
e-Informatica Software Engineering Journal, Volume 2, Issue 1, 2008

Computation Independent Representation of
the Problem Domain in MDA

Janis Osis∗, Erika Asnina∗, Andrejs Grave∗
∗Faculty of Computer Science and Information Technology, Institute of Applied Computer Systems,

Riga Technical University
janis.osis@cs.rtu.lv, erika.asnina@cs.rtu.lv, andrejs.grave@cs.rtu.lv

Abstract
The object-oriented analysis suggests semiformal use-case driven techniques for problem domain
modeling from a computation independent viewpoint. The proposed approach called Topological
Functioning Modeling for Model Driven Architecture (TFMfMDA) increases the degree of for-
malization. It uses formal mathematical foundations of Topological Functioning Model (TFM).
TFMfMDA introduces more formal analysis of the problem domain, enables defining what the
client needs, verifying textual functional requirements, and checking missing requirements in
conformity with the domain model. A use case model of the application to be build is defined
from the TFM using a goal-based method. Graph transformation from the TFM to a conceptual
model enables definition of domain concepts and their interrelation. This paper also outlines
requirements to the tool to support TFMfMDA.

1. Introduction

The purpose of this work is to introduce more for-
malism into the problem domain modeling within
OMG Model Driven Architecture R© (MDA R©) [19]
in object-oriented software development. The
main idea is to introduce a more formal defini-
tion of consistency between real world phenom-
ena and an application that will work within
these phenomena without introducing complex,
hard to understand mathematics used while
composing Computation Independent Models
(CIMs). For that purpose, formalism of a Topo-
logical Functioning Model (TFM) is used [22].
A TFM provides a holistical representation
of system’s complete functionality from the
computation-independent viewpoint.

This paper is organized as follows. Section 2
describes related work. Section 3 describes key
principles of MDA, and discusses suggested solu-
tions of computation independent modeling and
their weaknesses in the object-oriented analysis

within MDA. Section 4 discusses a developed
approach, i.e. Topological Functioning Modeling
for Model Driven Architecture (TFMfMDA), that
makes it possible to use a formal model, i.e. a
TFM, as a computation independent one without
introducing complex mathematics. Besides that,
it allows verifying of functional requirements at
the beginning of analysis. TFMfMDA is illus-
trated by an application example in Section 5.
Section 6 shows TFMfMDA conformity to the
MDA Foundation Model. Section 7 describes
requirements to the tool that should partially
support automation of TFMfMDA. Conclusions
state further directions of the research.

2. Related Work

Our work completely supports Jackson’s work,
which states that “...the principal parts of a soft-
ware development problem are the machine, the
problem world, and the requirements...” [15].

26 Janis Osis, Erika Asnina, Andrejs Grave

Knowledge about

the problem

domain

Client’s

requirements

System

Requirements

Specification

Use Case

Model

Conceptual

Model

Intuitive identification

Functional

characteristics

of the problem

domain

Characteristics

of the

application at

the high level

of abstraction

Assisting questions, goals,

categories of concepts and

concept relations

The CIM level

Figure 1. The current state of creation of the CIM in OOA

We also assume that the first step in the re-
quirements gathering should be analysis of the
“problem world” or “business” [10]. Therefore
within TFMfMDA, the TFM describes function-
ality of the “problem world”, while requirements
describe functionality of the solution.

Analysis of the “business” context is also un-
derstood in goal-oriented requirements gathering
approaches. Unfortunately, most of them are
solution-orientated. Successful exceptions are
KAOS methodology that analyzes the “problem
world” and deals with conflicts by global repre-
sentation of goals and agents [7], the i∗ modeling
framework that investigates agents that are as-
sumed to be strategic and whose intentionality
are only partially revealed [24], and, in some
degree, the Requirement Abstraction Model [13]
that links product requirements to organization’s
strategies. However, all these approaches operate
rather with organization’s strategic goals than
with organization’s functionality.

3. Construction of the CIM
within MDA

Within MDA, the CIM usually includes sev-
eral distinct models that describe system re-
quirements, business processes and objects, an
environment the system will work within, etc.
Object-oriented analysis (OOA) is a semiformal
specification technique that contains three steps:
a) use case modeling, b) class modeling, and
c) dynamic modeling. Use case usage is not

systematic in comparison with systematic ap-
proaches that enable identifying of system re-
quirement majority. Creation of use case models
and determination of concepts and concept rela-
tions usually are rather informal than semiformal.
Figure 1 shows several of the existing approaches
of creating the mentioned models. Some ap-
proaches apply assisting questions [16, 18], cate-
gory lists of concepts and concept relations (or
noun-verb analysis) [17], or goals [6, 18] in order
to identify use cases and concepts from the de-
scription of the system (in the form of informal
description, expert interviewing, etc.). Other
approaches draft a system requirements speci-
fication using classical requirements gathering
techniques. Then these requirements are used
for identification of use cases and creation of
conceptual models. The most complete way is
identification of use cases and concepts having
knowledge of the problem world as well as a
system requirements specification [2].

Use case modeling starts with some ini-
tial estimation (a tentative idea) about
where the system boundary lies. For ex-
ample, in the Unified Process [2], use cases are
driven by requirements to the solution (but the
business model is underestimated, and, thus, sys-
tem boundaries are being identified intuitively),
any requirement gathering technique can be
applied, and requirements traceability to use
cases is ad hoc defined. The B.O.O.M. ap-
proach [23] uses business-scope and system-scope
use cases to make the solution more consistent
with the problem world. The business-scope

Computation Independent Representation of the Problem Domain in MDA 27

Knowledge
about the
system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

Functional
characteristics
of the problem

domain

trace to

in

co
nf

or
m

ity

w
ith

goal-based
identification

graph
transformation

The CIM level

Characteristics of
the application at
the high level of
abstraction

Figure 2. Creation of the CIM using TFMfMDA

use cases are used as a requirements gathering
technique. Unfortunately, they are IT project
driven not business driven. This means that
analysis of the existing and planned business
logic is also solution-oriented. Besides that, the
traceability between system-scope use cases and
business-scope use cases is captured with use-case
packages that have their bottlenecks (intuitive
and ad hoc creation; changes in business pro-
cesses cannot be traceable in a natural way, etc.).
Alistair Cockburn’s approach [6] structures use
cases with goals at different abstraction levels:
system scope, goal specification, and interaction
details. Despite benefits of such structuring, this
approach also does not have proper problem do-
main analysis, and the multilevel character of
the technique is not easy for everyone.

This means that the priority of problem do-
main modeling is very low. Thus, system func-
tioning and its structure are based on intuitive
understanding of the environment the system will
work within. Until now use cases relate to the
narrow area, where the real world interacts di-
rectly with the system (the solution), and, hence,
focuses requirement analyst’s attention on events
that happen within the solution boundaries, but
the properties of the surrounding real world can
remain underestimated, e.g., software system
requirements can conflict with rules that exist
in the organization. Besides that, fragmentary
nature of use cases does not give any answer
on questions about: a) identifying all of the use
cases for the system; b) conflicts among use cases;
c) gaps that can be left in system requirements;
d) how changes can affect behavior that other use

cases describe [10, 11]. Use case checklists cannot
completely help here, because reviews of lists of
use cases are made only based on knowledge of
the solution domain without formal connection
to system’s functionality in the problem world.

We consider that understanding and model-
ing the problem domain should be the primary
stage in the software development, especially in
case of embedded and complex business systems,
which failure can lead to huge losses. This means
that use cases must be applied as a part of a
technique, whose first activity is construction
of a well-defined problem domain model. Such
an approach – Topological Functioning Modeling
for Model Driven Architecture (TFMfMDA) is
suggested in this paper. This research can be
considered as a step towards MDA completeness
and, therefore, towards MDA maturity.

4. Topological Functioning Modeling
for MDA

This section discusses the proposed TFMfMDA
approach. TFMfMDA main steps illustrated by
bold lines in Figure 2 are discussed further in the
paper. The approach is based on the formalism of
a Topological Functioning Model and uses some
capabilities of universal category logic [4, 3, 22].

As previously discussed, there are two in-
terrelated branches at the beginning of system
analysis: The first one is analysis of the problem
world (the business or enterprise level), and the
second one is analysis of the possible solution (the
application level). Having knowledge about the

28 Janis Osis, Erika Asnina, Andrejs Grave

Knowledge
about the
system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

trace to

in

co
nf

or
m

ity

w
ith

goal-based
identification

graph
transformation

The CIM level

Functional
characteristics
of the problem

domain

Characteristics of
the application at
the high level of
abstraction

Figure 3. Construction of the TFM within TFMfMDA

complex system that operates in the real world,
a topological functioning model of this system
could be composed (Figure 2). This composed
TFM is used to verify functional requirements
and may be partially changed by them. TFM
functional features are associated with business
goals of the system; this provides identification of
business-scope use cases as well as system-scope
use cases in conformity with problem world’s ac-
tualities. As a result, functional requirements are
not only in conformity with the business-scope
system’s functionality but also can be traceable
to the system-scope use case model. Problem
domain concepts are selected and described in
UML Class Diagram.

The TFM has a rigor mathematical base. It
is represented in the form of topological space
(X,Θ), where X is a finite set of functional fea-
tures of the system under consideration, and Θ is
the topology that satisfies axioms of topological
structures and is represented in the form of a
directed graph. “In combinatorial topology, the
goal is to represent a topological space as an
union of simple pieces. The word ‘combinato-
rial’ is used to suggest that the properties of the
topological space rely on how the simple pieces
are arranged. A graph is a simple combinatorial
topological space.” [5]. The necessary condi-
tion for construction of the topological space
is a meaningful exhaustive verbal, graphical, or
mathematical description of the system. The
adequacy of the model describing functioning of
a system can be achieved by analyzing mathe-
matical properties of such an abstract object [22].

A TFM has as topological properties,
namely, connectedness, closure, neighborhood,

and continuous mapping, as functional proper-
ties, namely, cause–effect relations, cycle struc-
ture, inputs and outputs. These properties set
model capabilities such as formal separation of
subsystems, formal abstraction and refinement
of the TFM, and analysis of similarities and
differences of functioning systems. The last
point relates to the structure of cycles in the
TFM. It is proved that every business and tech-
nical system is a subsystem of its environment.
The common characteristic of functionality of
all systems (technical, business, or biological)
is a main feedback circuit, whose visualiza-
tion is an oriented cycle. Therefore, topolog-
ical modeling states that at least one directed
closed loop must be in every topological model
of system functioning. This cycle visualizes
the “main” functionality that has vital impor-
tance to the system’s life. Usually feedback is
expressed as an expanded hierarchy of cycles.
Therefore, proper analysis of cycles is manda-
tory in composing the TFM, because it supports
careful analysis of system’s operation and inter-
action with its environment [21]. Composition
of the TFM is discussed in Section 4.1.

4.1. Construction of the Topological
Functioning Model

This section discusses construction of the TFM
that represents the problem world in business
context (Figure 3). Its steps illustrated in Fig-
ure 4 are the following: a) Definition of physi-
cal or business functional characteristics, b) In-
troduction of the topology, and c) Separation
of the TFM.

Computation Independent Representation of the Problem Domain in MDA 29

Definition of physical or
business functional

characteristics

Introduction of the
topology

Separation of the
topological functioning

model

Informal
System Description

Objects
Functional Features
External Systems

Cause-and-effect
Relations

Topological Functioning
Model

Information
about changes

Figure 4. The method of construction of the TFM

Definition of physical or business func-
tional characteristics consists of the follow-
ing activities: 1) Definition of objects and their
properties from the description of the problem
world is performed by noun analysis, i.e. by es-
tablishing as meaningful nouns and their direct
objects as handling synonyms and homonyms; 2)
Identification of external systems (objects that
are not subordinated to the system rules) and
partially-dependent systems (objects that are
partially subordinated to the system rules, e.g.
workers’ roles); and 3) Definition of functional
features is performed by verb analysis, i.e. by
founding meaningful verbs in the description.
Each functional feature is a unique tuple <A,
R, O, PrCond, E>, where A is an object ac-
tion, R is a result of this action, O is an ob-
ject (objects) that receives the result or that
is used in this action (for example, a role, a
time period, a catalog, etc.), PrCond is a set
PrCond = {c1 . . . ci}, where ci is a precondition
or an atomic business rule (optional), and E is
an entity responsible for action performing. Each
precondition and atomic business rule must be
either defined as a functional feature or assigned
to the already defined functional feature. Two
forms of textual descriptions are defined. The
first is the more detailed form: <action>-ing the
<result> [to,into,in,by,of,from] a(n) <object>,
[PrCond,] E. An example is “Check-ing out the
availability of a copy, PrCond = {a valid reader
account}, E = a librarian”. The latter is the
more abstract form: <action>-ing a(n) <ob-
ject>, [PrCond,] E. An example is “Check-ing

out a copy, PrCond = {a copy is available},
E = a librarian”.

Introduction of the topology Θ is the
establishing of cause–effect relations between
functional features. Cause-effect relations are
represented as arcs of a digraph that are ori-
ented from a cause vertex to an effect vertex.
A structure of such relations can form a causal
chain, wherein each relation is important.

Morevoer, cause–effect relations can form cy-
cles. Therefore, cause–effect relations should be
carefully checked whether they form cycles or
subcycles in order to completely identify exist-
ing functionality of the system. The main cycle
(cycles) of system functioning (i.e. functionality
that is vitally necessary for system life) must
be found and analyzed before starting further
analysis. In case of studying a complex system, a
TFM can be separated into a series of subsystems
according to identified cycles.

Separation of the topological function-
ing model is performed by applying the closure
operation over a set of system’s inner functional
features [22]. A topological space is a system
represented by Z = N

⋃
M . Where N is a set

of system’s inner functional features, and M is
a set of functional features of other systems in-
teracting with the system or those of the system
itself, which affect external systems. The TFM
(X,Θ) is separated from the topological space of
the problem world by the closure operation over
the set N as it is shown by the equation

X = [N] =
n⋃
η=1

Xη.

30 Janis Osis, Erika Asnina, Andrejs Grave

Where Xη is an adherence point of the set N
and capacity of X is the number n of adherence
points of N . An adherence point of the set N
is a point, whose each neighborhood includes at
least one point from the set N . The neighbor-
hood of a vertex x in a digraph is the set of all
vertices adjacent to x and the vertex x itself. It
is assumed here that all vertices adjacent to x lie
at the distance d = 1 from x on ends of output
arcs from x. Moreover, a TFM can be separated
into a series of subsystems by the closures of
chosen subsets of N . The closure is illustrated
in Section 5.

4.2. Functional Requirements
Conformity to the TFM

The next step is verification of functional require-
ments (hereafter: requirements) whether they are
in conformity with the constructed TFM. TFM
functional features specify functionality that ex-
ists in the problem world, and functional require-
ments specify functionality that must exist in the
solution [14]. Thus, it is possible to map require-
ments onto TFM functional features (Figure 5).

Mappings are specifyed using arrow predi-
cates. An arrow predicate is a construct bor-
rowed from the universal categorical logic. Uni-
versal categorical (arrow diagram) logic for com-
puter science was explored in detail in Zinovy
Diskin’s et al. work [8].

Within TFMfMDA, five types of mappings
together with corresponding arrow predicates
are defined. One to One. Inclusion predicate
(Figure 6a) is used if the requirement A com-
pletely specifies what will be implemented in
accordance with the functional feature B. Many
to One. Covering predicate (Figure 6b) is used
if the requirements A1, A2, . . . , An overlap the
specification of what will be implemented in
accordance with the functional feature B. In
case of the covering requirements, their specifi-
cation should be precised. Disjoint (component)
predicate (Figure 6c) is used if the requirements
A1, A2, . . . , An together completely specify the
functional feature B and do not overlap each
other. One to Many. Projection (Figure 6d) is
used if some part of the functional requirement

A incompletely specifies the functional feature
Bi. Separating family of functions (Figure 6e)
is used if one requirement A completely spec-
ifies several functional features B1, . . . , Bn. It
can be because: a) the requirement joins several
ones and can be split up, or b) the functional
features are more detailed than the requirement.
One to Zero. One requirement specifies new
or undefined functionality. In this particular
case it is necessary to define possible changes
of the problem domain’s functioning (see Fig-
ure 4 “Information about changes”). Zero to
One. The requirements specification does not
contain any requirement related to the defined
functional feature. This means that it can be
a missed requirement and, hence, it could be
not implemented in the application. Thus, it is
mandatory to take a decision about implemen-
tation of the discovered functionality together
with the client.

The result of this activity are both verified re-
quirements and the TFM, which describes needed
(and possible) functionality of the system and its
environment.

4.3. Construction of the Use Case Model

The next step is transition from the model of the
problem world constrained by the requirements
to the use case model, supporting the possibility
of more formal tracing of requirements to use
cases (Figure 7).

This activity includes the following steps:
a) Identification of system’s users and their goals,
b) Identification and refinement of system use
cases, and c) Prioritization of use cases (and
requirements).

Identification of system’s users and
their goals. At this stage, the TFM repre-
sents functionality of the problem world con-
strained by the requirements. System’s users
can be those, who interacts within the business
system (workers) and with the business system
(actors). Actors are external companies, clients,
etc. Workers are system’s inner entities (hu-
mans, roles, etc.) Identification of system users’
direct goals is related to the identification of the
corresponding set of functional features that are

Computation Independent Representation of the Problem Domain in MDA 31

Knowledge
about the
system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

trace to

in

co
nf

or
m

ity

w
ith

goal-based
identification

graph
transformation

The CIM level

Functional
characteristics
of the problem

domain

Characteristics of
the application at the
high level of
abstraction

Figure 5. Making functional requirements in conformity with the TFM

A B

 A
1 ... Ai

 ...

A
nB

[cov]

f
1 f

i

fn

 A
1 ... Ai ...

A
n

B

[disj]
A B

i

 A

 B1 ... Bn

f1 fn
[1-1]

a) b) c) d) e)

Figure 6. Functional requirements mapping onto TFM functional features

Knowledge
about the
system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

trace to

in
 c

on
fo

rm
ity

w

ith

goal-based
identification

graph
transformation

The CIM level

Functional
characteristics
of the problem

domain

Characteristics of
the application at the
high level of
abstraction

Figure 7. Construction of the use case model within TFMfMDA

necessary for satisfaction of these goals. A goal
as a means for identification of use case has been
chosen because it can be achieved performing
some process that can be long running. The
time gap cannot do this. For each goal, an input
functional feature (input transaction), an output
functional feature (output transaction), and a
functional feature chain between them can be
defined. Both actors and workers can be users of
the application. Identification of system-scope
goals helps in verifying additional requirements,
e.g., for discovering “missing” requirements.

Identification and refinement of system
use cases. Functional features mapped by func-
tional requirements that are grouped together
by a goal describe functionality necessary for
achievement of this goal, and, hence, describe
a system-scope use case. System’s users that
establish the goal are (UML) actors that com-
municates with such use cases. This principle
enables formal identification of a use case model
from the TFM. However, this principle provides
also additional possibilities for refinement of the
system use cases. An inclusion use case is some

32 Janis Osis, Erika Asnina, Andrejs Grave

R
e
fi
n
e

A
b
s
tr
a
c
t

1-1

Topological
functioning model

Refined topological
functioning model

Graph of
domain objects

Conceptual
Model

b)

Knowledge
about the

system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

trace to

goal-based
identification

graph transformation
The CIM level

a)

Functional
characteristics
of the problem

domain

Characteristics
of the application at
the high level
of abstraction

in

c
o

n
fo

rm
it
y

w
it
h

Figure 8. The step (a) and the process (b) of construction of the conceptual model

common sequence for several use cases. In the
TFM, it is an intersection of sets of functional
features that belongs to more than one system
goals. Each common functional feature must be
analyzed. The common functional feature in the
main flow of a use case is a candidate to an in-
clusion use case. An extension use case shows an
alternative way of the scenarios execution. In the
TFM, it is functional features in a sub-cycle or
a branch, existing within the system goal. The
point of branch beginning is an extending point.
Identified use cases can be represented in UML
Activity Diagram by transforming functional fea-
tures into diagram’s activities, and cause–effect
relations into diagram’s control flows.

Prioritization of use cases. Prioritization
of use cases and, thus, functional requirements
can be done in accordance with client’s desires
or using requirements attribute systems, e.g.
MoSCoW or GRASP [2]. Within TFMfMDA,
priorities of implementation of use cases are de-
fined in conformity with the TFM main cycle as
follows (in accordance with the Rational Unified
Process): a) critical (must be implemented other-
wise the application will not be acceptable) – if a
use case implements any functional feature that
belongs to the main functional cycle; b) impor-
tant (it would significantly affect the usability of
the application) – if a use case implements any
functional feature that is a cause or an effect of
a functional feature that belongs to the main
cycle; and c) useful (it has a low impact on the
acceptability of the application) – if a use case
does not implement any functional feature of the
main cycle or functional feature that affects or
is affected by a functional feature that belongs
to the main cycle.

4.4. Construction of the Conceptual
Model

The last step of TFMfMDA is identification of the
conceptual model. After requirements mapping,
the TFM represents functionality that must be
implemented in the application, and includes all
concepts that are necessary for proper system’s
functioning (Figure 8a).

In order to obtain a conceptual model, it is
necessary to detail each TFM functional feature
to the level when it describes only objects of one
type. This more precise model must be trans-
formed one-to-one into a graph of domain objects.
Then vertices with objects of the same type must
be merged keeping all cause–effect relationships
to graph vertices, which contain objects of other
types (this is illustrated by the example in Sec-
tion 5). The result is a graph of domain objects
with indirect associations (Figure 8b). In order
to make these relations more precise, the graph
can be transformed into a sketch [8], then refined,
and represented as a refined conceptual model.
This transformation also indicates possible in-
heritance relations among types, and common
operations, which can further be transformed
into use case interfaces.

5. An Example of Application

This section gives an example of apllying
TFMfMDA. Let us consider the small fragment
of an informal description of the system from
the project, within which the application for a
library was developed. In this fragment, nouns
are denoted by italic, verbs are denoted by

Computation Independent Representation of the Problem Domain in MDA 33

bold, and action pre- (or post-) conditions are
underlined.

“When an unregistered person arrives, the
librarian creates a new reader account and a
reader card. The librarian gives out the card
to the reader. When the reader completes the
request for a book, hi gives it to the librarian.
The librarian checks out the requested book
from a book fund to a reader, if the book copy
is available in a book fund. When the reader
returns the book copy, the librarian takes it
back and returns the book to the book fund.
He imposes the fine if the term of the loan is
exceeded, the book is lost, or is damaged. When
the reader pays the fine, the librarian closes
the fine. If the book copy is hardly damaged, the
librarian completes the statement of utilization,
and sends the book copy to the Utilizer.”

Construction of the TFM. The identified
objects (or concepts) are the following: a) in-
ner objects are a librarian (L), a book copy (a
synonym is a book), a reader account, a reader
card, a request for a book, a fine, a loan term,
a statement of utilization, book fund, and b)
external objects are a person (P), a reader (R),
and an utilizer (U).

The identified functional features are repre-
sented as <number: a description of the func-
tional feature, a precondition, a repsonsible en-
tity and subordination>, where “In” denotes
“inner”, and “Ex” denotes “external” subordi-
nation. They are the following: 1: Arriving a
person, {}, P, Ex; 2: Creating a reader account,
{unregistered person}, L, In; 3: Creating a
reader card, {}, L, In; 4: Giving out the reader
card to a reader, {}, L, In; 5: Getting a reader
status, {}, R, Ex; 6: Completing a request for
a book, {}, R, In; 7: Sending a request for a
book, {}, L, In; 8: Checking out the book copy
from a book fund, {}, L, In; 9: Checking out
the book copy to a reader, {completed request
AND book copy is available}, L, In; 10: Giving
out a book copy, {}, L, In; 11: Getting a book
copy, {}, R, Ex; 12: Returning a book copy, {},
R, Ex; 13: Tacking back a book copy, {}, L, In;
14: Checking the term of loan of a book copy,
{}, L, In; 15: Evaluating the condition of a
book copy, {}, L, In; 16: Imposing a fine, {the

loan term is exceeded OR the lost book OR the
damaged book}, L, In; 17: Returning the book
copy to a book fund, {}, L, In; 18: Paying a
fine, {imposed fine}, R, In; 19: Closing a fine,
{paid fine}, L, In; 20: Completing a statement
of utilization, {hardly damaged book copy}, L,
In; 21: Sending the book copy to Utilizer, {},
L, In; 22: Utilizing a book copy, {}, U, Ex.

In order to define system’s functionality –
the set X, we perform the closuring operation
over the set of system’s inner functional features
N ={2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
19, 20}. The set of external functional features
and system’s functional features that affect the
external systems M = {1, 4, 5, 18, 21, 22}. The
neighborhood of each element of the set N is as
follows: X2 = {2, 3}, X3 = {3, 4}, X6 = {6, 7},
X7 = {7, 17}, X8 = {8, 9}, X9 = {9, 10},
X10 = {10, 11}, X11 = {11, 5}, X12 = {12, 13},
X13 = {13, 14}, X14 = {14, 15, 16}, X15 =
{15, 16, 17, 20}, X16 = {16, 19}, X17 = {17, 8},
X19 = {19}, X20 = {20, 21}. The obtained set is
X = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 19, 20, 21}.

The identified cause–effect relations between
the functional features are illustrated in Fig-
ure 9a. The main functional cycle is defined
by an expert and includes the following func-
tional features “17-8-9-10-11-5-12-13-14-15-17”.
It is denoted by bold lines in Figure 9a. These
functional features describe checking out and
taking back a book. They are assumed to be
main, because have a major impact on business
system’s operation. The example of the first
order subcycle is “5-6-7-17-8-9-10-11-5”.

Functional requirements conformity
to the TFM. Let us assume that the drafted
functional requirements (FR) are as follows.
FR1: The system shall perform registration
of a new reader; FR2: The system shall per-
form check out of a book copy; FR3: The
system shall perform check in of a book copy;
FR4: The system shall perform imposing of a
fine to a reader; and FR5: The system shall
perform handling of an unsatisfied request (the
description: the unsatisfied request should be
added to the wait list; when a book copy is
returned to the book fund, the system checks

34 Janis Osis, Erika Asnina, Andrejs Grave

2425 23

11

22

20

21 16

19

15

18
13

14
12

9
7

8

6

1 2 3 4 5

10

1711

22

2021

16

19

15

18 13

14

12

9

7

8

6

1 2 3 4 5

10

17

a) b)

26

FR1

2

FR2 FR3 FR4 FR5

3 4 7 98 1514 17 16 19 23 24 25

[1-1] [1-1][1-1] [1-1] [1-1]

13 26

c)
Figure 9. The topological space (a) and the modified topological space (b) of the library functioning;

the correspondence between requirements and TFM functional features (c)

what request can be satisfied and, in success,
informs the readers by SMS).

FR1 maps onto the functional features 2, 3,
and 4, i.e. FR1 = {2, 3, 4}; FR2 = {7, 8, 9},
FR3 = {13, 14, 15, 17}, FR4 = {16}. The func-
tional requirement FR5 describes new functional-
ity that must be implemented in the application
and introduced in the business activities of the
system. System’s functionality described in the
TFM by the functional features 18, 19, 20, and
21 is not specified by requirements. This means
that more careful analysis of the requirements
and problem world is needed, because they can
be missed. The better way in this situation
is to specify these features in the requirements
specification (and as use cases). The final de-
cision must be taken together with the client
that is warned beforehand about possible nega-
tive aftereffects. In this context, the interesting
one is the functional feature 19, which describes
closing of an imposed fine. It should be imple-
mented. Therefore, FR4 is modified as “The
system shall perform imposing and closing of a
fine to a reader”. Hence, FR4 = {16, 19}.

The new functionality introduced by FR5
can be described by new identified objects
(the system, a wait list and SMS), and the
following functional features – 23: Adding
the request_for_a_book in a wait list, {un-
available book}, L, In; 24: Checking the re-

quest_for_a_book in a wait list, {a book copy
is returned to the book fund}, system, In; 25: In-
forming the reader by SMS, {a request in the wait
list can be satisfied}, system, In; 26: Avoiding a
request for a book, {book copy is not available},
system, In.

Introducing this functionality into the TFM,
we must recheck all the existing cause–effect rela-
tions between the previously identified functional
features taking into account possible changes in
causes and effects. The set N = {2, 3, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 23, 24}.
The set M = {1, 4, 5, 18, 21, 22, 25, 26}. After
the closuring, the set X = {2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23,
24, 25, 26}. The result is the model represented
in Figure 9b. The final correspondence between
the functional features and requirements is illus-
trated in Figure 9c. All the identified mappings
of the requirements onto the functional features
have the type “one-to-many”.

Construction of the use case model. In
order to define use cases, system’s users and their
goals together with necessary functional features
are identified. System’s users (Librarian, and
System) are transformed into UML actors, goal
names into use case names, and functional fea-
tures into steps of the corresponding use cases.
The resulting use case model, functional features
to be implemented, and implementation prior-

Computation Independent Representation of the Problem Domain in MDA 35

ities of use cases defined accordingly to TFM
functioning cycles are illustrated in Figure 10a.
Figure 10b shows how two of the use cases can be
described in UML Activity Diagram using infor-
mation from the TFM, where functional features
are transformed into activities, but cause–effect
relations into control flows.

Construction of the conceptual model.
The step of the TFM refinement is skipped, be-
cause each functional feature takes a deal with
objects of the only one type. Figure 11 shows
transformation of the TFM to the graph of do-
main objects. Additionally, Figure 12a reflects
this graph after the gluing all graph vertices that
represent functional features with objects of the
same types. This reflects the idea proposed in
[20, 21, 22] that the holistic representation of the
domain by means of the TFM enables identify-
ing of all necessary domain concepts, and, even,
enables defining their necessity for successful im-
plementation of the system.

6. MOF-based Metamodel of
TFMfMDA

In compliance with [1], the Foundation Model of
MDA requires that a metamodel of each model-
ing language used within MDA must be defined
in Meta Object Facility (MOF) terms for con-
formance purposes. Therefore, a metamodel of
TFMfMDA concepts was defined as well as an
UML profile for TFMfMDA [4].

The MOF is a core standard of MDA. Its ar-
chitecture has four metalevels. They are named
M3, M2, M1 and M0 [12]. Conceptually the level
M3 is the MOF itself, i.e. a set of constructs used
to define metamodels. M2 describes instances
of constructs from M3. M1 includes instances
of metamodel constructs from M2. Finally, the
level M0 describes objects and data that are
instances of elements from M1. TFMfMDA con-
structs are made in conformity with these met-
alevels as illustrated in Figure 12b. The meta-
model for TFMfMDA is described at the level
M2 [22]. These metamodel illustrated in Fig-
ure 13 specifies how TFMfMDA concepts related
to each other.

A topological functioning model is an in-
stance of the type TFMTopologicalFunctioning-
Model that includes at least two functional fea-
tures of the type TFMFunctionalFeature. They
can be united in functional feature sets (TFM-
FunctionalFeatureSet). This means that a func-
tional feature represented in the TFM can vi-
sualize a functional feature set. One functional
feature can contain only one set and one func-
tional feature can belong only to the one set.
A functional feature can be subordinated to a
business system itself or to an external system
(Subordination). Functional features can form
functioning cycles (TFMCycle) of different order.
Functional features are connected by cause–effect
relations. A causal functional feature must have
at least one effect. An effect functional feature
must have at list one cause. Functional features
are mapped by functional requirements (TFM-
FunctionalRequirement) via the correspondence
(TFMCorrespondance). The correspondence is
many to many in general. It can be complete or
incomplete, overlapping or disjoint. Functional
features can be associated with several goals
(TFMUserGoal) that are established by direct
users (TFMUserRole) of the business system.
The users can be external entities that interact
with the business system (TFMBusinessActor)
or workers that interact within the business sys-
tem (TFMBusinessWorker). A user goal can be
specialized to a business goal (TFMUserBusi-
nessGoal) and to a system goal (TFMUserSys-
temGoal). The latter includes functional features
to be implemented. This means that it includes
functionality that is specified in the functional
requirements specification. A user goal and, thus,
corresponding functional requirements, are as-
sociated with functioning cycles, whose order
affect a benefit value (Benefit) of implementing
requirements.

7. Requirements to the Tool to
Support TFMfMDA

As previously mentioned, TFMfMDA introduces
certain formalism into the problem domain
modeling from the computation independent

36 Janis Osis, Erika Asnina, Andrejs Grave

Important

Register a reader

Close a fine

Check out a book

Librarian

Impose a fine

System

Return a book

<<extend>>

Inform of available book

<<extend>>

Critical

Important

ImportantImportant

Critical

a)

{7, 8, 9, 23, 26}

{13, 14, 15, 17}

{24, 25}

{16}{19}

{2, 3, 4}

Take back a
book copy

Check the term of loan of
a book copy

Evaluate the condition
of a book copy

Impose a
fine

Return the book
copy to a book fund

[the loan term is exceeded]

[lost book OR damaged book]

16

15

13

14

17

b)

The fragment

of the TFM

Figure 10. The use case model (a), and the fragment of the TFM described in UML Activity Diagram
that specifies functionality of use cases “Return a book” and “Impose a fine” (b)

:request

for a book

:wait list

:SMS

:wait list

:statement

of

utilization

:utilizer
:fine

:fine

:book

copy

:book

copy

:book

copy

:book

copy

:request

for a book

:book

fund

:request

for a book

:reader

account
:reader

card :reader

:book

copy

:book

fund

:reader

:book

copy

:book

copy

Figure 11. The graph of types of domain objects

MOF Model
(meta-metamodel)

TFMfMDA metamodel(metamodels)

Topological functioning model(models)

Functioning description(data)
(real world information)

M3

M2

M1

M0

a)

Reader Account

SMS

Wait List

1
0..n

1
0..n

Fine

Reader
Card

1
1

1
1

Request
For Book

Utilizer

Book Fund1
0..1

1
0..1

0..n
1

0..n
1

10..n 10..n

Reader
11 11

0..n1 0..n1

Statement Of
Utilization

0..n0..n 0..n0..n

0..n

1

0..n

1

Book Copy

0..n

1

0..n

1

0..n
0..n

0..n
0..n

0..1

0..1

0..1

0..1

a) b)

Figure 12. The initial conceptual model (a), TFMfMDA at the MOF metalevels (b)

Computation Independent Representation of the Problem Domain in MDA 37

TFMBusinessActor TFMBusinessWorker

Subordination

inner
external

<<enumeration>>Benefi t

critical
important
useful

<<enumerat ion>>

TFMUserSystemGoal
<<stereotype>>

TFMUserBusi
nessGoal

0..n

1

+theRealization

0..n

+theContext

1

TFMFunctionalRequirement

code : String
content : String
benefit : Benefit

TFMUserRole

name : String
isWorker : Boolean

TFMCorrespondence

isComplete : Boolean
isOverlapping : Boolean

0..n 0..n

+theSource

0..n

+theFunctionalRequirement

0..n

TFMUserGoal

label : String
name : String
input : TFMFunctionalFeature
output : TFMFunctional Feature
benefit : Benefit

1..n
+theUserGoal

1..n

+establisher

TFMCycle

order : UnlimitedNatural
isMain : Boolean = false

0..1

+theBenefit

0..1

TFMFunctionalFeature

label : String
name : String
subordination : Subordination
/ isImplemented : Boolean
precond : String

0..n
0..n

+/theEffect

0..n

{must have at least one cause}

+/theCause
0..n

{must have at least one effect}
0..n

0..n

+theFunctionalFeature
0..n

+theTarget
0..n

2..*

+owner

+theNode

2..*

1..n+owner

+theAction

1..n

TFMFunctionalFeatureSet

<<stereotype>>

0..1+owned element0..1

+owner

n

n

+/superset

n

{union, subset owner}

+/subset

n

{union, subset owned element}

TFMTopologicalFunctioningModel

drawDigraph()
checkCycleStructure()
checkConnectedness()

1..n +owner

+theCycle

1..n

2..n

+owner

+theNode
2..n

nn

Figure 13. The MOF-based metamodel of TFMfMDA

viewpoint. Unfortunately, a use of complex
graph-based constructs requires additional ef-
forts. Therefore, the main purpose of the
TFMfMDA tool is model management, which
relates to model verification, traceability han-
dling, automation of TFMfMDA steps, etc. This
section discusses the requirements to the tool for
TFMfMDA support.

The tool should support the client-server ar-
chitecture. In case of the client-server architec-
ture, the server should keep information of mod-
els; the client part should enable the connection
with the server and use of the kept information.
The tool should be realized as an Eclipse plug-in
[9]. Eclipse is an open development platform
that consists of different components, which
helps in developing Integrated Development En-
vironments (IDEs). For implementation of the
tool the following Eclipse components can be
used: Workbench UI, Help system, and Plug-in
Development Environment (PDE). The Work-
bench UI is a component that is responsible for
plug-in integration with Eclipse User Interface
(UI). It defines extension points, using which a
plug-in can communicate with the Eclipse UI.
Help System is a component that provides com-
plete integration of help information into the

Eclipse help system. PDE is the environment
that enables automation of activities related to
the plug-in development.

The tool should enable work with textual
information (an informal description of the sys-
tem, a description of functional requirements)
and graph-based constructs (a TFM, a concep-
tual model, and a use case model). All changes
must be propagated automatically to all the
related models. A general scheme of tool’s ac-
tivities is illustrated in Figure 14. The scheme
describes TFMfMDA steps considered above in
this paper. The first three steps reflects con-
struction of the TFM. The fourth step reflects
check of functional requirements and activities
of enhancing the TFM. The fifth step illustrates
creation of the use case model. Additionally, the
sixth step shows composing of the conceptual
model.

The challenge is realization of work with infor-
mal descriptions (Figure 15). The informal text
should be handled on the server side because of
several causes, namely, using of the knowledge
base, the multi-user environment, and “learning”
possibilities of the tool. The server side should
support detection of nouns, noun phrases, and
verbs. The detected information should be sent to

38 Janis Osis, Erika Asnina, Andrejs Grave

System

description

IV V VI

Tool for TFM transformations

(Eclipse plugin)

Topological

model,

Functional

requirements

Topological

Model, Goals

Topological

Model
Use case

Model

Topological

Model

Conceptual

class model

Verification of

functional

requirements,

enhancing of

Topological

model
Use case model

verification

Verification of

conceptual

class model

Export XMI

DocumentsUse case

model

UML class

diagram

Verification of

Verification of

Figure 14. The general scheme of the tool supporting TFMfMDA

System
description

Natural language processing server

Knowledge base

Part-of-
speech
tagger

Noun
chunker

Functional
features

recognizer
Text

Nouns,
Noun

phrases,
Functional
features

System objects,
functional
features

System description
Text with highlighted
nouns, noun phrases,

functional features

Tool for contructing TFM
(Eclipse plugin)

Figure 15. Handling the informal description of the system

the client side in XML file form. On the client side,
it can be highlighted to the user in different ways
(differentcolors, fonts, etc.). Thetoolmustprovide
convenient interface for handling this information
and creating TFM functional features.

Introduction of the topology between TFM
functional features should be realized as a mix
of graphical and textual representations of the
functional features. The tool should offer a user
to union or split up functional features, and to
define cause–effect relations among them using
tabular representations, but the result should be
also represented in the graph form.

The TFMfMDA tool must provide a separate
editor for each step. Each editor should have
related views that help to represent information
actual in this step for a user. All automated
steps that require human participation should
be realized as wizards.

8. Conclusions

The paper discusses about TFMfMDA and its
application to certain formalism introducing in
the process of creation of the CIM. TFMfMDA
specifies complex systems using graph constructs
and their transformations. Note that formal
transformations of graphs are not limited with
the number of vertices in graphs. The num-
ber of graph vertices can be decreased using
formal abstraction of the graph. The primary
goal of TFMfMDA is to specify functionality of
the system in the problem domain. Certainly,
the careful modeling of the problem domain re-
quires additional expenses, but further it will be
worthwhile, because it gives the formal CIM, de-
creases further expenses as decrease the number
of development iterations, and facilitates change
implementation.

Computation Independent Representation of the Problem Domain in MDA 39

TFMfMDA application has the following ad-
vantages. First, careful cycle analysis can help
in identifying all (possible at that moment) func-
tional and causal relations between objects in
complex business systems. Implementation pri-
orities of requirements can be set not only in
accordance with client’s whishes, but also in ac-
cordance with functioning cycles of the TFM.
The latter makes it possible to take a decision
about change acceptability in functionality of the
problem domain before implementation of the
changes in the application, and helps to check
completeness of functional requirements. Second,
TFMfMDA solves some use case limitations us-
ing formal mathematical means, e.g., it provides
use case completeness, avoids conflicts among
use cases, and shows their affect on each other.
Besides that it does not limit a use of any re-
quirements gathering techniques.

The tool built accordingly to the require-
ments would partially automate TFMfMDA
steps described above. However, TFMfMDA
requires human participation, thus, the further
research is related to enhancing TFMfMDA with
capabilities of natural language handling in or-
der to make it possible to automate more steps
of TFMfMDA and to decrease effect of human
participation in decision making.

References

[1] A proposal for an MDA foundation model.
ORMSC White Paper ormsc/05-04-01, OMG,
www.omg.org/docs/ormsc/05-04-01.pdf,
Apr. 2005. V00-02.

[2] J. Arlow and I. Neustadt. UML2 and the Unified
Process: Practical Object-Oriented Analysis and
Design. Addison-Wesley, Pearson Education,
second edition, 2005.

[3] E. Asnina. Formalization aspects of problem
domain modeling within model driven architec-
ture. In O. Vasilecas, editor, Databases and
Information Systems. 7th International Baltic
Conference on Databases and Information Sys-
tems. Communications, Materials of Doctoral
Consortium, pages 93–104, Vilnius, Lithuania,
2006. Vilnius Gediminas Technical University,
Technika.

[4] E. Asnina. Formalization of Problem Domain
Modeling within Model Driven Architecture. PhD
thesis, Riga Technical University, RTU Publish-
ing House, Riga, Latvia, 2006.

[5] W.F. Basener. Topology and Its Applications.
John Wiley and Sons, Inc., New Jersey, USA,
2006. page 339.

[6] A. Cockburn. Structuring use cases with goals.
http://alistair.cockburn.us/crystal/
articles/sucwg/.

[7] A. Dardenne, A. van Lamsweerde, and
S. Fickas. Goal-directed requirements acquisi-
tion. The Science of Computer Programming,
20(November):3–50, 1993.

[8] Z. Diskin, B. Kadish, F. Piessens, and M. John-
son. Universal arrow foundations for visual mod-
eling. In Proc. Diagramms’2000: 1st Int. Confer-
ence on the theory and application of diagrams,
pages 345–360. Springer LNAI, 2000. No. 1889.

[9] Eclipse. Eclipse – an open development platform.
http://www.eclipse.org.

[10] S. Ferg. What’s wrong with use cases? http:
//www.ferg.org/papers/, February 2003.

[11] D. Firesmith. Use cases: the pros and cons.
http://www.ksc.com/article7.htm.

[12] D. Frankel. Model Driven Architecture: Applying
MDA to Enterprise Computing. Wiley Publish-
ing, Inc., Indiana, 2003.

[13] T. Gorschek and C. Wohlin. Requirements
abstraction model. Requirements Engineering,
11:79–101, 2006.

[14] M. Jackson. The real world. http://www.ferg.
org/papers/, July 2003.

[15] M. Jackson. Problem frames and software engi-
neering. Information and Software Technology,
47(November):903–912, 2005.

[16] I. Jacobson, M. Christerson, P. Jonsson, and
G. Overgaard. Object-Oriented Software En-
gineering: A Use Case Driven Approach.
Addison-Wesley, 1992.

[17] C. Larman. Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and
Design and Iterative Development. Prentice Hall
PTR, 3rd edition, 2005.

[18] D. Leffingwell and D. Widrig. Managing
Software Requirements: a use case approach.
Addison-Wesley, 2nd edition, 2003.

[19] OMG, http://www.omg.org/. MDA Guide Ver-
sion 1.0.1, June 2003.

[20] J. Osis. Extension of software development pro-
cess for mechatronic and embedded systems. In
Proceeding of the 32nd International Conference

40 Janis Osis, Erika Asnina, Andrejs Grave

on Computer and Industrial Engineering, pages
305–310. University of Limerick, Limerick, Ire-
land, August 2003.

[21] J. Osis. Software development with topological
model in the framework of MDA. In Proceedings
of the 9th CaiSE/IFIP8.1/EUNO International
Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design (EMMSAD’2004)
in connection with the CaiSE’2004, volume 1,
pages 211–220, Riga, Latvia, 2004. Riga Techni-
cal University, RTU.

[22] J. Osis. Formal computation independent model
within the MDA life cycle. International Trans-

actions on Systems Science and Applications,
1(2):159–166, 2006.

[23] H. Podeswa. UML for the IT Business Analyst:
A practical Guide to Object-Oriented Require-
ments Gathering. Thomson Course Technology
PTR, Boston, 2005.

[24] E.S.K. Yu. Towards modelling and reasoning sup-
port for early-phase requirements engineering. In
International Symposium on Requirements En-
gineering, pages 226–235, Annapolis, Maryland,
1997.

