
e-Informati
a Software Engineering Journal, Volume 1, Issue 1, 2007Program Veri�
ations, Obje
t Interdependen
ies,and Obje
t TypesCong-Cong Xing∗
∗Department of Mathemati
s and Computer S
ien
e, Ni
holls State University
mps-
x�ni
holls.eduAbstra
tObje
t types are abstra
t spe
i�
ations of obje
t behaviors; obje
t behaviors are ab-stra
tly indi
ated by obje
t 
omponent interdependen
ies; and program veri�
ationsare based on obje
t behaviors. In 
onventional obje
t type systems, obje
t 
omponentinterdependen
ies are not taken into a

ount. As a result, distin
t behaviors of ob-je
ts are 
onfused in 
onventional obje
t type systems, whi
h 
an lead to fundamentaltyping/subtyping loopholes and program veri�
ation troubles. In this paper, we �rstidentify a program veri�
ation problem whi
h is 
aused by the loose 
onventional ob-je
t typing/subtyping whi
h is in turn 
aused by the overlooking of obje
t 
omponentinterdependen
ies. Then, as a new obje
t typing s
heme, we introdu
e obje
t type graphs(OTG) in whi
h obje
t 
omponent interdependen
ies are integrated into obje
t types.Finally, we show how the problem existing in 
onventional obje
t type systems 
an beeasily resolved under OTG.1 Introdu
tion and Related WorkAlthough mu
h of the re
ent year's work on obje
t-oriented programming (OOP) has fo-
used on large entities su
h as 
omponents, environments, and tools, investigations onissues related to obje
t-oriented languages themselves are still an on-going resear
h andmany new improvements 
an be expe
ted. In parti
ular, typing and program veri�
ationare still a 
riti
al issue and a problem-prone area in the formal study of obje
t-orientedlanguages, espe
ially when type-related subje
ts, su
h as subtyping and inheritan
e, are
onsidered. In the 
ontexts of OOP theory resear
h, there are three major lines: Abadi-Cardelli's ς-
al
ulus [2℄, Fisher-Mit
hell's lambda 
al
ulus of obje
ts [14, 19, 18, 4℄, andBru
e's PolyTOIL [7, 6℄. The type systems of all these 
al
uli are 
onventional in thefollowing sense: the major behavior indi
ator of obje
ts � obje
t 
omponent interdepen-den
ies � is not re�e
ted in obje
t types.The result of not having su
h 
omponent interdependen
y information represented inobje
t types is that two behaviorally distin
t obje
ts whi
h deserve to be typed di�erently,may have the same type. For example, let obje
ts a and b be de�ned, using the ς-
al
ulus [2℄notation, as follows: a

def
= [l1 = 1, l2 = 1], b

def
= [l1 = 1, l2 = ς(s : Self )s.l1] where s is the selfvariable and Self is the type of s. The behavioral di�eren
e between a and b 
an berevealed by the following 
omputations: Suppose we would like to update l1 in a to 2.



78 Cong-Cong XingIt is easy to see that before and after this updating operation, the �status� of l2 in aremains the same, namely, a.l2 = 1 and (a.l1⇐ 2).l2 = [l1 = 2, l2 = 1].l2 = 11. However,when the same operation (updating l1 to 2) is applied to b, the �status� of l2 in b wouldbe 
hanged after the operation, namely, b.l2 = 1 but (b.l1⇐ 2).l2 = [l1 = 2, l2 = ς(s :
Self )s.l1].l2 = 2 due to the fa
t that l2 �depends on� l1 (l2 
alls l1) in b. In 
onventionaltype systems, this behavioral di�eren
e between a and b is not 
aptured in their types;
a and b are of the same type: [l1 : int, l2 : int]. As a result, elusive programming errorsand program veri�
ation problems will inevitably o

ur when subtyping is 
onsidered (asshown in the next se
tion).In this paper, we introdu
e, as a new way to represent obje
t types, obje
t type graphs(OTG) in whi
h obje
t 
omponent interdependen
y information is abstra
tly revealed, andshow that OTG provides an e�e
tive support for program veri�
ations. Se
tion 2 presentsa program veri�
ation problem 
aused by obje
t typing. Se
tion 3 de�nes a formal obje
t-oriented language TOOL in whi
h obje
t 
omponent interdependen
ies are to be studied.Se
tions 4 and 5 de�ne OTG and typing/subtyping under OTG respe
tively. Se
tion 6demonstrates how the program veri�
ation problem shown in Se
tion 2 
an be resolvedunder OTG. Se
tion 7 
on
ludes this paper.There are some resear
h work in the literature that are (somehow) related to our work.Behavioral subtyping is introdu
ed in [20℄. Although obje
t behavior and subtyping arethe 
ommon interests in both [20℄ and our paper, our typing approa
h is fundamentallydi�erent from that in [20℄ where obje
t interdependen
ies are not 
onsidered. Labeled typesand width subtyping are proposed in [3, 4, 19℄, where the type of a method is labeled bya set of methods that it uses. While the idea of labeled types is somewhat related to ouridea of obje
t interdependen
y, they di�er substantially in quality and in quantity. Forexample, the notion of obje
t interdependen
y is pre
isely de�ned in our work whereas theissue of method usages is not formally addressed in labeled types. Furthermore, in ourwork, obje
t interdependen
ies fully parti
ipate and de
isively reshape obje
t subtypingwhereas in labeled types the method usages information is barely used in obje
t subtyping.The notion of obje
t state typing 
an be found in, for example, [9, 21℄. Just like [20℄ (asopposed to our work), this approa
h deals with the issue of obje
t behavior and subtypingin a fundamentally di�erent way from ours, whi
h makes it orthogonal and 
omplementalto our approa
h.2 The Problem and MotivationPoints with additional attributes (e.g., 
olor points [5, 8, 15℄, movable points [2, 4, 15℄) havebeen an interesting study-
ase in the fundamental resear
h of obje
t-oriented languages.Here, we observe a new problem that is asso
iated with movable points. We �rst presentthis problem on a theoreti
al basis and then demonstrate it using Java.1a.l1⇐2 means that �eld/method l1 in a is updated to 2.
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ations, Obje
t Interdependen
ies, and Obje
t Types 792.1 ς-
al
ulus Des
ription of the ProblemWe stipulate that a point is 
olored (or non-
olored, respe
tively), if this point (obje
t) hasa (or has no, respe
tively) 
olor attribute. Let us 
onsider non-negative movable points2.For 1-d movable points, we assume that all points greater than 1 are 
olored points andall other points are non-
olored points (Figure 1). For 2-d movable points, similarly, weassume that all points with a distan
e from the origin greater than 1 are 
olored points andall other points are non-
olored points (Figure 2). This assumption 
an be easily extendedfor higher-dimensional points.
10
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xFigure 1: 1-d Colored and non-
olored points
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colorFigure 2: 2-d Colored and non-
olored pointsFor instan
e, using the ς-
al
ulus (se
ond-order) notation [2℄, we 
an de�ne a 1-d non-
olored movable point and a 1-d 
olored movable point as follows:

p1n
def
=





x = 0.5
mvx = ς(s :Self )λ(i :real )(s.x⇐s.x + i)
dist = ς(s :Self )s.x



 ,

p1c
def
=









x = 2.0
mvx = ς(s :Self )λ(i :real )(s.x⇐s.x + i)
dist = ς(s :Self )s.x
clr = blue









,where mvx moves the point to a new position on the x-axis and dist returns the dis-tan
e from the origin to the 
urrent position of the point. The⇐ is the method updat-ing/overriding operation in ς-
al
ulus. The intentions of �elds x and clr are obvious.2For the sake of simpli
ity, we only 
onsider non-negative points here. The 
ase for negative points 
anbe easily dupli
ated with slight 
hanges.



80 Cong-Cong XingTo 
hara
terize the behaviors of 1-d movable points, we de�ne the following types:
P

def
= ς(Self )





x : real

mvx : real → Self

dist : real



 ,

CP
def
= ς(Self )









x : real

mvx : real → Self

dist : real

clr : color









,

NCP
def
= P,where P is the type of all 1-d movable points, CP is the type of 1-d 
olored points, and

NCP is the type of 1-d non-
olored points. Given the obje
ts and types de�ned as theabove, it is easy to 
he
k that in 
onventional obje
t type systems, we have p1n : NCP ,
p1c : CP , CP <: P , and NCP <: P .Now, suppose we would like to write a program, ms (�move and see�), whi
h takes a 1-dpoint and moves it along the x-axis. Due to the 
o-existen
e of 
olored and non-
oloredpoints on the x-axis, the movement 
annot be arbitrary. We spe
ify the behavior of ms asfollows: (a) ms moves the argument point to its right a 
ertain amount of distan
e if theargument point is 
olored (so that it will not mix with non-
olored points). (b) ms movesthe argument point to its left half of the distan
e from the origin to the 
urrent position ofthe argument point if the argument point is non-
olored (so that it will not mix with 
oloredpoints). (
) Let p′ be the newly resulted point in 
ases (a) and (b). In 
ase (a), ms uses theproperty p′.dist > 1 of p′ to 
arry out the 
omputation arcsin(1/p′.dist); in 
ase (b), msuses the property p′.dist ≤ 1 of p′ to 
arry out the 
omputation arcsin(p′.dist). Be
auseof subtyping and subsumption, inevitably, ms will take higher dimensional points as itsarguments. To ensure that ms works �ne with higher dimensional points, we require that,in su
h 
ases, the higher dimensional point be moved (right or left) along the x-axis, andthe amount of distan
e to be moved follows the same guideline stated above. For example,given a 2-d point p with 
oordinates (x, y), if p is 
olored (whi
h means √

x2 + y2 > 1), wemove it to the right along the x-axis over a distan
e δ > 0. The distan
e from the origin tothe new position of the point then would be √

(x + δ)2 + y2 >
√

x2 + y2 > 1, indi
atingthat the point is still in the 
olored point area on the x-y plane. If p is non-
olored (whi
hmeans √

x2 + y2 ≤ 1), we move it to the left along the x-axis half of x. The distan
e fromthe origin to the new position of the point then would be √

(1
2x)2 + y2 <

√

x2 + y2 ≤ 1,indi
ating that the point is still in the non-
olored point area. Thus the spe
i�
ation ofthe program ms is sound and feasible.



Program Veri�
ations, Obje
t Interdependen
ies, and Obje
t Types 81With little e�ort, we 
an write ms as follows:
ms

def
= λ(p : P )if (p.dist > 1) // p is 
olored

sin-1(1/(p.mvx (δ)).dist) // δ > 0else // p is non-
olored
sin-1((p.mvx (−1

2p.x)).dist)endif Figure 3: The fun
tion msNow, the question we have is: does ms perform to its spe
i�
ation with all permissiblearguments? Or simply, is ms reliable? Can we verify its 
orre
tness?It is easy to 
he
k that ms works as expe
ted with p1n and p1c. We now de�ne one
olored 2-d point and two non-
olored 2-d points as follows:
p2c

def
=

















x = 2.0
y = 2.0
mvx = ς(s :Self )λ(i :real )(s.x⇐s.x + i)
mvy = ς(s :Self )λ(i :real )(s.y⇐s.y + i)

dist = ς(s :Self )
√

(s.x)2 + (s.y)2

clr = blue

















,

p2n
def
=













x = 0.5
y = 0.3
mvx = ς(s :Self )λ(i :real )(s.x⇐s.x + i)
mvy = ς(s :Self )λ(i :real )(s.y⇐s.y + i)

dist = ς(s :Self )
√

(s.x)2 + (s.y)2













,

p′2n
def
=













x = 0.5
y = ς(s :Self ) 1

4(s.x)

mvx = ς(s :Self )λ(i :real )(s.x⇐s.x + i)
mvy = ς(s :Self )λ(i :real )(s.y⇐s.y + i)

dist = ς(s :Self )
√

(s.x)2 + (s.y)2













.

Note that p2c and p2n 
an be regarded as �free� 2-d points sin
e their x and y �elds areindependent ea
h other, whereas p′2n 
an be regarded as a �
onstrained� 2-d point sin
e its
y 
oordinate depends on its x 
oordinate. Also note that p′2n is a legitimate non-
oloredpoint sin
e its 
oordinate is (0.5, 0.5) whi
h shows that the distan
e from the origin tothis point is less than 1. Moreover, note that although p2c, p2n, and p′2n are de�ned froms
rat
h, they 
ould have been de�ned through inheritan
e from (the 
lasses of) p1c or p1nin 
lass-based obje
t-oriented languages (as shown in the next subse
tion).



82 Cong-Cong XingUnder 
onventional obje
t type systems, p2c and p2n have types
CP2

def
= ς(Self )

















x : real

y : real

mvx : real → Self

mvy : real → Self

dist : real

clr : color















and
NCP2

def
= ς(Self )













x : real

y : real

mvx : real → Self

mvy : real → Self

dist : real











respe
tively, and p′2n has the same type as p2n. That is, p′2n : NCP2. Furthermore,
CP2 <: P and NCP2 <: P , so ms(p2c), ms(p2n) and ms(p′2n) all type-
he
k.It is easy to 
he
k that ms(p2c) and ms(p2n) work just �ne. What about ms(p′2n)?It is supposed to return the degree of an angle. Unfortunately, the exe
ution of ms(p′2n)produ
es a run-time error, as outlined below: The 
urrent position of p′2n is (0.5, 0.5) with
p′2n.dist =

√
0.52 + 0.52 < 1. So it is moved to the left 0.5

2 = 0.25 units of distan
e resultingin another point, say, p′′2n. The position of p′′2n is (0.25, 1
4×0.25 ) = (0.25, 1) and the distan
efrom the origin to p′′2n is p′′2n

.dist =
√

0.252 + 12 > 1. The exe
ution sin-1(p′′

2n
.dist) thus
rashes be
ause sin-1 is unde�ned for argument greater than 1.What goes wrong is 
lear: when the x-
oordinate of p′2n is moved (de
reased), its

y-
oordinate is impli
itly moved too (in
reased) due to the interdependen
y between xand y (y = 1
4(s.x) ). The 
ombination of these two movements makes p′2n (a non-
oloredpoint) go into the 
olored point area of the x-y plane, resulting in a point with distan
egreater than 1 and 
reating semanti
s 
onfusions. The importan
e of obje
t 
omponentinterdependen
ies to obje
t behaviors 
an be seen 
learly here. Con
eptually, for ms tosafely ful�ll its spe
i�
ations, it should not take an arbitrary point as its argument. Anypoints in whi
h some methods depend on x and a�e
t dist at the same time, for example

p′2n, will potentially make the behavior of ms unpredi
table and endanger the exe
ution of
ms when they are submitted to ms . Thus, allowing points like p′2n to be submitted to msis a �wrong idea�, in the sense that ms(p′2n) does not work as spe
i�ed and therefore ms isunreliable.How 
an we �x this problem? Is the fun
tion ms 
omposed in
orre
tly? Is there away to rewrite ms so that we 
an prove that ms works as spe
i�ed for all permissiblearguments? It seems unlikely. Note that ms is written with P as the type of its argument.
ms 
annot foresee what kind of extra methods there are in its a
tual arguments. When p′2nis submitted to ms , p′2n's y-
oordinate is invisible to ms . ms does not know the existen
eof the y-
oordinate, and of 
ourse, has no way of knowing the interdependen
ies between
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y and other methods and the ensuing behavior of p′2n. This is espe
ially the 
ase if p′2nis 
onstru
ted via inheritan
e from p1c or p1n. This situation 
auses the behavior of ms(with various permissible arguments) unpredi
table, and is inevitable in OOP supportedby 
onventional obje
t type systems.2.2 Java Version of the ProblemTo show that the problem exists not only in obje
t-based languages, but in 
lassed-basedlanguages as well, we present a Java version of the problem with two running s
ripts inFigure 4.Classes P, CP, CP2, and NCP2 
orrespond to types P (and NCP ), CP , CP2, and NCP2respe
tively. Similarly, obje
ts p1n, p1
, p2n, p2
 and p2na 
orrespond to points p1n, p1c,
p2n, p2c, and p′2n respe
tively. MPP and MPP1 are two appli
ations that use these points.Due to the �
lass-serves-as-type� feature of Java, the Java version of the problem is twisteda bit: The types of p2n and p2na are NCP2 and NCP2a respe
tively. These two types arenot the same but enjoy a subtyping relationship NCP2a <: NCP2. This is di�erent from
ς-
al
ulus where p2n and p′2n have the same type, but does not a�e
t the illustration of theproblem.Note that in 
lass NCP2a of Figure 4, in order to faithfully implement the desired fa
tthat �y-
oordinate depends on x-
oordinate�, we need to use the 
ombination of the �eldy and the method y() to simulate it. This is due to the imperative feature of Java. Fieldy, as an instan
e variable, on
e a
quires a value, will evaluate to the same value ea
h timeit is evaluated. So �eld y does not �depend on� anyone in this sense. Then how 
an we
ode �y-
oordinate depends on x-
oordinate�? The use of an auxiliary method y() whi
hdepends on x (as desired) 
omes into help.From the exe
ution s
ript of MPP, we 
an 
learly see that submitting the �
onstrained�point p2na to the fun
tion ms 
auses a run-time bug, whi
h demonstrates that the typeNCP2a of p2na should not be regarded as a subtype of the type P although NCP2a is inherited(indire
tly) from P. Considering that all ms(p1
), ms(p2
), ms(p2n) work �ne and all the
lasses (types) of the three obje
ts p1
, p2
, p2n are inherited (indire
tly) from P too, weneed to distinguish (all) inheritan
es in Java so that some inheritan
es (e.g., those as CP,CP2, and NCP2) may imply subtyping and others (e.g., those as NCP2a) do not. This 
anbe done by using obje
t interdependen
y as a measurement. Unfortunately, Java thinks�all inheritan
e is subtyping�. What is more interesting is that due to the way in whi
hJava handles NaN (Any arithmeti
 operation involving NaN and other operands produ
es aNaN, but any relational operation involving NaN and other operands produ
es either trueor false3.), this run-time bug 
an be
ome hidden and di�
ult to �nd if the relevant ex-pression is (deeply) involved with other 
omputations. MPP1 is su
h an example; by justexamining the exe
ution s
ript of MPP1, it is hard to tell that ms(p2na) has a
tually 
auseda run-time bug.3There are other means in Java to make the �illegal value� NaN legal, e.g., (int)(Math.asin(2)) evaluates to 0,whi
h 
ould also help to 
on
eal the NaN run-time bugs.



84 Cong-Cong Xing// 
lass P. Note that this is also 
lass// NCP sin
e NCP is defined as P.publi
 
lass P {prote
ted double x = 0.5;publi
 double getx(){ return x; }publi
 void mvx(double i){ x = x+i; }publi
 double dist(){ return getx();}}// 
lass CP, inherited from Ppubli
 
lass CP extends P { String 
lr = "blue";publi
 CP(){ x = 2.0;}}// 
lass CP2, inherited from CPpubli
 
lass CP2 extends CP {prote
ted double y;publi
 CP2(){ y = 2.0;}publi
 double gety(){ return y; }publi
 void mvy(double i){ y = y+i; }publi
 double dist(){ return Math.sqrt(getx()*getx() + gety()*gety());}}// 
lass NCP2, inherited from Ppubli
 
lass NCP2 extends P {prote
ted double y;publi
 NCP2(){ y = 0.3;}publi
 double gety(){ return y; }publi
 void mvy(double i){ y = y+i; }publi
 double dist(){ return Math.sqrt(getx()*getx() + gety()*gety());}}// 
lass NCP2a, inherited from NCP2. Need the 
ombination// of y and y() to simulate "y depends on x". Note that// "y depends on x" is what we want to do, without the use// of y(), fields x and y would be independentpubli
 
lass NCP2a extends NCP2{ publi
 NCP2a(){ y = y(); } // 
alling y() to get// value for ypubli
 double y() // implementation of{ return 1/(4*x);} // "y depends on x"publi
 double gety(){ y = y(); // 
alling y() to getreturn y; // value for y}}

// Appli
ation that uses P, CP, CP2, NCP2, and NCP2apubli
 
lass MPP {publi
 stati
 void ms(P p){ if (p.dist() > 1){System.out.println(" This is a 
olored point");p.mvx(1); // move p as spe
ifiedSystem.out.println(" The result is: "+Math.asin(1/p.dist()));}else{System.out.println(" This is a non-
olored point");p.mvx(-0.5*p.getx()); // move p as spe
ifiedSystem.out.println(" The result is: "+Math.asin(p.dist()));}}publi
 stati
 void main(String args[℄){ P p1n = new P();CP p1
 = new CP();CP2 p2
 = new CP2();NCP2 p2n = new NCP2();NCP2a p2na = new NCP2a();System.out.println("making 
all ms(p1n)..."); ms(p1n);System.out.println("making 
all ms(p1
)..."); ms(p1
);System.out.println("making 
all ms(p2n)..."); ms(p2n);System.out.println("making 
all ms(p2
)..."); ms(p2
);System.out.println("making 
all ms(p2na)..."); ms(p2na);}}// Appli
ation that uses P, CP, CP2, NCP2, and NCP2apubli
 
lass MPP1 {publi
 stati
 void ms(P p){ System.out.print(" Che
k to see if the result > PI/4:");if (p.dist() > 1){ p.mvx(1); // move p as spe
ifiedif (Math.asin(1/p.dist()) > (Math.PI)/4)System.out.println (" yes");elseSystem.out.println (" no");}else{ p.mvx(-0.5*p.getx()); // move p as spe
ifiedif (Math.asin(p.dist()) > (Math.PI)/4)System.out.println (" yes");elseSystem.out.println (" no");}}publi
 stati
 void main(String args[℄){ // omitted, same as the part in MPP }}C:\MyJavaPrograms\Point\movable pt problem>java MPP making 
all ms(p1n)...This is a non-
olored pointThe result is: 0.25268025514207865making 
all ms(p1
)...This is a 
olored pointThe result is: 0.3398369094541219making 
all ms(p2n)...This is a non-
olored pointThe result is: 0.40118821299725976making 
all ms(p2
)...This is a 
olored pointThe result is: 0.2810349015028136making 
all ms(p2na)...This is a non-
olored pointThe result is: NaNC:\MyJavaPrograms\Point\movable pt problem>java MPP1 making 
all ms(p1n)...Che
k to see if the result > PI/4: nomaking 
all ms(p1
)...Che
k to see if the result > PI/4: nomaking 
all ms(p2n)...Che
k to see if the result > PI/4: nomaking 
all ms(p2
)...Che
k to see if the result > PI/4: nomaking 
all ms(p2na)...Che
k to see if the result > PI/4: noFigure 4: Java 
ode of the movable point problem
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ations, Obje
t Interdependen
ies, and Obje
t Types 85Summarizing what is des
ribed in this se
tion, we 
an state the problem as follows:
• In OOP supported by 
onventional obje
t type systems, there is no way to implementprograms like ms reliably and verify its 
orre
tness.Motivated by this problem, we propose, in the subsequent se
tions, a new typing s
hemefor obje
ts.3 A Simple Typed Obje
t-Oriented LanguageTo illustrate our approa
h, we de�ne a simple typed obje
t-oriented language (TOOL) inthis se
tion.3.1 SyntaxThe terms and types of TOOL are de�ned as follows.

M ::= x | λ(x :σ).M | M1M2 | M.l | M.l⇐ ς(x :S(A))M ′

| [li = ς(x :S(A))Mi]
n
i=1

σ ::= κ | t | σ1 → σ2 | µ(t)σ | A | S(A)
A ::= ι(t)[li(Li) :σi]

n
i=1 Li ⊆ {l1, . . . , ln} for ea
h iTerms in TOOL are standard λ-terms and ς-terms [2℄. In parti
ular, [li = ς(x :

S(A))Mi]
n
i=1 represents an obje
t, M.l represents method invo
ation, and M.l⇐ ς(x :

S(A))M ′ represents method updating.Types in TOOL are standard ground type, fun
tion type, re
ursive type, and thenewly proposed obje
t type. In obje
t type ι(t)[li(Li) :σi]
n
i=1, ι is the self-type binder, ea
hmethod li has type σi, and Li is the set of links of li (de�ned in the next subse
tion). S(A)denotes the self type indu
ed by the obje
t type A. A = ι(t)[li(Li) :σi(t)]

n
i=1 if and only if

A = [li(Li) :σi(S(A))]ni=1.We provide a simple example to illustrate the syntax of types and terms. Let
A

def
= ι(t)





l1({l2, l3}) : t
l2(∅) : int

l3({l2}) : int → int



 .It spe
i�es that l1, l2, and l3 are of self type (asso
iated with A), int , and int → intrespe
tively. The sets of links for l1 and l3 are {l2, l3} and {l2}. l2 has no links. An obje
tof type A 
ould be
a

def
=





l1 = ς(s :S(A))s
l2 = 1
l3 = ς(s :S(A))λ(x : int )(x + s.l2)



 .



86 Cong-Cong Xing3.2 De�nition of LinksLinks are used to signify the stru
ture of 
omponent dependen
y of obje
ts. Informally,in obje
t type ι(t)[li(Li) : σi]
n
i=1, lj ∈ Li means that the value of method li depends(partially) on the value of method lj. The link me
hanism makes the types of obje
ts inTOOL substantially di�erent from that in 
onventional obje
t type systems.De�nition 1 (Link) Given an obje
t a = [li = ς(s : S(A))Mi]

n
i=1, (1) li is said to bedependent on lj(i 6= j) if there exists a M su
h that a.li and (a.lj ⇐ ς(s : S (A))M).lievaluate to di�erent values; (2) li is said to be dire
tly dependent on lj(i 6= j) if (a) liis dependent on lj, and (b) if all su
h lk(i 6= k, j 6= k) where li is dependent on lk and lkis dependent on lj , are removed from a, li is still dependent on lj; (3) The set of links of

li (or equivalently, of Mi with respe
t to obje
t a), denoted by L(li) (or equivalently, by
La(Mi)), 
ontains exa
tly all su
h lj on whi
h li is dire
tly dependent.Example 1 Take the obje
t a and its type A de�ned at the end of se
tion 3.1, by thede�nition of links, we see that the links of the methods in a are:

L(l1) = La(s) = {l2, l3}
L(l2) = La(1) = ∅
L(l3) = La(λ(x : int)(x + s.l2)) = {l2}whi
h mat
h the 
orresponding link spe
i�
ations in type A.4 Obje
t Type Graphs4.1 De�nitionsTo reveal the stru
ture of obje
t 
omponent interdependen
ies more 
learly and fa
ilitatethe study of obje
t subtyping and behaviors, we introdu
e a graphi
al representation ofobje
t types � obje
t type graphs. We de�ne dire
ted 
olored graphs �rst.De�nition 2 (Dire
ted Colored Graph) A dire
ted 
olored graph G is a 6-tuple

(GN , GA, C, sr, tg, c) 
onsisting of: (1) a set of nodes GN , and a set of ar
s GA; (2)a 
olor alphabet C; (3) a sour
e map sr : GA → GN , and a target map tg : GA → GN ,whi
h return the sour
e node and target node of an ar
, respe
tively; and (4) a 
olor map
c : GN ∪ GA → C, whi
h returns the 
olor of a node or an ar
.De�nition 3 (Ground Type Graph) A ground type graph is a single-node 
olored di-re
ted graph whi
h is 
olored by a ground type.De�nition 4 (Fun
tion Type Graph) A fun
tion type graph (s,G1, G2)(GN ,GA,C,sr,tg,c)is a dire
ted 
olored graph 
onsisting exa
tly of a starting node s ∈ GN , and two typegraphs G1 and G2, su
h that, (1) c(s) =→; (2) there are two ar
s asso
iated with thestarting node s, left ar
 l ∈ GA and right ar
 r ∈ GA, su
h that c(l) = in, c(r) = out;
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l 
onne
ts G1 to s by sr(l) = sG1

, tg(l) = s, and r 
onne
ts s to G2 by sr(r) = s,
tg(r) = sG2

, where sG1
and sG2

are the starting nodes of G1 and G2, respe
tively; (3)
G1 and G2 are disjoint; (4) if there is an ar
 a ∈ GA with c(a) = rec, then sr(a) = sGi

,
tg(a) = s, c(sGi

) =→, i = 1, 2.De�nition 5 (Obje
t Type Graph) An obje
t type graph (s,A,R,L, S)(GN ,GA,C,sr,tg,c)is a dire
ted 
olored graph 
onsisting exa
tly of a starting node s ∈ GN , a set of methodar
s A ⊆ GA, a set of re
-
olored ar
s R ⊆ GA, a set of link ar
s L ⊆ GA, and a set oftype graphs S, su
h that (1) c(s) = self. (2) ∀a ∈ A, sr(a) = s, tg(a) = sF for some typegraph F ∈ S, and c(a) = m for some method label m; c(a) 6= c(b) for a, b ∈ A, a 6= b. (3)
∀r ∈ R, c(r) = rec, tg(r) = s, sr(r) = sF for some F ∈ S, and c(sF ) = self. (4) ∀l ∈ L,
sr(l) = sF , tg(l) = sG for some F,G ∈ S, and c(l) = bym for some method label m.Remarks: Dire
ted 
olored graph is the foundation of graph grammar theory [10, 11,12, 13, 22℄. Obje
t type graphs are adapted from dire
ted 
olored graphs. Ground typegraphs are trivial. Fun
tion type graphs are straightforward. They need to be de�nedbe
ause an obje
t type graph may in
lude them as subgraphs. An obje
t type graph isformed by a starting node s and a set S of type graphs with ea
h F ∈ S being 
onne
tedto s by a method ar
 that goes from s to F . The starting node s is 
olored by self and isused to denote the self type. The method interdependen
ies are spe
i�ed by ar
s in L. If
L(m) is the set of links of method m, then for ea
h l ∈ L(m) there is an ar
 (
olored bybyl) that goes from l to m. Re
ursive obje
t types are spe
ially indi
ated by re
-
oloredar
s in R.For the sake of brevity, we drop the subs
ripts in (s,G1, G2)(GN ,GA,C,sr,tg,c) and
(s,A,R,L, S)(GN ,GA,C,sr,tg,c) whenever possible throughout the paper.4.2 Examples of Obje
t Type GraphsWe now provide some examples to illustrate the de�nition of obje
t type graphs.Example 2 In Figure 5, A, B, and C are the type graphs for ground types int, real, and
bool respe
tively. D is the type graph for fun
tion type int → int and E is the type graphfor (int → real) → (real → int).

int int

in
out

in
out

in out in out

int real intrealint real bool

A B C D EFigure 5: Examples of ground type graphs and fun
tion type graphs



88 Cong-Cong XingExample 3 In Figure 6, graph A denotes the obje
t type [x : int, y : int], where methods xand y are independent of ea
h other. Graph B denotes the type [x : int, y({x}) : int] where
y depends on x. Note that the dire
tion of the link ar
 in B is from x to y, (not from y to
x), signifying the fa
t that 
hanges made to method x will a�e
t method y.

x y

self
s

intint

x y

self
s

intint
byx

A BFigure 6: Examples of obje
t type graphsExample 4 In Figure 7, graph C represents the obje
t type µ(t)ι(s)[a : int, b : t, c : s].Method a is of type int; method b is of re
ursive obje
t type C. Method c is of the selftype indu
ed by the obje
t type C. Note the stru
tural di�eren
e between the type of band the type of c revealed in the type graph4. Graph D represents the type of a simpli�ed1-d movable point [x = 1,mvx = ς(s :S(D))λ(i : int)(s.x⇐ s.x + i)]. The fa
ts that mvxdepends on x and returns a modi�ed self are indi
ated by the byx-
olored ar
 and theout-
olored ar
 in D.
a

b

self

selfint

x mvx

self
s

int
byx

A B

c

rec

int
in

out

Figure 7: Examples of obje
t type graphsExample 5 Two more obje
t type graphs are shown in Figure 8. They are the types ofsome variations of point obje
ts. Graph A is the type of the obje
t




x = 1,
m1 = ς(s :S(A))λ(i : int)p
m2 = ς(s :S(A))λ(i : int)s



4This stru
tural setting, potentially, will allow the type of c to remain as self type and the type of b tobe 
hanged after some operations on graph C are performed.
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t Types 89where p is some point obje
t of type A. Graph B is the type of the obje
t












x = 1
y = 2
d = ς(s :S(B))(s.x + s.y)/2
e1 = ς(s :S(B))λ(p :B)(p.x = s.x ∧ p.y = s.y)
e2 = ς(s :S(B))λ(p :S(B))(p.x = s.x ∧ p.y = s.y)













.

m1 m2

self

A

x

rec

selfint int

int

in
out in

out

byx

self

B

rec

real

intint

inout

in

out
bool boolself

x y

d

e1 e2

byx

byx

byx byy

byy

byy

bym1

Figure 8: Examples of obje
t type graphs5 Obje
t Typing/Subtyping Under OTGWe now investigate the issue of typing/subtyping under OTG. We �rst de�ne obje
t sub-typing through a series of de�nitions and then present the typing/subtyping rules with abrief dis
ussion. Note that OTG is just another way (a graphi
al way, spe
i�
ally) to rep-resent obje
t types. There is a natural 1-1 
orresponden
e between OTG and the normaltextual representations of obje
t types in TOOL. So the typing rules presented in thisse
tion naturally apply to obje
t type graphs. What makes OTG signi�
ant is its fa
ilita-tion of the formulation of obje
t subtyping with the presen
e of links in obje
t types (asaddressed below).De�nition 6 (Type Graph Premorphism) Let Φ be the set of ground types. Given twotype graphs G = (GN , GA, C, sr, tg, c) and G′ = (G′

N , G′

A, C ′, sr′, tg′, c′), a type graphpremorphism f : G → G′ is a pair of maps (fN : GN → G′

N , fA : GA → G′

A), su
h that(1) ∀a ∈ GA, fN (sr(a)) = sr′(fA(a)), fN(tg(a)) = tg′(fA(a)), and c(a) = c′(fA(a)); (2)
∀v ∈ GN , if c(v) ∈ Φ, then c′(fN (v)) ∈ Φ; otherwise c(v) = c′(fN (v)).De�nition 7 (Base, Subbase) Given an obje
t type graph G = (s,A,R,L, S). The baseof G, denoted by Ba(G), is the graph (s,A, t(A), L), where t(A) = {tg(a) | a ∈ A}.A subbase of G is a subgraph (s,A′, t(A′), L′) of Ba(G), where A′ ⊆ A, L′ ⊆ L, t(A′) =
{tg(a) | a ∈ A′}, and for ea
h l ∈ L′ there exist a1, a2 ∈ A′ su
h that sr(l) = tg(a1) and
tg(l) = tg(a2).
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self

x
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zu

int

intselfint

int
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in

out

m

n

byx

byz

byy

self

u x

int
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u
x

int
byx

y

byxbyy

(a)     G

byx
self

x

y

zu

int

intself

byx

byz

byybyx

self

(b)    Ba(G) (c)    D (d)    Cl(D)Figure 9: (a) An obje
t type graph G; (b) The base Ba(G) of G;(
) A subbase D of G; (d) The 
losure Cl(D)De�nition 8 (Closure, Closed) The 
losure of a subbase D = (s,A′, t(A′), L′) of anobje
t type graph G = (s,A,R,L, S), denoted by Cl(D), is the union D∪E1∪E2, where (1)
E1 = {l ∈ L | ∃a1, a2 ∈ A′ with tg(a1) = sr(l), tg(a2) = tg(l)}, and (2) E2 = {l, h, a, t(l) |
l, h ∈ L, a ∈ A, a 6∈ A′, tg(l) = sr(h) = tg(a), and ∃a1, a2 ∈ A′ su
h that tg(a1) =
sr(l), tg(a2) = tg(h)}. A subbase D is said to be 
losed if D = Cl(D).De�nition 9 (Covariant, Invariant) Given an obje
t type graph (s,A,R,L, S). Let t(A) =
{tg(a) | a ∈ A}. For ea
h v ∈ t(A), if v is not in
ident with any links, or if v is the targetnode of some links but not the sour
e node of any links, then v is said to be 
ovariant;otherwise, v is said to be invariant.De�nition 10 (Obje
t Subtyping) Given two obje
t type graphs G = (sG, AG, ∅, LG, SG)and F = (sF , AF , ∅, LF , SF ). F <: G if and only if the following 
onditions are satis�ed: (1)There exists a premorphism f from Ba(G) to Ba(F ) su
h that f(Ba(G)) = Cl(f(Ba(G))).That is, f(Ba(G)) is 
losed. (2) For ea
h node v in f(Ba(G)), let u be its preimage in
Ba(G) under f , Fv ∈ SF be the type graph with v as its starting node, and Gu ∈ SG bethe type graph with u as its starting node. (i) If v is invariant, then Fv

∼= Gu. (ii) If v is
ovariant, then Fv <: Gu.Remarks: Type graph premorphism is adapted from graph morphism whi
h is afundamental 
on
ept in algebrai
 graph grammars [13, 10, 22, 11, 12℄. It preserves thedire
tions and 
olors of ar
s and the 
olors of nodes up to ground types. The base of anobje
t type graph singles the method interdependen
y information out of the entire obje
ttype graph so that the stru
ture of the method interdependen
ies 
an be better studied.The 
losure of a subbase 
aptures the 
omplete behavior of the subbase by in
luding, inaddition to all methods and links in the subbase, a set E2 of methods (and asso
iatedlinks) outside of the subbase in the following way: for any method l in E2, (1) l dependson some methods inside the subbase, and (2) there exist some methods inside the subbasethat depend on l. An example of base, subbase, and 
losure is shown in Figure 9. Obje
tsubtyping is de�ned using the ideas of type graph premorphism, base, subbase, 
losure, andvarian
e property. It �rst ensures that the behavior of a subobje
t (indi
ated by methodinterdependen
ies) is the same as that of a superobje
t through the 
losure requirement.
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t Types 91Then, it uses the varian
e information of ea
h method to 
he
k the subtyping feasibility ofea
h method type (graph) in a subobje
t with its 
ounterpart in a superobje
t5. Note thatin the de�nition of obje
t subtyping, we only 
onsider the 
ase R = ∅ (i.e., no re
ursiveobje
t types). The 
ase R 6= ∅ requires 
ompli
ated graph grammar operations and isbeyond the s
ope of this paper.The typing/subtyping rules of TOOL are shown in Table 1. The rules that are a�e
tedby links are (TObj) and (TUpd). Note that in these rules, the set of links 
omputed fromterms are 
he
ked against the set of links spe
i�ed in types.
∅ � ⋄

(TC∅) Γ � σ x 6∈ dom(Γ)

Γ, x :σ � ⋄
(TCVar) Γ � M : σ x 6∈ dom(Γ)

Γ, x :τ � M : σ
(Tx)

Γ � ⋄

Γ � κ
(TyCons) Γ � σ Γ � τ

Γ � σ → τ
(TyFun)

Γ � σi ∀i ∈ {1, . . . , n}

Γ � ι(t)[li(Li) :σi(t)]ni=1

(TyObj, Li ⊆ {l1, . . . , ln} for ea
h i)

Γ � ⋄ x :σ ∈ Γ

Γ � x :σ
(TVar) Γ, x :σ � M :τ

Γ � λ(x :σ).M : σ → τ
(TAbs) Γ � M :σ → τ Γ � N :σ

Γ � MN : τ
(TApp)

Γ, s :S(A) � Mi :σi Li = La(Mi) ∀i ∈ {1, . . . , n}

Γ � a : A
(TObj, a = [li = ς(s :S(A))Mi]

n
i=1

A = ι(t)[li(Li) :σi(t)]
n
i=1

)

Γ � M : A j ∈ {1, . . . , n}

Γ � M.lj : σj(A)
(TInv1, A = ι(t)[li(Li) :σi(t)]

n
i=1 = [li(Li) :σi(S(A))]ni=1)

Γ � s : S(A) j ∈ {1, . . . , n}

Γ � s.lj : σj(A)
(TInv2, A = ι(t)[li(Li) :σi(t)]

n
i=1 = [li(Li) :σi(S(A))]ni=1)

Γ � N :A Γ, s :S(A) � M :σi Li = LN (M) i ∈ {1, . . . , n}

Γ � N.li⇐ ς(s :S(A))M : A
(TUpd, A = ι(t)[li(Li) :σi(t)]

n
i=1)

Γ � σ

Γ � σ <: σ
(SRe�) Γ � σ <: τ Γ � τ <: δ

Γ � σ <: δ
(STran) Γ � a :A Γ � A <: B

Γ � a :B
(SSump)

Γ � σ′ <: σ Γ � τ <: τ ′

Γ � σ → τ <: σ′ → τ ′
(SFun)

Γ � GA <: GB

Γ � A <: B
(SObj, GA and GB are the OTGs of A and B respe
tively

A = ι(t)[li(Li) :σi(t)]
n
i=1, B = ι(t)[l′i(L

′

i) :σ′

i(t)]
n′

i=1

)Table 1: Typing and subtyping rules for TOOLWe would like to emphasize that the purpose of obje
t type graphs is to fa
ilitatethe formulation and reasoning of obje
t subtyping when method interdependen
ies are
onsidered in obje
t types. This 
an be seen in the obje
t subtyping rule (SObj) wherethe determination of A <: B for obje
t types A and B depends on whether their obje
ttype graphs GA and GB have a subtyping relationship whi
h, in turn, 
an be de
ided by5Ground subtyping and fun
tion subtyping whi
h are involved in obje
t subtyping are standard as inthe literature.



92 Cong-Cong Xingthe De�nition 10. (De�nition 10 suggests an immediate algorithm for how to 
ompute
GA <: GB .)6 Veri�
ation of the Program ms under OTGWe have shown, in se
tion 2, that under 
onventional obje
t type systems, there is no wayto 
ode the fun
tion ms satisfa
torily in the sense that we are unable to prove that msperforms to its spe
i�
ation for all permissible arguments. In this se
tion, we show thatthis problem 
an be easily resolved under OTG typing/subtyping. That is, we show that
ms 
an be 
oded reliably under OTG typing/subtyping and prove that it performs to itsspe
i�
ation in all situations.Given the 
ode of ms in Figure 3 and under the OTG notation, the type of the point
p1n (whi
h is also the type of the parameter in the fun
tion ms) and the type of the point
p′2n are depi
ted as P and Q′

2n in Figure 106. Let f be the premorphism from base Ba(P )to base Ba(Q′

2n), f(Ba(P )) and its 
losure Cl(f(Ba(P ))) are also shown in Figure 10. Bythe OTG obje
t subtyping de�nition (De�nition 10), we 
an see that Q′

2n 6<: P be
ause
f(Ba(P )) 6= Cl(f(Ba(P ))) (i.e., f(Ba(P )) is not 
losed). Hen
e, p′2n 
annot be viewedas having type P and ms(p′2n) does not type-
he
k. The run-time error of ms(p′2n) istherefore prevented by type 
he
king at 
ompile-time. Hen
e, the 
ode of ms in Figure 3is safe under the OTG typing/subtyping.
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real self
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mvx

byx byy

real

real realself

byx

byx

f(Ba(P)) Cl(f(Ba(P )))Figure 10: Resolution of the movable point problem in OTGTo fully revisit of the movable point problem in the 
ontext of OTG, the type graphsof p1c, p2c, and p2n are depi
ted in Figure 11 as Q1c, Q2c, and Q2n, respe
tively. We 
aneasily 
he
k, using De�nition 10, that Q1c <: P , Q2c <: P , and Q2n <: P all hold. Thisshows that the desired exe
utions ms(p1c), ms(p2c), and ms(p2n) are all supported byOTG typing/subtyping s
heme.From Figure 10 and Figure 11, we see that the type of p′2n and the type of p2n aredi�erent under OTG (as opposed to the same in 
onventional type systems). The fa
t thatmethod y depends on method x in p′2n and method y does not depend on method x in
p2n (i.e., p2n and p′2n have di�erent behaviors) is faithfully 
aptured in their type graphs6For the sake of 
on
iseness, some unimportant links that do not a�e
t the result of illustration, su
has the link from method dist to method mvx, are not shown in Figure 10.
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Figure 11: Types of p1c, p2c, and p2n in OTGas the presen
e/absen
e of a link from method x to method y. Indeed, this distin
tionis ne
essary in order to prevent run-time errors su
h as those 
aused by ms(p′2n). Thisobservation leads to the following proposition.Proposition 1 Let A be the type of an obje
t a in whi
h there is a link between method
x and method y. Let B be the type of an obje
t b whi
h is modi�ed from a by deleting thelink between method x and method y. Then A 6= B.Also note that in Figure 10 and Figure 11, we have Q′

2n 6<: Q2n (we 
an easily verifythis by De�nition 10). This disallowan
e of subtyping is also ne
essary in order to stati
allyprevent similar run-time errors 
aused by ms(p′2n). Thus,Proposition 2 Let A and B be as spe
i�ed in Proposition 1. Then A 6<: B.We now show the 
orre
tness of ms in Figure 3 under the OTG typing s
heme. Weassume that all arguments (1-d points, 2-d points, . . .) submitted to ms are �
orre
tly�
oded. In parti
ular, if p is an n-dimensional point with 
oordinates x1, . . . , xn, thenits method dist must have √

x2
1 + · · · + x2

n as the body; and its method mvx must have
λ(i :real )s.x⇐(s.x + i) as the body; how other methods in p are 
oded is irrelevant to theproof. This is a reasonable assumption, for if p is 
oded �in
orre
tly� or arbitrarily (say,
p's dist body is √

x2
1 + 4x2

2 + · · · + n2x2
n), then there would be no way to expe
t what kindof behavior ms 
an have with p as its argument.To fa
ilitate the proof, we rewrite the fun
tional program ms in Figure 3 equivalentlyinto an imperative one in Figure 12, where a holds the 
omputation result. We would liketo prove, under the framework of Hoare logi
 (e.g. [16, 17℄), that the two Hoare triples

(|p.dist > 1 ∧ p :P |)ms(p)(|p.dist > 1 ∧ p :P |)
(|p.dist ≤ 1 ∧ p :P |)ms(p)(|p.dist ≤ 1 ∧ p :P |)are valid for any point p of type P in Figure 10. The �rst triple spe
i�es that ms keepsa 
olored point in the 
olored point area after moving it. The se
ond triple spe
i�es that

ms keeps a non-
olored point in the non-
olored point area after moving it. Before provingthe validity of the triples, we prove a lemma �rst. Let 
olored points and non-
oloredpoints be de�ned as in se
tion 2, we 
an show that
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ms

def
= fun(p : P ) {
real a;if (p.dist > 1){

p.mvx(δ); // δ > 0
a = sin-1(1/p.dist);}else {
p.mvx(−1

2p.x);
a = sin-1(p.dist);}}Figure 12: The imperative version of the program ms .Lemma 1 Given an n-dimensional point p, if p is a non-
olored point and is of type Pin Figure 10, then after being moved, along the x-axis and towards the origin, half of theproje
tion of the distan
e from the origin to p's 
urrent position over the x-axis, p is stillin the non-
olored point area in the spa
e.Proof: Without loss of generality, we assume that the 
oordinates of p are x1, x2, . . . , xn(n > 1) with x1 being the x-
oordinate, x2 being the y-
oordinate, . . .. Sin
e p is a non-
olored point, we have √

x2
1 + · · · + x2

n ≤ 1. After p is moved as spe
i�ed, its x-
oordinatewould be 
hanged to 1
2x1. Sin
e p is n-dimensional and n > 1, the a
tual type of p mustbe a subtype of P . By the de�nition of OTG subtyping (De�nition 10), we know that the

x-
oordinate 
hange of p will not a�e
t any other 
oordinates x2, · · · , xn of p be
ause all
x2, · · · , xn o

ur in the method dist of p and dist appears in type P 7. Thus, x2, . . . , xnall retain their old values after p's move. Therefore, the distan
e from the origin to thenew position of p is √

( 1

2
x1)2 + x2

2
+ · · · + x2

n <
√

x2

1
+ x2

2
+ · · · + x2

n ≤ 1, indi
ating the p is stillin the non-
olored point area. 2The validity of the se
ond Hoare triple is given in Theorem 1 below. The proof of the�rst Hoare triple is similar and omitted.Theorem 1 Given the program ms in Figure 12, the Hoare triple
(|p.dist ≤ 1 ∧ p :P |)ms(p)(|p.dist ≤ 1 ∧ p :P |)is valid.Proof: The proof, shown in Figure 13, is an appli
ation of the standard imperative programveri�
ation rules (see e.g. [17℄). In Figure 13, p.d and p.m stand for p.dist and p.mvx , and

A, B, C, D, E, F , G stand for the following triples respe
tively:7Here is a subtle point indi
ated by the OTG obje
t subtyping: if any of the 
oordinates x2, . . . , xn,say xi, does not o

ur in method dist (or in any other method in
luded in type P ), then we allow xi bea�e
ted by the 
hanges of x1 while requiring that the type of p is a subtype of type P .
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(|p.d ≤ 1 ∧ p : P |){p.m(−1

2p.x)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P |){a = sin-1(p.d)}(|p.d ≤ 1 ∧ p : P |),
(| ⊥ |){p.m(δ); a = sin-1(1/p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P |){p.m(−1

2p.x); a = sin-1(p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P ∧ p.d > 1|){p.m(δ); a = sin-1(1/p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P ∧ p.d ≤ 1|){p.m(−1

2p.x); a = sin-1(p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P |)ms(p)(|p.d ≤ 1 ∧ p : P |).The validity of triple A on the top of the proof tree is provided by Lemma 1. 2

C

E
(impli
ation) A

(Lemma 1)
B
(assignment)

D
(
omposition)

F
(impli
ation)

G
(if-statement)Figure 13: The proof of ms's property7 Con
lusion and Future WorkTyping is an e�
ient means in program veri�
ations. Obje
t 
omponent interdependen
yinformation is 
riti
al in determining and predi
ting obje
t behaviors and in shaping obje
ttypes. If this information is not 
aptured in obje
t typing, as is the 
ase in 
onventionalobje
t type systems, then a stati
ally well-typed program may go wrong at run-time 
ausingrun-time errors and program veri�
ation troubles. We proposed obje
t type graphs (OTG)as an initial treatment for handling obje
t 
omponent interdependen
ies in obje
t typingand program veri�
ations. We have seen that due to OTG's ability of revealing moreinformation about obje
t behaviors,

• Programs that go wrong at run-time in 
onventional obje
t type systems 
an bee�e
tively dete
ted at 
ompile-time under OTG typing/subtyping.
• Program veri�
ations that 
annot be done with 
onventional obje
t type systems 
anbe easily 
arried out with the support of OTG typing/subtyping.This demonstrates that OTG is a safer typing s
heme than 
onventional ones, andprovides a valuable support for OOP program veri�
ations. The following issues are ofimmediate interests for future work:
• Devise a link 
omputation algorithm and assess its 
omplexity.
• Prove/disprove that the standard properties of type systems, su
h as subje
t redu
-tion and soundness, hold under OTG.
• As far as applying the idea of OTG to pra
ti
al obje
t-oriented languages is 
on-
erned, we believe that a dire
t approa
h would be to adapt OCaml [1℄ by modifyingits type for 
lasses. In�uen
ed by OOP theory resear
h, O
aml, unlike other obje
t-oriented languages (e.g. Java) where 
lasses are the sole type of obje
ts, gives a type
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h of its 
lasses. In a sense, the type of a 
lass in OCaml is the (more abstra
t)type of the obje
t generated by that 
lass. This is a typi
al 
ase where pra
ti
e ben-e�ts from theory, and it would be very interesting to keep extending OCaml alongthis line.Referen
es[1℄ http://
aml.inria.fr/o
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