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This study applies a skew ray tracing approach based on a 4×4 homogeneous coordinate
transformation matrix and Snell’s law to analyze the errors of a ray light path as it passes through
a series of optical elements in an asymmetrical optical system. The proposed error analysis
methodology considers two principal sources of a light path error, namely: i ) the translational
errors and the rotational errors which determine the deviation of the light path at each boundary
surface, and ii ) the differential changes induced in the incident point position and unit directional
vector of the refracted/reflected ray as a result of differential changes in the position and unit
directional vector of the light source. The validity of the proposed methodology is verified by
analyzing the effects of optical errors in a corner cube.
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1. Introduction 
Geometric optics not only helps understand the characters of optics and the functions
of an optical system, but, more importantly, also provides the knowledge on lenses de-
sign. Traditional optic design focuses on the elements of geometric optics. The image
quality is to be computed posterior to the design of a lens system in order to assure
the design requirements are met. The quality of the image is determined by aberration,
energy distribution, and optical transfer function (OTF) [1, 2]. Following the compu-
tation of image quality, optimization analysis is conducted. There are two kinds of op-
timization, namely, local optimization and global optimization. The local optimization
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is more popular as it only acquires a local minimum. Contrarily, the global optimization
requires complicated calculations and consumes time because the global minimum is
considered. Theoretically, the optical design including the design of a lens system,
analysis of the image quality, and optimization design is based on the assumption that
there is no error due to manufacturing process. However, it has been acknowledged
that errors including the material, radius of curvature, and flatness of a lens, and tilt
and decenter flaws, affect the image quality of a lens system when the lens system is
assembled [3–5]. It is thus important to consider the design with the requirements of
mechanical and other associated conditions.

There are numerous references on the design and analysis of an optical system [6, 7].
Applications based on relevant theories and principles to the design of instruments of
the optical system are available [8, 9]. In light of accompanying new problems and sys-
tems that continuously spill out as the era progresses and that mathematical computa-
tions might not match the observed image, it is necessary to construct a transferring
tool between theories and experiments. The assessment of image quality, either the in-
terpretation of image resolution, image aberration, or OTF, is expected to stand on
the theoretical principles so that better and faster measures to designs and analyzes can
be achieved.

Evaluating the performance of an optical system during its theoretical design stage
requires the ability to determine the paths of the light rays as they undergo reflection
and refraction at the boundaries of various optical elements within the system. The light
path can be determined using some form of the ray tracing technique, in which the op-
tical laws of reflection and refraction are systematically applied at each boundary en-
countered by the light ray [10]. The light rays within an optical system can be classified
as either axial, meridional or skew [11]. Skew rays, which represent the most general
type of a ray, are far more difficult to trace. Nonetheless, without tracing their paths,
it is impossible to model optical systems with any degree of reliability or to evaluate
their performance. To facilitate the tracing of skew rays, PSANG DAIN LIN [12] refor-
mulated the traditional optical laws of reflection and refraction in terms of revolution
geometry, and then conducted a sensitivity analysis based on a skew ray tracing ap-
proach to determine the changes in a light ray path as it crossed the boundary between
different media.

In the differential ray tracing process, the effects of each optical component are
evaluated by differentiating the equations relating the configuration of the rays before
and after their transformation at the component surface [13–15]. Such ray tracing ap-
proaches enable to assess the sensitivity of an optical system to the design or to man-
ufacturing flaws by correlating the differential changes in the reflected or refracted rays
with the differential changes in the incident rays [16, 17]. In their previous work,
the authors applied error analysis methods to analyze the errors of a ray’s light path
as it passes through optical elements with flat [18] and spherical boundary surfaces [19].
The present work extends our previous work to applying the mathematical tools to ana-
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lyze the errors of a ray’s light path as it passes through an axis-symmetrical optical
system composed of a series of optical elements with flat and spherical boundary sur-
faces. The validity of the proposed methodology is verified by analyzing the effects
of optical errors in the Petzval lens.

In the analysis presented in this paper, the position vector Pixi + Piyj + Pizk in
3D-space is written in the form of a column matrix jPi = [Pix Piy Piz 1]T, where the
pre-superscript j of the leading symbol jPi indicates that the vector is referred with re-
spect to the coordinate frame (xyz)j. Given a point jPi, its transformation kPi is repre-
sented by the matrix product kPi =  kAj 

jPi, where kAj is a 4×4 matrix defining the
position and orientation (referred to hereafter as the configuration) of a frame (xyz)j
with respect to another frame (xyz)k [20]. The same notation rules are also applied to the
unit directional vector ji = [ix iy iz 0]T. Note that for vectors referred to the world
frame (xyz)0, the pre-superscript 0 is omitted for convenience.

2. Skew ray tracing and error analysis 
at optical boundary surfaces

When performing a geometrical analysis of the performance of an optical system, it is
first necessary to define the boundary surfaces within the system in terms of its respec-
tive revolution geometries. A ray tracing technique can then be used to determine
the paths followed by the skew rays as they undergo successive reflection and refrac-
tion operations at various optical surfaces which they encounter as they travel through
the system. As shown in Fig. 1, the boundary surface iri of an optical element can be
obtained by rotating the generating line ihi in the xi yi plane about the yi axis, i.e.,

(1)

where rot( yi , αi ) is the rotation transformation matrix about the yi axis. 

ri i rot yi αi,( ) h
i

i Ri αi( )cos βi( )cos Ri βi( )sin R– i αi( )sin βi( )cos 1[ ]T
= =

Fig. 1. Medium boundary surface formed by rotating surface geometry.
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The unit normal ini to this boundary surface is given by 

(2)

where the value of si is specified as either +1 or –1 such that the cosine of the incident
angle has a positive value, i.e., cos(θ ) > 0. 

Note that iri and ini are both expressed with respect to the boundary coordinate
frame (xyz)j. The configuration of the world frame (xyz)0 with respect to the boundary
coordinate frame is given by

(3)

where the vectors [Iix Iiy Iiz 0]T, [Jix Jiy Jiz 0]T and [Kix Kiy Kiz 0]T describe
the orientation of the three unit vectors of frame (xyz)0 with respect to frame (xyz)i.
Vector [tix tiy tiz 1]T is the position vector of the origin of frame (xyz)0 with
respect to frame (xyz)i. The unit normal with respect to the world frame, i.e. ni, can
be obtained as

(4)

Figure 2 shows the general case where a light ray originating at point Pi – 1 =
= [Pi – 1x Pi – 1y Pi – 1z 1]T and directed along a unit directional vector i – 1 = [i – 1x

ni i si βi( )cos αi( )cos βi( )sin βi( )cos αi( )sin 0[ ]–
T

=
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Fig. 2. Skew ray tracing at medium boundary surface iri.
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i – 1y i – 1z 0]T is reflected/refracted at an optical medium boundary surface iri.
The incident point Pi, refracted ray i, and reflected ray i are given by [21]:

(5)

(6)

(7)

where λi is the magnitude of vector Pi – 1Pi. The angle of incidence θi is given by

(8)

Note that the term Ni in Eq. (6) is defined as Ni = ξmedium, i – 1/ξmedium, i and repre-
sents the ratio of the refractive index of medium i – 1 to that of medium i. Following
refraction (reflection), the light ray proceeds with point Pi as its new point of origin
and i as its new unit directional vector.

In optical systems, errors inevitably exist between the designed position and ori-
entation of the optical elements and the actual position and orientation of these ele-
ments. In analyzing these errors, the relative positions and orientations of the world
frame (xyz)0 with respect to the ideal frame (xyz)i and the actual frame (xyz)a can be
expressed respectively as 

(9)
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The position and orientation errors of any element within the optical system can
be described in terms of three translational errors of the origin of frame (xyz)a, i.e.,
Δxi, Δyi, and Δzi, and three rotational errors of the three axes of frame (xyz)a with re-
spect to frame (xyz)i , i.e., Δω ix , Δω iy , and Δω iz [18]. The overall effect of these six
errors can be mathematically expressed using a matrix iAa of the form

iAa = trans(Δxi, Δyi, Δzi)rot(z, Δω iz )rot(y, Δω iy )rot(x, Δω ix ) (10)

Since in an optical system, the translational and rotational errors are small, Eq. (10)
can be approximated by the first-order Taylor series expansion and rewritten in the form

(11)

Applying the assumption of  it can be shown that

(12)

Furthermore, differentiating Eqs. (5), (6), and (7), it can be shown that the differ-
ential changes in the incident point position ΔPi, Δi, and vector Δi are respectively
given by:

(13)
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Combining Eqs. (13), (14), and (15), the differential changes in ΔPi and the re-
fracted (reflected) ray unit directional vectors Δi (Δi) can be derived as

(16)

where [ei ] = [Δxi Δyi Δzi Δωix Δωiy Δωiz]
T. The corresponding light path error

induced at the (n – 1)-th boundary surface can then be determined from

(17)

In Equation (17), Mi (i = 1 to n – 1) is an error analysis matrix of the i-th boundary
surface ri that can be used to analyze the variation of the exit ray of the optical system.
Moreover, Mi combines the ray path errors at the i-th boundary surface (i.e., three
translational errors and three rotational errors) with the differential changes induced
in the reflected/refracted ray unit directional vector and incident point by differential
changes in the light source and unit directional vector of the incident ray. 

3. Error analysis of asymmetrical optical system

This section demonstrates the validity of the proposed error analysis methodology
using the case of a solid glass corner-cube retroreflector for illustration purposes.
A homogeneous solid glass corner-cube has the unique ability to refract and reflect
a light ray in directions precisely parallel to that of the incoming ray irrespective of its
alignment. The refract and reflect planes for the corner-cube have different optical axis.
This particular property of the corner-cubes has been widely applied in the develop-
ment of safety reflectors and laser tracking measurement systems [22]. In precision
measurement applications, the orientation of the incoming ray with respect to the cor-
ner-cube must remain constant in order to prevent measurement errors induced by dif-
ferences in the optical path length [16]. 

In verifying the proposed error analysis methodology, the boundary surfaces of
the solid glass corner-cube are labeled sequentially from 2 to 6 and the coordinate
frame (xyz)i is assigned to the i-th (i = 2 to 6) boundary (see Fig. 3). The relative po-
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sition and orientation of the world frame (xyz)0 with respect to frame (xyz)2 ((xyz)6)
can then be expressed by the following 4×4 homogeneous transformation matrices:

(18)

where d is the length of the cube edge. The unit directional vector of the incoming ray
is given by 

(19)

where β is the polar angle between the x2 axis and the incoming ray 1, and α is
the polar angle between the normal of the aperture surface and 1. The impingement
point of the incoming ray on the aperture surface (boundary surface 2) is defined as
P2 = [P2x P2y P2z 1]T, where P2x + P2y + P2z = 2d and 0 ≤ P2x ≤ d, 0 ≤ P2y ≤ d, and
0 ≤ P2z ≤ d. 
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Fig. 3. Coordinate frames used to define flat boundary surface of solid glass corner-cube.
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The path of the refracted ray 2 can then be determined by applying skew ray tracing
at the point where the incident ray 1 passes through the boundary surface 2. The re-
fracted unit directional vector 2 is therefore given by

(20)

where N2 = 1/ξ2 is the relative refractive index of air, ξ1 = 1, with respect to that of
the glass constituting the solid corner cube, i.e. ξ2. Skew ray tracing can then be used
at each of the other boundary surfaces to determine the corresponding refracted/re-
flected rays i (i) and incident points Pi (i = 3 to 6).

In the following discussions, the proposed error analysis methodology is used to
determine the differential change in the incident point on the boundary surface 6, ΔP6,
and the corresponding differential change in the unit directional vector of the refracted
ray Δ6 induced by the configuration deviation of the three reflective boundary surfaces
of a corner-cube. 

A solid glass corner-cube comprises four boundary surfaces, each of which has
a unique position and orientation. In discussing ray tracing within a corner-cube, it is
necessary to emphasize an unusual feature of the corner-cube which distinguishes it
from other optical systems, namely that all the three of its reflective boundary surfaces
face the ray 2 simultaneously, and thus anyone of these surfaces may be the first to
encounter the ray. In a previous study [16], the current group considered the case where
the internally-reflected 2 light ray followed paths (3 → 4 → 5) or (5 → 3 → 4), for
example. By contrast, the following analysis assumes a path sequence of 2 → 3 →
→ 4 → 5 → 6. From Eq. (17), the error of an exit ray, e.g. [ΔP6 Δ6]T, can be ana-
lyzed in terms of the deviations of the light ray in each of the six degrees of freedom
with respect to the coordinate frame on the i-th (i = 2 to 6) boundary surface, i.e.
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(21)

The error analysis matrix Mi has the form

i = 3 to 5 (22)

The following discussions analyze the differential changes in the position and ori-
entation of an exit ray [ΔP6 Δ6]T in terms of the differential changes in the transla-
tional errors and rotational errors, respectively, at each of the three reflective boundary
surfaces of the corner-cube. In general, the translational errors Δxi and Δyi and the ro-
tational error Δωiz do not influence the position of the exit ray, and hence the variations
∂P6/∂xi, ∂P6/∂yi, and ∂P6/∂ωiz (i = 3 to 5) are equal to zero. Figure 4 illustrates the var-
iation of ∂P6/∂zi (∂P6/∂zi = (∂P6x /∂zi + ∂P6y /∂zi + ∂P6z /∂zi)1/2, i = 3 to 5) with changes
in the polar angle of the incoming ray α for constant P2x = 0.8d, P2y = 0.75d,
P2z = 0.45d, ξ2 = 1.6 and different β = 90°, β = 95°. The results show that variations
in the translation error Δzi have a comparatively pronounced effect on the variation of
the incident point position on the boundary surface 6, P6. Figure 4 shows that when
β = 90°, reflect planes 4 and 5 have the same effect on the deviation of exit point P6. 

Figure 5 demonstrates the effect of the rotational error Δωix on the differential
change in ∂P6/∂ωix (∂P6/∂ωix = (∂P6x /∂ωix + ∂P6y /∂ωix + ∂P6z /∂ωix)1/2, i = 3 to 5) for
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different values of the polar angle α  with β = 90°, β = 95°. Compared to the translation
error Δzi it is apparent that changes in the rotational error have a more marked effect
on the changes induced in the position of the ray exiting the corner-cube from the
boundary surface 6. 

The normal directions of the three reflective surfaces are independent of the trans-
lational errors and rotational error of the z-axis at each surface, and hence the direction
of the reflected ray is unchanged during the reflection process. As a result, the varia-
tions of ∂6/∂xi, ∂6/∂yi, ∂6/∂zi and ∂6/∂ωiz (i = 3 to 5) are equal to zero. Figure 6
shows the effects of the rotational error Δωix at each of the three reflective surfaces
on the differential change of the unit directional vector at the boundary surface 6, i.e.
∂6/∂ωix (∂6/∂ωix = (∂6x /∂ωix + ∂6y /∂ωix + ∂6z /∂ωix)1/2, i = 3 to 5) for different val-
ues of the polar angle α , β = 90°, β = 95°.

In general, Figs. 4 to 6 demonstrate that deviations of the incident position and
orientation of the light ray at the reflective boundary surfaces of a corner-cube lead to
deviations in the position and orientation of the light ray at the exit surface. In practical
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terms, the present results indicate that in precision measurement applications, a con-
stant orientation must be maintained between the incoming ray and the corner-tube,
and the three reflective boundary surfaces must be arranged mutually perpendicular
to one another in order to prevent measurement errors induced by differences in the
optical path length and differential changes in the position and orientation of the exit
ray, respectively.

4. Conclusion
The performance of an optical system is limited not only by image aberrations induced
by the individual components within the system, but also by assembly errors introduced
during its construction. The validity of the proposed methodology has been demon-
strated by analyzing the asymmetrical corner-cube retroreflector. The methodology
considers two fundamental sources of error, namely i) the translational errors (Δxi, Δyi,
and Δzi) and rotational errors (Δωix, Δωiy, and Δωiz) which govern the deviation of
the light path at each boundary surface; and ii) the differential changes in the incident
point and unit directional vector of the refracted/reflected ray as a result of differential
changes in the position and unit directional vector of the light source. When the incident
light unit direction vector is different at different angles α and β  for a corner cube,
the effect of the translation and rotation error for the optical component boundary on
the deviation of the position and direction for an exit light is different. The results in
this paper show that manufacturing error and assembling error will affect the perfor-
mance of optical systems, and reduce the precision of optical systems.
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