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Pseudo-phase mapping of speckle fields
using 2D Hilbert transformation
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The use of a “window” 2D Hilbert transform for the reconstruction of the phase distribution of
the intensity of a speckle field is proposed. It is shown that the advantage of this approach consists
in the invariance of a phase map to a change of the position of the kernel of transformation and in
the possibility to reconstruct the structure-forming elements of the skeleton of an optical field,
including singular points and saddle points. We demonstrate the possibility to reconstruct the
equi-phase lines within a narrow confidence interval, and introduce an additional algorithm for
solving the phase problem for random 2D intensity distributions.
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1. Introduction

The phase problem in optics is well-known and has been the subject of many investi-
gations. Phase retrieval consists in the determination of the transverse phase structure
of an optical field, usually achieved by recording a series of intensity distributions at
a series of distances after free space propagation. Progress in solving of the phase re-
trieval problem increases with the evolution of optical data processing techniques.
The reconstruction of phase spectra is the base for solving many problems of image
processing, pattern recognition, data coding, storage and communication. Convention-
ally, acquisition of the phase from a recorded speckle pattern [1-3] presumes the use
of interference and holographic techniques by virtue of a reference wave. As it is
known, the interference technique [4—7] is used for solving of a lot of optical tasks,
including the phase problem retrieval [8].

At present, a topical problem consists in the reconstruction of phase distribution
of remote objects, whose images can be distorted due to turbulence, aberration of im-
aging system or motion of a camera during exposure, etc. Besides, phase retrieval based
on a recorded intensity distribution is urgent for non-invasive techniques of medical
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diagnostics, assuming the use of light beams as probing instruments that exclude any
mechanical disturbances of the studied sample. In these cases the use of a reference
wave is impossible.

Speckle fields arising from scattering media such as biological tissue [9, 10] or
turbulent atmosphere contain loci of minima, maxima and saddle points of intensity
forming a field skeleton. The skeleton alone of an optical field being structure-invariant
with respect to coordinate transformation provides comprehensive information on the
field and the object. Motion of particles or media forming a field causes changes of
a speckle field as well as its skeleton [11].

The idea of this study is:

— use of the reference points of a field, such as saddle points and amplitude zeroes,
to reconstruct the phase map of a field;

— drawing the lines from these reference points corresponding to intensity gradients;

— finding the location of the lines of intensity gradients which coincides with the
regions of smooth and slowly changing phase, i.e., equi-phase lines.

Unlike an earlier published papers [12, 13], where the lines of intensity gradient
were retrieved in a quasi-empirical way (as a result of computer processing of the re-
corded intensity distribution of a field), here we propose solving the phase problem
with an algorithm based on the Hilbert transformation. This provides an increased ac-
curacy of reconstructing the phase maps of a random speckle pattern, and accordingly
obtaining comprehensive information on the studied optical field including the loci of
phase singularities and saddle points of the intensity distribution. Generally, the Hilbert
transform possesses important advantages in comparison with other transformations pro-
viding the visualization of optical inhomogeneities with an extremely high contrast [14].

Solving the phase problem using a 2D “window” Hilbert transform presumes
reconstruction of the phase information contained in the recorded intensity distribu-
tion. For complete and reliable reconstruction of a phase map one must determine:

— distribution of equi-phase lines;

— loci of singular points and saddle points as the reference points of phase distri-
bution, whose changes are connected with object motion;

— accuracy of the proposed algorithm for reconstruction of phase distribution, as
well as investigate the invariance of the proposed algorithm to size and orientation of
the scanning windows.

2. Statement of the problem

It is a common practice in physics and engineering to represent real-valued signals by
the related complex-valued signals [15, 16]. For 1D signals, the concept of analytic
signals based on the partial Hilbert transform was introduced to communication theory
by Gabor in the 1940s. According to Gabor’s theory, one derives a complex signal by
suppressing all negative frequencies of the initial real-valued signal that can be repre-
sented as the sum of specified 1D signal and a pure imaginary component, viz.
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the Hilbert transform of the initial signal. Several generalizations of a 1D Hilbert trans-
form have been found, including 2D case.

The extension of the 1D Hilbert transform to 2D case was probably first reported
by READ and TRrEITEL [17]. Bose and PraBHU [18] derived another expression for
2D Hilbert transform in cotangent, sine and matrix forms. In the 2D case, the Hilbert
transform is composed of two parts; one part acting on the component x and the other
one on the component y. Thus the kernel of the transform can be written down as
h(x, y) = hy(x) + hy ().

Let f(x, y) be a function in the spatial domain describing a random intensity dis-
tribution of the recorded speckle pattern. Instead of the real signal representing real
physical process, one introduces the analytic signal

Vix,y) = fx,y) +if(x,y) (1)

where f (x,y) is a 2D Hilbert transform of the initial signal, and f (x,y)=
=f(x,y) * h(x, y), the asterisk denotes the convolution operator. Correspondingly,
the reconstructed magnitude of a phase (the pseudo-phase [1]) of the analytic signal
is found as

_ f(x, ) )

p(x.y) = atan(Z @

In this case, the reconstruction of the pseudo-phase of speckle patterns is generated
using a 2D Hilbert transformation of the speckle patterns. This representation of the
pseudo-phase is not unique, and an entirely different representation of the pseudo-phase
can be generated if, for example, one decides to employ a 2D Fourier transformation
in place of the Hilbert transformation. This is the classic phase-retrieval problem.
Regardless of the numerical method used to generate the pseudo-phase, the operation
simply exploits information already present in the signal without adding any new
information. Once a 2D pseudo-phase representation is generated, the skeleton of the
optical field can be determined.

3. Algorithm and results

Let a speckle pattern be registered using a charge coupled device (CCD) camera. Thus
data processing consists in a pixel-by-pixel analysis of the recorded signal. As the ob-
tained image is discrete, one uses a discrete Hilbert transformation (DHT) [17]. For
mathematical modeling, as an analytical signal with subsequent reconstruction of
a phase of the structure-forming elements, we use the so-called “window” Hilbert
transformation, so that the kernel of transformation is convolved with a specified win-
dow with subsequent shift of the kernel to the next window.

The procedure consists of the following steps:

— Recorded speckle pattern is pixel-by-pixel transformed to a pattern with 256 grey
levels.
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— This pattern is scanned for obtaining the matrices, as it is shown in Fig. 1. A win-
dow nxn is cut of the pattern, so that the magnitudes of intensity form the matrix ele-
ments, to say matrix 4,;.

— Further, this window moves across the initial pattern with the one pixel-step hori-
zontally and vertically that results in obtaining the set of matrices shown in Fig. 2.

— The kernel of the 2D Hilbert transform is chosen in the cotangent form [18] as

h(x,y) = [cot(%) + cot(%)]% 3)

n

Fig. 2. Formation of the set of matrices by shifting the scanning
window.

where 0 <x<(n-1) and 0 <y < (n—1). This equation defines the 2D Hilbert trans-
form operator and may take the matrix form also. Thus, in the discrete case, which is
analyzed in the given paper, the kernel is represented by the nxn matrix and has the
complete width nxn. It is convolved with the corresponding matrices obtained by scan-
ning the initial image resulting in the 2D DHT.

— Using Eq. (2), one computes a pseudo-phase of the initial distribution.

Phase maps obtained by applying this algorithm are shown in Fig. 3. The size of
the scanning window determines the accuracy of reconstruction of a phase distribution.
The reconstruction accuracy is maximal when the size of a window equals the corre-
lation length in the far field that corresponds to the average speckle size or equally,
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a

Fig. 3. Speckle pattern (a) and phase maps reconstructed using the Hilbert transformation for various
sizes of the kernel: 5x5 pixels (b), 10x10 pixels (¢), 15%15 pixels (d) and 20x20 pixels (e). Triangles and
squares correspond to singularities of opposite signs.

the average distance between vortices (Fig. 3b, 5x5 pixels). Accuracy decreases as
the window becomes larger due to smoothing of the phase pattern and decreasing the
contrast of the equi-phase regions (Figs. 3¢—3e). The original result obtained by the
reconstruction of a phase distribution results in an invariance of the phase map for
a turned kernel, as it is seen in Fig. 4 for simulation with rotation of a kernel by 45° (a)
and 90° (b).

The reconstructed phase map is the same, irrespectively of choice of quadrant or
selection of a part of the plane. This implementation of the algorithm for reconstruction
of the spatial phase distribution provides considerable simplification for obtaining the
phase maps of perturbed objects. Phase maps reconstructed with the kernel specified
at various parts of a plane for a window whose width equals the correlation length of
a field are shown in Fig. 4.
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Fig. 4. Reconstructed phase map for kernel rotated by 45° (a) and 90° (b).




158 C.YU. ZENKOVA et al.

The next step for obtaining the data on the optical field is the identification of phase
singularities (optical vortices), viz. points with zero amplitude and thus undefined
phase. The phase in the nearest vicinity of such points rotates through a full 2r radians
along a circular path surrounding these points. In Figure 3, singular points are shown
by triangles and squares, as positive and negative, corresponding to the topological
charge computed as [19]

S = 3opdoen) @)

where d@(x, y) is the local phase gradient, and the contour integral is taken over
a closed loop ¢ around the singularity. Zero magnitude of S takes place at all points of
a phase map excluding paths surrounding an equal number of positive and negative
charged singularities. The sign “plus” or “minus” corresponds to increasing or decreas-
ing the phase magnitude for counterclockwise circumference of singularity, respec-
tively.

Figure 5 illustrates the reconstructed phase map with the saddle points of intensity
obtained as the points located in regions with rapidly changing phase [12]. The analysis
of the reconstructed phase for determination of the saddle points was performed for
a 5x5 kernel of transformation (n = 5, Eq. (3)). Computation of a phase in the vicinity
of the saddle points provides an estimation of the changing phase within each speckle,
while the location of the saddle points of intensity correlates with the points of maximal
intensity at the centres of the speckles. Circles or triangles show the saddle points in
the vicinity of which the phase increases or decreases under clockwise circumference,
respectively.

The application of the introduced approach for solving the inverse phase problem
highlights the loci of singular points (Fig. 6, part 1) and the saddle points of intensity
(Fig. 6, part 2) from the location of the phase lines obtained by simulation.

The reconstructed phase distribution facilitates the determination of the equi-phase
lines, cf. Fig. 7, which are directly connected with the saddle points and form equi-phase
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Fig. 5. Reconstructed phase map with the saddle points of intensity, in the vicinity of which the phase
increases (circles) or decreases (triangles).
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Fig. 6. Reconstructed phase map: insert shows the enlarged region of a map (ellipse), showing the
distribution of the phase lines. Fragments 1 and 2 illustrate the loci of singular points and saddles,
respectively.

Fig. 7. Phase map with depicted regions of constant phase. Equi-phase lines are established as lines
connecting the points of constant phase along the intensity gradient lines [12].

regions. We show by grey the equi-phase lines emerging from the saddle points and
connecting the points of equal phase. As it has been shown in a recent paper [12], these
lines trace the intensity gradients.

For comparing the results obtained by simulation and represented as the phase map
in grades of grey (Fig. 7) with the reconstructed equi-phase lines (shown by grey in
Fig. 7), the average phase along dark (relief) lines was derived. These are directly con-
nected with the saddle points, cf. Figs. 5 and 6, i.e. the lines within the white square.
The regions formed in such a way specify the regions of constant phase. Figure 8 il-
lustrates a histogram of the deviation of the phase magnitude at the saddle point and
at the points of these relief lines.

The deviation of the phase magnitude between the relief lines and the correspond-
ing equi-phase lines is shown, in accordance with Fig. 7, in Fig. 9.
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Fig. 8. Histogram of the deviation of the phase magnitude at the saddle point and along the relief
lines emerging from this point: average is —0.95433°, confidence interval with probability 95%:
(-2.68316°, 0.7745°).
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Fig. 9. Histogram of deviation of the phase magnitude between equi-phase lines marked by green in
Fig. 6 and phase along dark (relief) lines: average is —1.42926°, confidence interval with probability 95%:
(-2.91601°, 0.05748°).

As our computation shows, the proposed algorithm identifies a narrow confidence
interval (about 3.5°) for the reconstruction of the phase lines that proves a high accu-
racy of the correspondence of the relief lines with the boundaries of the regions of con-
stant phase. Thus, any changes of a remote object can be estimated from the changes
of the phase distributions by applying a “window” Hilbert transformation avoiding any
additional computing and simulation. Any change of the loci of the reference points —
and connected with them the phase lines — is governed by the direction of movement
thus following the location of the studied objects.
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4. Conclusions

Within the framework of the approach based on the use of a discrete 2D “window”
Hilbert transform, we have demonstrated the feasibility for reconstructing the phase
of random 2D objects. We show the possibility to obtain comprehensive information
on the structure of an optical field, including the field skeleton and the regions of con-
stant phase. High accuracy of the reconstruction of equi-phase lines, singular points
and saddle points, as well as invariance of the phase distributions following from direct
simulation provides an additional algorithm for solving the inverse phase problem in
optics.
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