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In-plane displacement field and refractive index variation for silicon and germanium in the presence
of Lamb wave is estimated for optical applications. The required dispersion equation in a thin
silicon and germanium plates is obtained using the method of potentials with boundary conditions
involving the bulk and surface stress of the materials considered. The eigen-values thus obtained
are used to compute the Lamb wave modes for the slab of silicon and germanium at same thickness.
The fundamental anti-symmetric and symmetric plate modes and their overtones are observed due
to confinement of acoustic energy within the slab thickness. In addition, the excited symmetric
modes in silicon have longer wavelengths than those of germanium at a fixed frequency. Therefore,
the refractive index modulation through the Lamb wave in silicon is always larger as compared to
that of germanium. This refractive index modulation can be treated as periodic sinusoidal refractive
index variation and may be considered as a tunable one-dimensional photonics crystal.

Keywords: dispersion relation, Lamb wave mode in silicon and germanium, displacement field, refractive
index modulation.

1. Introduction

Light is used in a variety of devices and instruments in modern times such as to sense,
process and store information efc. On the other hand, the application of photonics band
gap (PBG) materials has drawn much attraction in recent years [ 1]. The working status
of many optical devices based on PBG, such as optical modulators [2], optical filters [3],
and optical biosensors [4] is dependent on the refractive index modulation of such ar-
tificial materials during operation. Refractive index (RI) of the light propagating in a me-
dium is a most fundamental property; and materials with dynamic control of RI may
be able to create devices like tuneable filters, shutter, attenuate, phase shift optical sig-
nals etc. Active control of modulation in RI of submicron dielectric films is the key-
stone in photonic crystal-based devices. Acoustic modes modulate dielectric constants
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in both the spatial and time domains of dielectric media so that polarization and inten-
sity of light can be manipulated through the acousto-optic (AO) effect [5]. Acoustic
waves with frequencies in the range from hundreds of megahertz to several gigahertz
can be generated by piezoelectric thin-film transducers, or electrostatic forces in
microstructures [6, 7]. Propagation of bulk and surface acoustic waves in such different
structures has attracted a lot of interest due to their renewed physical properties. Acous-
tic waves are confined by the two free surfaces of the plates, what results in surface
characterized modes only, called Lamb waves, that were discovered by Horace Lamb
in 1917. The Lamb waves are two-dimensional vibrations propagating in plates with
free boundary conditions and possess some fascinating properties in isotropic and
anisotropic plates [8]. The Lamb waves can propagate over a long distance in metals
sheets, dielectric slabs and also in materials with a high attenuation ratio like carbon
fibre-reinforced composites etc. These waves can be used to achieve an enhanced
modulation of RI for dynamic control of the photonic structures by acoustic wave
energy and open the possibility of tuneable optical devices. Tuneable optical devices
have drawn much attention of many researchers in recent years due to their various
possible applications in optics-based lab-on-a-chip systems. Recent developments in
photonics have demonstrated the possibility of controlling optical energy in compact
and highly integrated micro- and nano-scale devices, which provide promising appli-
cations for the next generation of photonics technology [9-11].

However, certain materials like silicon and germanium show strain induced energy
band gap shrinkage [12] which may be exploited in the design of tuneable optical de-
vices. An experimental study on the shrinkage of indirect bandgap of silicon on insu-
lator shows good agreement with the theoretical calculation [13]. The acoustic plate
waves generate a displacement field that causes the motion of the interfaces as well as
a strain field that changes the refractive index (bulk effect) of the dielectric slab [14].
These effects modulate the guided optical waves having a reduced group velocity; and
in turn, it enhances the AO interaction.

Moreover, the change in RI through strain is a bio-inspired phenomenon. It is found
that many chameleons and panther chameleons have the remarkable ability to exhibit
complex and rapid colour changes due to the strain produced on their skin under various
circumstances [15]. In practice the optical loss in Ge is less than 2 dB/cm for a wide
range of wavelength (2—14 um) and its unperturbed refractive index is approximately 4
while for Si this range is only 1-10 um and unperturbed refractive index is approxi-
mately 3.4 [16]. Therefore, for a wide range of optical applications, Ge seems to be a
good material in comparison with Si. Hence, in the present communication we con-
sidered two semiconductor materials Ge and Si which are widely used in electronic
networks and we estimated their maximum possible index variations at the fixed acous-
tic frequency for optical applications which were ignored in previous studies [17].
The effect of acoustic strain on silicon and germanium slabs that shows a promising
method to control the RI in such structures can be used in the design of tuneable optical
devices. Since velocity of acoustic waves is five orders of magnitude smaller than that
of optical waves, the characteristic time scale of the time varying strain field is much
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longer than the time period for optical waves. Therefore, acoustic modes can be treated
as quasi-static perturbations to the propagation of light during AO interaction [18].

2. Model and computational approach

Elastic waves in solid media are guided by the boundaries of the media in which
they propagate. Let us consider harmonic wave propagation in a thin slab having thick-
ness 2/ as shown in Fig. 1.

Fig. 1. Schematic diagram of the acoustically perturbed dielectric slab, where z is the direction of prop-
agation of acoustic wave and 2/ is unperturbed slab thickness along y-direction.

Since the considered material is a thin silicon plate, therefore the method of po-
tentials with boundary conditions, which rapidly leads to the dispersion relation for
isotropic plates, is used. The displacement u of the material can be derived from a scalar
potential ¢ and a vector potential y, so that

u=Ve+Vxy (1
and the potentials satisfy the wave equations
2
V2¢———1—2— a;p =0 (2a)
vV, ot
2 1 Bz\p _
Vy-——"F=0 (2b)
Vy ot

where V° = 9°/0x" + 82/8y2 +9°/92°, and V, and V; are the phase velocities of
bulk longitudinal and transverse waves, respectively. In Cartesian coordinates
Vv = [y, ¥, v.] and the Helmholtz displacement decomposition will have the
form u, = dy,/dz+ 0y, /dx—dy,/dy, u, = 0p/dy —dy,/dx +dy,/dz and u, =
= d¢/dx +dy,/dy —dy,/0z.

Strains associated with dilatation, causing volume changes, are expressed by ¢and
shear strains, causing no volume changes, are expressed by Y. Here the Lamb wave is
taken to propagate along z-direction, therefore the wave propagation vector k is along
z-direction. The diffraction of the Lamb wave in x-direction is ignored by choosing
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d/dx = 0. For the sinusoidal variation we can consider d/dz = —ik. Considering
these assumptions, the Laplacian equation for function ¢and ¥ = iy, can be written as

2

99 e =0 (3a)
dy

2
J ‘2” +q¢’w = 0 (3b)
dy

where p2 = a)z/VL2 —k” and q2 = a)z/V;— K

The solution of the above equations can be simplified by determining the null stress
boundary condition at the faces y = £k and by applying symmetry motion conditions.
The cosine motion of u, is called symmetric and the sine motion of u, is called anti-
symmetric with respect to y = 0 for u_ in the yz plane; for u, it is vice versa. Hence,
the modes of wave propagation in the considered thin plate may be separated into
following two systems of symmetric and antisymmetric modes: ¢ = Bcos(py + &) and
v = Asin(qy + o) where o = 0 or @ = /2.

There are two types of Lamb waves; first is a symmetric Lamb wave (¢ = 0) on
either side of the median plane where the longitudinal components are equal and the
transverse components are opposite; and second is an antisymmetric Lamb wave
(a = ©/2) on either side of the median plane where the transverse components are equal
and the longitudinal components are opposite. The solution of the above equation in
the form of mechanical displacements is given as [19]

cos(qh + @)
cos(ph+ )

u, = ikA[sin(qy-i— o)+ 22pq2 sin(py + 05)} expli(wt —kz)]
kK —q

(4a)
207 cos(qgh+ @)

u, = (]A[COS(‘]J/"'OO_ szqz cos(ph+ )

cos(py + 0{)} expli(wt —kz)]

(4b)

where @ is the frequency and & is the wave number. These solutions represent traveling
waves in the z-direction and standing waves in the y-direction. The frequency equation
can be obtained from the boundary conditions. The frequency equation for symmetric
case (& = 0) of considered plate of thickness 2/ having traction free boundaries can
be written as

(K~ q*)cos(ph)  2kgcos(gh) ﬂ - H 5)
F2ikpsin(ph) F(K* ~ ¢*)sin(gh)| A 0
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Since the system of Eq. (5) is homogeneous, therefore the determinant of the coef-
ficients has to vanish, which results in the frequency equation

2
(K — ¢°) cos(ph)sin(gh) + 4k’ pgsin( ph)cos(gh) = 0 (62)
The determinant can be written as

tan(gh) _ 3 4k2pq
tan(ph) (k2—q2)2

(6b)

Equation (6b) is known as the Rayleigh—Lamb frequency equation for symmetric
waves in a plate. Using the similar steps for antisymmetric modes (& = /2) the fol-
lowing system for constants 4 and B is obtained and results in the frequency equation

2kpBcos(ph) — (k> —q*)Acos(qgh) = 0 (7a)

This gives the relation known as the Rayleigh—Lamb frequency equation for antisym-
metric waves in a plate:

2 2.2
tan(gh) _ (K —q)
tan(ph) 4k2pq

(7b)

These relations state the dispersion relations between the frequencies and the wave
numbers and yield an infinite number of branches for an infinite number of symmetric
and antisymmetric modes. The symmetric modes can be considered as longitudinal
modes because the average displacement over the thickness is in that direction. The anti-
symmetric modes are generally termed the flexural modes since the average displace-
ment is in the transverse direction. When acoustic energy completely confines within
the slab thickness, there are fundamental antisymmetric and symmetric (4, and S,)
plate modes and their overtones (4, and S,, n =1, 2, 3, ...) are observed. The 4, S,
A,, §; modes are mostly applied acoustic plate modes because they are easier to excite
and also have a simple displacement profile. Here, we consider the fundamental plate
modes and frequency corresponding to the submicron wavelengths [20]. Travelling
acoustic waves along the z-direction in the slab generate deformation that is represent-
ed by the displacement value u and hence there is a strain field, i.e., partial derivative
of the displacement field. In-plane displacement fields of the acoustic eigenmodes u,,
and u, are governed by the following coupled stress-wave equations:

2
p E)uy du, p auy du, ~ auy
a_y(cﬂ 9y ‘i az)+ 3z (C44 9z Cu By) BEPY: (82)
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2 ( du, a“y) 2 ( Ju, E)uy) _ (8b)

— + + +c,,—=
9z \“11Tg Ty T ey T ey, o7

where c;;, ¢j, are the two independent elastic stiffness constants, ¢y = ¢ — ¢2/2
depends on the ¢, and ¢|,, and p is the mass density. In Equations (4a) and (4b),
A represents the maximum displacement amplitude. This displacement and strain pro-
duce variations of the air slab interfaces and vary from time-to-time along with the
acoustic wave propagation. Some parts of the slab are shrunk while other parts may
expand due to the propagation of acoustic waves at a certain moment, which would
induce refractive index variation. This acoustically induced strain field changes the re-
fractive indices of the slab due to the photoelastic effect. The photoelastic effect relates
to the change of the refractive index An;; in the strained structure that can be computed
according to the photoelastic relation [3]

_ 1 3 auy auz

An,, = ——n (pll Jy TPy ) (Oa)
_ 1 3 auy auZ

An,, = 5 (I’lz Iy TPy ) (9b)

where p,; and p,, are strain-optic coefficients and # is the refractive index of an un-
strained slab waveguide.

3. Numerical results and discussion

Now we are in position to compute the in-plane displacement field and variation of
the refractive index for both silicon and germanium plates. To excite the fundamental
and first over-tone of a symmetric mode in Si and Ge slabs simultaneously, the acoustic
frequency 5 GHz is selected. The corresponding wavelengths for two symmetric
acoustic eigenmodes in Si slab are obtained at 4, = 1185 and 1683 nm, as shown in
Fig. 2a. Similarly, the two symmetric acoustic eigenmodes in the Ge slab are obtained
at 4, =625 and 1537 nm, as shown in Fig. 2b.

Figures 2a and 2b show the dispersion curves of the some lowest in-plane (yz plane)
acoustic plate waves in the Si and Ge slab of thickness 500 nm, respectively. The slopes
of dispersion curves for Si slab (Fig. 2a), are very steep in comparison with that of
Ge slab (Fig. 2b). The Si slab supports the lower number of acoustic plate modes at
the same thickness due to its higher phase velocities of bulk longitudinal and transverse
waves. Also, the group velocity of the second symmetric mode S, of Si slab in the fre-
quency range 4.04—4.24 GHz and symmetric modes S, and S, of Ge slab in the frequen-
cy range 2.37-2.53 GHz and 6.9—7.1 GHz, respectively, become negative. This shows
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Fig. 2. Dispersion curves of some lowest in-plane acoustic modes for Si (a) and for Ge (b).
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Fig. 3. Displacement fields of the lowest symmetric acoustic eigenmodes at acoustic frequency at S GHz
in Si (a) and in Ge (b).

that in these frequency ranges, these materials may exhibit the property of negative
index for guided elastic waves in isotropic media. To understand the refractive index
modulation in such structures, the in-plane mechanical displacement fields (u, and u.)
of a fundamental symmetric mode in Si and Ge plates are shown in Fig. 3.

Here both plots of Si slab and Ge slab are almost the same because the maximum
acceptable displacement in the y-direction is 1% of the slab thickness (5 nm); and in
the z-direction, it is limited by the lattice constant. The lattice constant of Si and Ge
are 0.543 and 0.565 nm, respectively [5]. Here the variation in displacement fields,
hence strain fields, are responsible for refractive index variation in the corresponding
direction.

Figures 4 and 5 show the change in the RI due to the propagation of symmetric
Lamb wave modes in Si slab and Ge slab, respectively. The sinusoidal index variation
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Fig. 4. Variation in the refractive index of Si for S (a) and for S; (b) symmetric acoustic eigenmodes at

acoustic frequency 5 GHz
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Fig. 5. Variation in the refractive index of Ge for S, (a) and for §; (b) symmetric acoustic eigenmodes at

acoustic frequency 5 GHz.

is observed in both y- and z-directions. In Si plate, observed refractive index variation
for fundamental symmetric mode (S,) is larger than its first overtone (S,). The observed
RI modulations for the two lowest modes in Si and Ge plates are calculated and tabu-
lated in Table 1. It is clear from the table that maximum RI variations considered are
0.160 and 0.072 along the z-direction in Si and Ge plates, respectively. Since the ex-
cited modes in Si slab have larger wavelengths (1185 and 1683 nm) as compared with
those of Ge slab (625 and 1537 nm) at the chosen frequency 5 GHz, the observed RI

Table 1. Maximum index variations for two lowest Lamb wave modes.

Silicon Germanium
Symmetric (unperturbed RI = 3.46) (unperturbed RI = 4.00)
Lamb modes An, An, An, An,
So 0.144 0.160 0.036 0.072

S 0.110 0.140 0.058 0.054
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contrast in Si plate is always higher than that of Ge plate. Also, these exited modes lie
within near-infrared region where both materials exhibit low propagation loss [16],
therefore, the possible applications of these materials are in the design of tuneable pho-
tonic crystal-based optical devices in near-infrared region.

4. Conclusions

The refractive index modulations in Si slab and Ge slab are achieved by the propagation
of Lamb wave in dielectric materials. It was observed that these materials are found
to exhibit the property of negative index for elastic waves in isotropic media in certain
frequency range. The observed index modulation in Si slab is larger than that of
Ge slab. This index modulation is highly effected by the elastic stiffness constant of
the materials.
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