on M1), or
modifying M2 to remove its dependence on M1.

3.2. Categorization of Common Coupling
in Single-Kernel-Based Software

In previous work, we divided global variables in
single-kernel-based software into 5 categories, as
shown below [15].
– Category 1: A global variable is defined in

one or more kernel modules but not used in
any kernel modules.

– Category 2: A global variable is defined in
one kernel module and is used in one or more
kernel modules.

– Category 3: A global variable is defined in
more than one kernel module, and is used in
one or more kernel modules.

– Category 4: A global variable is defined in
one or more nonkernel modules and is used
in one or more kernel modules.

– Category 5: A global variable is defined
in one or more nonkernel modules and is



50 Liguo Yu

defined and used in one or more kernel
modules.
In these five categories, high categories (Cat-

egories 4 and 5) global variables are considered
worst for kernel maintenance and reuse, because
they induce dependencies of kernel modules on
nonkernel modules; Categories 2 and 3 global
variables induce dependencies locally within the
kernel and are accordingly considered better
than Categories 4 and 5; Category-1 global vari-
ables do not affect kernel dependencies and are
considered better than all others. For more dis-
cussions about these five-category global vari-
ables, the readers are referred to [15].

3.3. Categorization of Common Coupling
in Multiple-Kernel-Based Software

In previous work [17], we divided global vari-
ables in multiple-kernel-based software into 6
levels. They are listed below.
– Level 0: A global variable is defined in kernel

modules but not used in kernel modules.
– Level 1: A global variable is defined and used

within the same kernel module but not de-
fined in any other modules.

– Level 2: A global variable is used in kernel
modules and is defined in nonkernel modules
of the same kernel-based component.

– Level 3: A global variable is used in kernel
modules of one kernel-based component and
is defined in nonkernel modules of an outer
component.

– Level 4: A global variable is used in kernel
modules of one kernel-based component and
is defined in nonkernel modules of another
kernel-based component.

– Level 5: A global variable is used in ker-
nel modules of one kernel-based component
and is defined in kernel modules of another
kernel-based component.
In these levels, a Level-0 global variable can-

not affect the dependencies of kernel modules,
because there is no use in kernel modules. There-
fore, the presence of a Level-0 global variable
will not cause difficulties in the maintenance and
reuse of kernel modules. The definition and use
of a Level-1 global variable are all within one

kernel module and accordingly, this definition
does not affect the dependency of this kernel
module as well as other kernel modules.

In contrast, a kernel module that uses a
Level-2 global variable depends on the nonkernel
modules that define the global variable. This de-
pendency is within the same kernel-based com-
ponent and it does not affect other kernel-based
components. High level (Levels 3 to 5) global
variables might affect kernel maintenance and
reuse. A Level-3 global variable induces depen-
dencies of kernel modules on outer modules.
Level-4 and Level-5 global variables are worst.
They induce dependencies of kernel modules
on modules of other kernel-based components.
For more discussions about these six-level global
variables, the readers are referred to [17].

3.4. Relations between the Two Types of
Categorizations

In multiple-kernel-based systems, there are more
than one kernel-based components. However, in
some cases, we are interested in only one specific
kernel-based component and consider the kernel
modules within this component as kernels and
all the rest modules (within or outside of this
component) as nonkernels. Therefore, we can
also consider this multi-kernel-based software
system as a single-kernel-based software system.
For example, in Figure 3, if we only consider
the kernel modules within the first kernel-based
component as kernels, the resulting system is
single-kernel based, as shown in Figure 4.

Accordingly, the global variables categorized
into six levels in multi-kernel-based software sys-
tems can be recategorized and mapped to the
five categories in single-kernel-based software
systems. The mapping and the relationships are
shown in Table 1. Therefore, a global variable
in multi-kernel-based software could be catego-
rized using two schemes. In the remainder of
this paper, we call the 5-category categorization
Categorization 1 and the 6-level categorization
Categorization 2.

To study the effects of definition-use of a
global variable on kernel dependencies, we uti-
lize the following terminologies.



The Evolution of Complexity in Apple Darwin: A Common Coupling Point of View 51

– Dependency-inducing definition: a def-
inition of a global variable that can induce
the dependency of kernel modules on other
modules.

– Non-dependency-inducing definition: a
definition of a global variable that cannot in-
duce the dependency of kernel modules on
other modules.

– Safe dependency-inducing definition: a
definition of a global variable that induces
the dependency of kernel modules on other
kernel modules.

– Unsafe dependency-inducing defini-
tion: a definition of a global variable that
induces the dependency of kernel modules on
other nonkernel modules.

Figure 4. The single-kernel point of view of the
system shown in Figure 3

Table 1. The mapping of 6-level categorization to
5-category categorization of global variables in

multi-kernel based software

Level number Category number
(6-level categorization) (5-category categorization)

0 1
1 2, 3

2, 3, 4, 5 4, 5

In other words, if a definition of a global vari-
able induces the dependency of kernel modules
on other modules (either kernel or nonkernel), it
is a dependency-inducing-definition. Otherwise,
the definition is called a non-dependency-induc-
ing definition. The definitions of global variables

in Categories 2 to 5 (Levels 1 to 5) are depen-
dency-inducing definitions. Definitions of global
variables in Category 1 (Level 0) induce no de-
pendencies of kernel modules and are accord-
ingly non-dependency-inducing.

There are two types of dependency-inducing
definitions, safe dependency-inducing defini-
tion and unsafe dependency-inducing definition.
Safe dependency-inducing definitions are related
with Categories 2, 3 and 5 (or Levels 1 to
5) global variables and these definitions occur
in kernel modules. Unsafe dependency-inducing
definitions are related with Categories 4 and 5
(or Levels 2 to 5) global variables and these
definitions occur in nonkernel modules. Table 2
and Table 3 classify the definitions into different
types. For example, a definition of Category-1
global variable in a nonkernel module is a
non-dependency-inducing definition; a definition
of a Level-2 global variable in a kernel module is
a safe dependency-inducing definition; a defini-
tion of a Level-3 global variable in a nonkernel
module is a unsafe dependency-inducing defini-
tion. The symbol “—” indicates there is no such
definitions of a global variable in the correspond-
ing category (level).

We remark here that the terminologies
of safe/unsafe dependency-inducing definitions
presented in this paper are different from the
terminologies of safe/unsafe definitions cited in
[15]. The unsafe definitions cited in [15] are ac-
tually the dependency-inducing definitions pre-
sented here and the safe definitions cited in [15]
map to the non dependency-inducing definitions
presented here.

4. The Evolution of Darwin

4.1. Overview

Darwin is Apple’s open-source operating system
for Macintosh computers. Figure 5 shows the
architecture of Apple Darwin. It conceptually
consists of three components: One kernel-based
component (denoted as osfmk) that is reused
(with modifications) from Mach [4], another
kernel-based component (denoted as bsd) that



52 Liguo Yu

Table 2. The classification of definitions in single-kernel based software

Category Definitions in kernel modules Definitions in nonkernel modules
1 Non-dependency-inducing Non-dependency-inducing
2 Safe dependency-inducing –
3 Safe dependency-inducing –
4 – Unsafe dependency-inducing
5 Safe dependency-inducing Unsafe dependency-inducing

Table 3. The classification of definitions in multiple-kernel based software

Level Definitions in kernel modules Definitions in nonkernel modules
0 Non-dependency-inducing Non-dependency-inducing
1 Safe dependency-inducing –
2 Safe dependency-inducing Unsafe dependency-inducing
3 Safe dependency-inducing Unsafe dependency-inducing
4 Safe dependency-inducing Unsafe dependency-inducing
5 Safe dependency-inducing Unsafe dependency-inducing

is reused (with modifications) from FreeBSD
[3, 11], and the third component (denoted as
outer) is a new written regular component. The
structure of Darwin shown in Figure 5 indicates
that it is a dual-kernel-based system. Darwin is
written in C/C++, in the remainder of this pa-
per, we use the term module to refer to a source
code file written in C or C++ (.c file, .cpp file,
or .h file).

Figure 5. Architecture of Apple Darwin,
a dual-kernel-based software system

To study the changes of kernel dependen-
cies of Darwin with the evolution of the sys-
tem complexity, we compared common cou-
pling in two versions of Darwin, XNU-517

and XNU-792, which were released in Novem-
ber 2003 and April 2005, respectively. Fig-
ure 6 illustrates the evolution of Darwin from
XNU-517 to XNU-792. It shows that the to-
tal number of modules increased about 5 per-
cent and the total size measured in KLOC
(Thousand Lines of Code) increased about
11 percent.

4.2. The Evolution of Complexity
Induced by Common Coupling

In order to study common coupling in Dar-
win kernels, for each kernel module, we deter-
mined all the global variables and character-
ized them using two different schemes described
in Section 3, Categorization 1 and Categoriza-
tion 2. Figure 7 and Figure 8 illustrate the evo-
lution of the global variables in Darwin from the
viewpoint of single-kernel-based software and
multiple-kernel-based software respectively.

In both categorizations, we can see that the
total number of global variables increased from
version XNU-517 to version XNU-792. However,
if we look at the most unfavorite global variables
(Categories 4 and 5 in Categorization 1 and Lev-
els 2, 3, 4, and 5 in Categorization 2 ), the num-
ber decreased from 17 to 14 and from 23 to 19
for osfmk kernel and bsd kernel respectively.
Therefore, we can conclude that, from version
XNU-517 to version XNU-792, Darwin has re-
structured to reduce the number of high-level



The Evolution of Complexity in Apple Darwin: A Common Coupling Point of View 53

Figure 6. The evolution of Darwin from XNU-517 to XNU-791: (a) the number of modules;
and (b) the size (KLOC) of the system

Figure 7. The number of global variables in Darwin kernels – Categorization 1

global variables, which are potential obstacles
to kernel maintenance and reuse.

However, as we discussed before, the com-
plexity induced by common coupling is re-
lated with the definition-use of global variables.
To understand the evolution of the complex-
ity in detail, we need to study the evolution of
definition-use of global variables in Darwin from
version XNU-517 to version XNU-792.

As described in Section 3, only the depen-
dency-inducing definitions can affect kernel de-
pendencies, we therefore studied the evolution of
dependency-inducing definitions of global vari-
ables in osfmk kernel and bsd kernel. The re-
sults are shown in Table 4 and Table 5. The def-
initions are classified using the Categorization 1

scheme, which applies to single-kernel-based
software. It is worth noting that Category-1
global variables have non-dependency-inducing
definitions and are accordingly not included
in Table 4 and Table 5. Fig. 9 summarizes
osfmk kernel (Table 4) and bsd kernel (Ta-
ble 5) and shows the overall evolution of
dependency-inducing definitions in Darwin. It
can be seen that from version XNU-517 to
version XNU-792, both the number of safe
dependency-inducing definitions and the num-
ber of unsafe dependency-inducing definitions
increased.

Table 6 shows the detail about the evo-
lution of unsafe dependency-inducing defini-
tions in Apple Darwin from the viewpoint



54 Liguo Yu

Figure 8. The number of global variables in Darwin kernels – Categorization 2

Figure 9. The evolution of the dependency-inducing definitions in Darwin

of multi-kernel-based system and the global
variables are classified using Categorization 2
scheme. It is worth noting that Level-0 and
Level-1 global variables have no unsafe depen-
dency-inducing definitions and are according not
listed in Table 6.

As discussed in Section 3.3, high level
(Level-4 and Level-5) global variables can bring
more difficulties for kernel maintenance and
reuse than low level (such as Level 2 and
Level 3) global variables. Because the number
of high level (Level-4 and Level-5) global vari-
ables is reduced from version XNU-517 to ver-
sion XNU-792 (Figure 8), the number of un-

safe dependency-inducing definitions induced by
high level (Level-4 and Level-5) global variables
decreased (Table 6). However, the number of un-
safe dependency-inducing definitions induced by
low level (Level 2 and Level 3) global variables
increased tremendously (Table 6). It can be seen
in Table 6, overall the number of unsafe depen-
dency-inducing definitions increased from 121 in
version XNU-517 to 175 in version XNU-792,
matching the evolution of unsafe dependency-in-
ducing definitions shown in Figure 9, which is
derived from Table 4 and Table 5. Therefore,
using two different categorization schemes, the
same result is obtained: the complexity of Ap-



The Evolution of Complexity in Apple Darwin: A Common Coupling Point of View 55

Table 4. The evolution of dependency-inducing definitions for osfmk kernel-Categorization 1.

Category number

Number of definitions
Definitions in kernel Definitions in nonkernel

(Safe dependency-inducing) (Unsafe dependency-inducing)
XNU-517 XNU-792 XNU-517 XNU-792

2 59 19 – –
3 28 21 – –
4 – – 25 15
5 27 23 33 74

Sum 114 63 58 89

Table 5. The evolution of dependency-inducing definitions for bsd kernel – Categorization 1.

Category number

Number of definitions
Definitions in kernel Definitions in nonkernel

(Safe dependency-inducing) (Unsafe dependency-inducing)
XNU-517 XNU-792 XNU-517 XNU-792

2 34 32 – –
3 52 134 – –
4 – – 48 15
5 22 27 15 71

Sum 108 193 63 86

Table 6. The evolution of unsafe dependency-inducing definitions in Darwin kernel – Categorization 2

Level number
osfmk kernel bsd kernel

XNU-517 XNU-792 XNU-517 XNU-792
2 53 77 22 18
3 2 11 0 44
4 2 0 17 12
5 1 1 24 12

Sum 58 89 63 86

ple Darwin induced by global variables (com-
mon coupling) increased from version XNU-517
to version XNU-792.

4.3. Discussions

Software evolution is inevitable, because new
features need to be frequently added and new
hardware and platforms need to be continually
supported. This is demonstrated in the evolu-
tion of Apple Darwin: From version XNU-517
to version XNU-792, both the size of kernel and
the size of the entire system increased.

As new modules are added to the sys-
tem, new dependencies need to be created be-
tween these new modules and existing mod-
ules, which will increase the complexity of the
system. The maintenance activity performed
on existing modules might also alter its orig-

inal quality and increase the complexity of
the system. Therefore, an evolving software
system needs to be restructured regularly to
retain its high quality design. This is also
demonstrated in the evolution of Apple Dar-
win, in which, we found, from version XNU-517
to version XNU-792, Darwin has restructured
through reducing the number of high cate-
gory (level) global variables. This restructur-
ing effort decreases the effect of the complex-
ity increasing and dependency increasing due to
the growth of the kernel size and the product
size.

However, the definition-use analysis of the
evolution of kernel dependencies shows that
the number of dependency-inducing definitions,
especially the number of the unsafe depen-
dency-inducing definitions, increased from ver-
sion XNU-517 to version XNU-792. Therefore,



56 Liguo Yu

the overall complexity of the system in the view-
point of common coupling increased despite the
effort of restructuring in reducing the number of
unfavorite high category (level) global variables.

With the growth of the size of Darwin, both
the module complexity and the module depen-
dency are expected to continually increase. To
reduce the effects of common coupling on kernel
maintenance and kernel reuse, we suggest that
major restructuring should be taken on Apple
Darwin to reduce the number of dependency-in-
ducing definitions, especially the number of un-
safe dependency-inducing definitions.

5. Conclusions and Limitations

In this paper, we studied the evolution of
the complexity of Apple Darwin from version
XNU-517 to version XNU-792. We applied two
schemes of categorization of common coupling,
in which Apple Darwin is considered as both
a single-kernel-based software system and a
multi-kernel-based software system. Analysis of
the two categorizations gives the same result.
Specifically, the study found that from version
XNU-517 to version XNU-792, the complexity
of Apple Darwin increased. To reduced this in-
crease of complexity, restructuring is necessary
and it has been taken. Although the number
of high category (level) unfavorite global vari-
ables is reduced in this restructuring process,
the number of unsafe-dependency-inducing def-
initions increases. Therefore, the complexity of
Darwin increased from the viewpoint of com-
mon coupling in spite of the effort of restructur-
ing. Suggestions are that major restructurings
should be taken to reduce or remove the unsafe
dependency-inducing definitions in order to re-
duce the system complexity.

There are several limitations to this research.
One limitation is that this research only focus on
one type of coupling: common coupling; other
types of component dependencies are not con-
sidered. The result could be improved if the evo-
lution of more types of couplings are studied.
Another limit is that only two versions of Ap-
ple Darwin are studied in this research. If more

versions of Apple Darwin together with more
versions of other operating systems are studied
using the technique proposed in this paper, the
result could be more interesting and convincing.

References

[1] P. B. Hansen. The nucleus of a multiprogram-
ming system. Communications of the ACM,
4(4):238–241, 1970.

[2] T. Härden. New approaches to object process-
ing in engineering databases. In Proceedings
of International Workshop on Object-Oriented
Database Systems, pages 217–217, September
1986.

[3] Kernelthread. What is Mac OS X. http://www.
kernelthread.com/mac/osx/, 2005.

[4] Mach. Mach 3.0 sources. http://www-2.cs.cmu.
edu/afs/cs/project/mach/public/www/sources/,
undated.

[5] J. Offutt, M. J. Harrold, and P. Kolte. A soft-
ware metric system for module coupling. Jour-
nal of Systems and Software, 20(3):295–808,
1993.

[6] M. Page-Jones. The Practical Guide to Struc-
tured Systems Design. Yourdon Press, New
York, 1980.

[7] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller,
and J. Offutt. Maintainability of the Linux ker-
nel. IEE Proceedings–Software, 149(1):18–23,
2002.

[8] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller,
and J. Offutt. Quality impacts of clandestine
common coupling. Software Quality Journal,
11(3):211–218, 2003.

[9] W. P. Stevens, G. J. Myers, and L. L. Constan-
tine. Structured design. IBM Systems Journal,
13(13):115–139, 1974.

[10] TrustedBSD. http://www.trustedbsd.org/
sedarwin.html, 2008.

[11] J. West. How open is open enough? modeling
proprietary and open source platform strategies.
Research Policy, 32(7):1259–1285, 2003.

[12] L. Yu. Common coupling as a measure of
reuse effort in kernel-based software with case
studies on the creation of MkLinux and Dar-
win. Journal of the Brazilian Computer Society,
14(1):45–55, 2008.

[13] L. Yu and S. Ramaswamy. Categorization of
common coupling in kernel-based software. In
Proceedings of the 43rd ACM Southeast Confer-
ence, volume 2, pages 207–210, March 2005.

http://www.kernelthread.com/mac/osx/
http://www.kernelthread.com/mac/osx/
http://www-2.cs.cmu.
http://www.trustedbsd.org/sedarwin.html
http://www.trustedbsd.org/sedarwin.html


The Evolution of Complexity in Apple Darwin: A Common Coupling Point of View 57

[14] L. Yu, S. R. Schach, and K. Chen. Com-
mon coupling as a measure of reuse effort in
kernel-based software. In Proceedings of 19th In-
ternational Conference on Software Engineering
and Knowledge Engineering, pages 39–44, July
2007.

[15] L. Yu, S. R. Schach, K. Chen, and J. Offutt.
Categorization of common coupling and its ap-
plication to the maintainability of the Linux ker-
nel. IEEE Transactions on Software Engineer-
ing, 30(10):694–706, 2004.

[16] L. Yu, S. R. Schach, K. Chen, J. Offutt,
and G. Heller. Maintainability of the ker-
nels of open-source operating systems: A com-
parison of Linux with FreeBSD, NetBSD, and
OpenBSD. Journal of Systems and Software,
79(6):807–815, 2006.

[17] L. Yu, S. R. Schach, K. Chen, and S. Ra-
maswamy. Coupling measurement in multi-ker-
nel-based software with its application to Dar-
win. The International Journal of Intelligent
Control and Systems, 13(2):109–118, 2008.


	Introduction
	Kernel-Based Software
	Categorizations of Common Coupling in Kernel-Based Software
	Definition-use Analysis
	Categorization of Common Coupling in Single-Kernel-Based Software
	Categorization of Common Coupling in Multiple-Kernel-Based Software
	Relations between the Two Types of Categorizations

	The Evolution of Darwin
	Overview
	The Evolution of Complexity Induced by Common Coupling
	Discussions

	Conclusions and Limitations
	References


