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In our previous paper (DOAN QUOC K. et al., Physica Scripta T147, 2012, article 014008), electro-
magnetically induced transparency for Λ-like systems consisting of two lower bound states and
a flat continuum coupled to an autoionization state embedded in it has been considered, in which
the laser coupling light is modeled by white noise. In this paper, we investigate a similar scheme,
where the continuum involved in the problem is replaced by one with so-called the double-Λ
system, when instead of one autoionization state we have two autoionization states of the same
energy embedded in the continuum. For such a system containing degenerate autoionization levels
we derive a set of coupled stochastic integro-differential equations which can be averaged exactly.
This leads to the exact formula determining the stationary solution for the electric susceptibility.
Dispersion and absorption spectra for electromagnetically induced transparency are found and
compared with those obtained previously by us and other authors. 
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1. Introduction

The phenomenon of electromagnetically induced transparency (EIT) discovered for
the first time by HARRIS and co-workers [1–3] relies on the destructive quantum inter-
ference of the involved transition amplitudes. This process leads to a suppression of
absorption, or even to complete transmission of the resonant weak probe beam. This
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phenomenon arises in the presence of a second strong laser beam coupling coherently
to one of the states which participate in the absorption process with some other atomic
states. 

Laser lights are generally fluctuating in amplitude and phase. Because of the very
complicated microscopic nature of all the relevant relaxation mechanisms, we model
the laser lights by classical time-dependent random processes. The dynamical equa-
tions involved in the considered problem become stochastic differential equations. To
obtain an exact solution for such stochastic equations is a very difficult task except for
some special cases, for example when the laser light involved in the model is assumed
to be a white noise [4]. 

EIT in a model Λ-like system consisting of two lower bound states and a continuum
coupled to an autoionization (AI) state embedded in it has been considered in [5].
The latter state might also be due to an interaction with an additional laser. The authors
obtained analytic expressions for the susceptibility in the case of the bound-continuum
dipole matrix elements being modeled according to Fano’s autoionization theory [6]
and examined the shape of the transparency window depending on the amplitude of
the control field. 

Recently the model studied in [5] has been extended to the case where the continuum
involved in the problem is replaced by one with so-called the double-Λ system [7],
where instead of one AI state we have two AI states with the same energy embedded
in the continuum. It has been shown that the presence of the second AI level leads to
the additional EIT window appearance. In this paper we use the same method applied
in [8] for modeling the fluctuating control field as a white noise. Then the set of coupled
stochastic integro-differential equations involved in the problem can be also solved ex-
actly. The spectra of real and imaginary parts of the medium susceptibility are calcu-
lated and compared with the results obtained before by us and other authors. It follows
that the structure of the EIT windows changes dramatically when the control field fluc-
tuates. 

2. The model of the double-Λ system

In this section we consider the Λ system discussed by THUAN BUI DINH et al. [7] which
contains two lower states  and  the bare continuum  and two AI levels 
and  with the same energy. The states  and  are coupled with the continuum
by two additional couplings U1 and U2, respectively. This scheme is so-called the
double-Λ system [7]. The AI states and the continuum are coupled by the weak probe
and strong control fields of the frequencies ωp and ωd , respectively. For simplicity we
assume that the frequency ωd is not large enough to allow for the transition from the
state  to the continuum and omit level shifts due to nonresonant couplings, which
can be taken into account by redefining our detunings. The presence of the AI states
may be alternatively taken into account by a prediagonalization procedure which leads
to a dressed continuum  with a modified density of states [6]. The scheme of the
model is shown in Fig. 1. 
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As usual in EIT, the strong control field, for which the propagation effects are
neglected, dresses the atomic medium to create new conditions for the propagation of
the probe pulse. Now we assume that the amplitude of the control field has the form

ε2 = ε02 + ε (t) (1)

where ε02 is a deterministic coherent component of the control field and ε (t) is char-
acterized by a white noise

(2)

the double brackets in the above equation indicate an average over the ensemble of
realisations of the process ε (t). Then the evolution of the atomic system is described
by the von Neumann equation, which after transforming-off the rapidly oscillating
terms and after making the rotating wave approximation, reduces in the first order
perturbation with respect to the probe field [5] to the set of the following equations for
the density matrix ρ (z, t):

(3a)

(3b)

In these equations d is the dipole moment, γcb is the phenomenological relaxation rate
for the coherence ρcb,  and  

The set of Eqs. (3) has the form of the following stochastic differential equation:

(4)
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Fig. 1. The levels and coupling scheme.
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where Q is a vector function of time and D, F, G and H are constant matrices. As it is
known from the multiplicative stochastic process theory, the function  satisfies
the nonstochastic equation

(5)

where {F, G} is the anticommutator of F and G. 
Next, using Eq. (5) we obtain the system of equations for stochastic averages of

the variables (double brackets have been dropped for convenience):

(6a)

(6b)

where b0 = |ε02 |.

3. The susceptibility spectrum

We can solve analytically the set of Eqs. (6a) and (6b) and get its stationary solutions.
The component of the polarization of the medium connected with the b–E coupling is

(7)

with ε0 being the vacuum electric permittivity, N is the atom density, and the medium
susceptibility χ is given by

(8)

The functions  and , j, k = b, c, are given by

(9)
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(10)

and the limit  assures that the Im(χ) > 0, whereas E21 = E2 – E1 tends to zero
for the degenerate AI levels. The bound-dressed continuum dipole matrix element can
be modeled as [6, 9]:

(11)

where the widths  and  are AI widths pres-
ent in the system. Moreover, similarly as in [8], we have used Fano’s asymmetry pa-
rameters q1j and q2j. They can be expressed as:

(12a)

(12b)

where j = b, c. It should be noted that the function inside the integral contains matrix
elements corresponding to the transitions to the structured continuum |E ). Since such
elements are energy dependent, we should apply the formula (11) to get the explicit
dependence of the integrand on the energy. Thus, we can write

( j, k = b, c)
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where

(15a)

(15b)

where E± are the complex roots of the denominator of Eq. (11) given by

(16)

with 

(17a)

(17b)

The complex amplitudes  are given by the following expression:

(18)

where 

(19)

The effective asymmetry parameters Qj, Qj21, Γ21 and AI width Γ  are defined as:

j = b, c (20)

j = b, c (21)

Moreover, we denote the matrix elements of the dipole moment transition 
and  by Dj and Dk, respectively.

As it was mentioned earlier, we neglect threshold effects, so we extend the inte-
gration limits for  and  from minus to plus infinities. Thanks to this
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assumption, we can find the analytical solution for this parameter and hence, for
the medium susceptibility χ (ωp).

The susceptibility χ (ωp) can be computed completely numerically from the above
formulas. We have found it in the stationary regime, assuming that the time-derivatives
appearing in (3) are equal to zero. However the form of the final solution is very com-
plicated and unreadable, and therefore, we do not present it here. The results will be
presented in a graphical form in successive figures.

To compare our results with those from [7, 8] we assume the same values for
the parameters describing atomic system and its interaction with external fields. Thus,
we have assumed that Γ = 10–9 a. u., and that the values of the coherent part of the
field amplitude b0 ranged from 10–9 to 10–6 a. u. The coupling constants that are the
bound-bare continuum dipole matrix elements are equal to Db = 2 a. u. and Dc = 3 a. u.
(all parameters used here are in atomic units). Moreover, the asymmetry parameters
are of the order of 10–100, whereas the atomic density is assumed to be equal to
N = 0.33×1012 cm–3. The relaxation rate γcb is neglected, and detuning is ω = ωp +
+ .

The spectra of real and imaginary parts of the medium susceptibility for various
values of the parameters involved in the problem are shown in Figs. 2–4.

When coherent part of the light dominates over the fluctuations, we can assume
that the fluctuation part of the field amplitude vanishes (a0 = 0) and then, our result
becomes exactly the same as that obtained by BUI DINH THUAN et al. [7]. The dispersion
and absorption parts of the medium susceptibility for these cases are shown in Fig. 2,
when the additional EIT window appears. 

The coherent part of the laser light of the strong control field is negligible in com-
parison with the chaotic component. As a consequence, due to the disappearance of
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Fig. 2. The dispersion (real) and absorption (imaginary) parts of the susceptibility as a function of the ω
for the value of b0 = 4×10–7 a. u., Γ21 = 0, Qb = Qc = 20, Qb21 = 1, Qc21 = 8 and a0 = 0. 
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the coherence part, for the pure noisy light case (b0 = 0), the susceptibility χ (ωp) can
be written as

(22)

The dispersion and absorption parts of the medium susceptibility for these cases are
shown in Fig. 3. We find that the left and right peaks of dispersion and absorption pro-
files drop fast. The slope of the dispersion curves and the depth of the transparency
windows decrease fast. Moreover, the zero point shifts to the right when the chaotic
component exists in comparison with the case when the white noise is absent. This effect
is observed already in the case with a single AI level, discussed by DOAN QUOC et al. [8].

However, for the general case, both the coherence and fluctuation parts of the con-
trol field amplitude are present. These results presented in Fig. 4 show that the left
peaks of dispersion and left absorption profiles drop faster than others. Moreover, the
transparency window is also shifted to the right from the zero frequency. Furthermore,
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Fig. 3. The dispersion (real) and absorption (imaginary) parts of the susceptibility as a function of the ω
for the value of b0 = 0, Γ21 = 0, Qb = Qc = 20, Qb21 = 1, Qc21 = 8 and a0 = 0.02Γ. 
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the slope of the dispersion curves and the depth of the transparency windows decrease
slower as compared with the case of the pure noisy light.

The group velocity of the probe beam depends on the refractive index of the me-
dium and its changes are related to the derivative of Re(χ) with respect to the probe
beam frequency (the slope of the dispersion curves). This fact is expressed by the fol-
lowing formula:

(23)

Thus, when the slope of the dispersion curves decreases, the group velocity of light
will increase. As a consequence, the parameter a0 related to the chaotic component
is an important parameter which controls the propagation group velocity of light in
medium. 

4. Conclusions

In this paper we discussed the atomic model of Λ-configuration involving two AI states
of the same energy as proposed in [7]. We assumed that, as in [4], the laser coupling
light applied in the system is decomposed into two parts: coherent part and white noise.
For such a system, the stationary solution for the electric susceptibility was found by
solving a set of coupled stochastic integro-differential equations involved in the prob-
lem. Next, we derived the exact formulas determining the dispersion and absorption
spectra of the medium susceptibility and compared these results with those obtained
in [7]. We have shown that, similarly as in [7], the EIT effect appears for the system
discussed here. Moreover, both the position and the width of the transparency window
change dramatically as we compare them with those discussed for the case when the
noise of the control laser field is absent. We have pointed that the parameter a0 related
to the chaotic component can be treated as an important parameter for controlling the
propagation group velocity of light in the medium.

Similarly to the case considered in [8], we believe that our model is more realistic
than that discussed in [7], because the amplitudes of the real laser light used in exper-
imental setups always contain some fluctuating component.

Recently the model of Λ-configuration involving two non-degenerate AI states has
been considered in [10]. We will generalize our formalism to this case in a future paper.
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