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We report the method of calculating optical dispersion of selected nematic liquid crystals using
maxima positions of a transmittance filled Fabry–Pérot filter. Additionally, the profiles of a dis-
persive phase of reflection have been calculated. The transmittance of Fabry–Pérot filter was de-
scribed as a form of a modified Airy formulae (with parameters dependence on wavelength and
phase of reflection). To correctly use this function, additionally the phase of reflection is defined,
taking into account the problem of a beam penetrating the mirror structure. The authors of this work
assume that the point where the beam is reflected is not created strictly on the boundary of media,
but it is moved into the mirror structure. The depth of the penetration changes the optical way of
the wave and in consequence – the optical width of the Fabry–Pérot filter cavity. The parameter
describing this phenomenon was named as a phase of reflection. This work presents how to cal-
culate: the phase of reflection, one of refractive indices of birefringent medium inside Fabry–Pérot
filter and the cavity width at the same time with the use of composed nonlinear optimization meth-
ods. The proposed method is an alternative for a reverse task solution which is hard to define prop-
erly here. 
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1. Introduction
The optical signal filtration by Fabry–Pérot filter (FPF) structure bases on multireflec-
tions inside an optical cavity and constructive and destructive interference phenome-
non. The maximum values of transmittance have been obtained when the optical cavity
width is a multiple of wavelength of an incidence wave. Then, the light beam partially
confined in the cavity of FPF produces a standing wave for certain resonance frequen-
cies. In that case, the node of the standing wave in resonance is created in the place
between the mirror and the cavity of the filter, so on the boundary of media. Because
the wave with energy can penetrate the medium (similar to the Goos–Hänchen effect),
the real problem is included in the question: where is the real position of this last node
where the wave changes the direction of propagation? In this work we assumed the
following – this node is moved inside the mirror structure of the filter and its position
(named here as a depth of the penetration) depends on the wavelength. Therefore, the
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dispersive phase of reflection can be defined as a function of dR – the depth of the wave
penetration plate in the filter and nR(λ) – the dispersive refractive index of the mirror
in accordance with the following formula:

(1)

then, the real depth of the penetration mirror (“seen” by wave) is described as a coef-
ficient nRdR.

The total change in the phase of the wave inside FPF cavity will be described as
a sum of the phase change inside FPF and the phase of reflection, 

(2)

where dFPF is the width of a Fabry–Pérot cavity.
The formulae (1) and (2) include information about the dispersive refractive index

of a plate nR and one of the refractive indices of nematic liquid crystal (NLC) nLC.
The NLC medium with homogenous texture has been analyzed, then nLC denotes no
or neff ≈ ne. What type of the refractive index of NLC seen by the wave depends on
the orientation of linear polarizators. In the presented method we try to match the ex-
perimental values of transmittance FPF filled by NLC to the theoretical transmittance
described as an Airy function with the modified total phase (see Eq. (2)) and dispersive
parameters. 

The refractive indices (in a visible spectrum range) of NLC can be approximated
by the Cauchy formula [1, 2], 

(3)

where a0, a1, a2 are the parameters which have to be calculated for each (ordinary or
extraordinary) refractive index.

The quality of a change in the phase of reflection depends on the molecular struc-
ture of plates and their physical properties. In that case, a two order polynomial func-
tion (looks like the Cauchy formula) is used as well, 

(4)

A similar problem, but without the phase of reflection calculation and the optimi-
zation method description, was presented earlier in our articles [3–8].

2. Experimental setup 
The presented method of calculation of refractive indices of NLC inside FPF cavity
and the phase of reflection needs some information from the experiment. It is the trans-
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mittance of FPF filled by NLC measured for two different orientations of a linear po-
larizer corresponding to an ordinary or extraordinary wave and transmittance of the
empty FPF and of the mirror (plate). The transmittance profiles were obtained using
a double beam Beckman spectrophotometer. Because FPF is filled by NLC with ho-
mogenous texture – the transmittance of an ordinary wave and an effective (near ex-
traordinary) wave is separated by two linear polarizators applied in the source and
reference path of light inside the spectrophotometer (see Fig. 1). The FPF used for cal-
culation is shown schematically in Fig. 2. 

Two parallel partially transmitting mirrors, which give a reflectivity from 60% to
67% covered with 50 nm transparent indium-tin-oxide (ITO) layers are used to con-
struct the plates of a filter. The profile of the reflectance of mirrors (both were the same
in experiment) is shown in Fig. 3. Plates were separated by means of glass spacers with
the diameter from 6 to 10 μm. 

The refractive index for an extraordinary wave ne was calculated from the follow-
ing relationship: 

(5)

The angle θ  denotes an angle between the plane parallel to the plate and the optical
axis in the NLC layer. 

L
P

P FPF

D

Fig. 1. Simplified scheme of a double beam Beckman spec-
trophotometer with FPF; L – light source (tungsten/halogen
lamp), P – linear polarizers, FPF – Fabry–Pérot filter, D – de-
tector. 

Fig. 2. Structure of plates of FPF filled by NLC with
homogenous texture; 1 – glass plates, 2 – ITO elec-
trodes, 3 – polyimide layers, 4 – liquid crystal layer,
k – wave vector direction, S – director, θ  – deviation
angle of the director. 
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After the experiment, all information – the transmittance (for a visible range) of
a filled FPF for ordinary and effective waves, the transmittance of the mirror and the
transmittance of an empty FPF – have been prepared for optimization. Those data were
applied as starting data for the nonlinear optimization method. 

3. Method of calculation using optimization 
To calculate discrete data  for approximation profiles of refractive in-
dices of NLC  the filter transmittance for the selected state of polari-
zation and the dispersive refractive index profile of FPF plate (nR(λ)) calculated based
on the profile of reflectance (see Fig. 1) are needed. The distance between interference
peaks (see Fig. 4) increases along, where the wavelength is escalated. This feature is
used to perfectly fit the experimental peak positions to the theoretical peak positions.
The theoretical peak positions were obtained as a result of the theoretical transmittance
analysis. The peak positions agreement is possible when using the function of the total
phase (Eq. (2)) which includes information about the phase of reflection. 
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Fig. 3. The profile of mirror reflectance used for calculation. 
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Fig. 4. Positions of interference maxima from experimental transmittance for three peaks (curve 1) and
position of theoretical peaks of transmittance (curve 2); ε  denotes distance between the maxima of
theoretical and experimental transmittance. 
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The problem of the distance minimization between the experimental peak posi-
tions  and the same obtained from theoretical transmittance  is possible to de-
scribe as an objective function for i-analyzed peak of transmittance: 

(6)

The theoretical peak positions  were obtained from the formula describing the
transmittance of FPF (Eq. (7)) modified using Eqs. (1), (2) and also with the use of
conditions formulated by Eqs. (11)–(14). It is very hard to say which one responds to
those obtained from the experiment. Additionally, nLC and δR values needed for
a full description of the theoretical transmittance Eq. (7) [9, 10] are not known. It is
possible to restrict its behavior with properly constructed nodes. So, the task for the
optimization procedure is denoted as below: 

(7)

(8)

(9)

To calculate the profile of the refractive index and the phase of reflection of NLC at
the same time, we have to establish the objective function as

(10)

and the boundary conditions for all parameters:

(11)

(12)

(13)

(14)

where: d0, dk, δ0, δk, n0LC, n1LC, Δλ are scalar values; values with index i are values
for i-peak of transmittance. 
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It is a very important problem for the optimization method, so the formula (2) in-
cludes two conjugated variables (nLC and dFPF) to calculate. There are no numerical
methods to do it properly. Thus, the procedure of optimization can be applied several
times for different values of dFPF (changed from the range of d0 to dk with step Δd ).
The process of optimization starts for dFPF equal to d0. The vector of start parameters
{n0LC, n1LC, d0, dk, δ0, δk} is given from the basic knowledge about the material (ne-
matic liquid crystals) and the properties of the Fabry–Pérot construction; the deviations

 are a consequence of measurement errors of peak positions. For a given
value of dFPF and selected  (i-experimental peek position) with a measurement
error Δλ, it is possible to obtain a set of pairs {nLC, ΔR}i by minimization of the ob-
jective function (10). This procedure will be repeated for all analyzed peaks. From that
set, only one pair of data {nLC, δR} for one peak position is selected, based on the cri-
teria below:

i) decreasing trend of discrete refractive indices values for all analyzed peaks (if
it is possible),

ii) ||λex – λ th||2 = min, for pair {nLC, δR},

iii)  phases for all analyzed peaks (n-peaks). 

The process is completed for one value of dFPF. The analysis will be repeated for
next dFPF values. From the set of the results, this one which assures the best fit trans-
mittance to the experimental peaks position is approved. 

The discrete result of each refractive index (ordinary and effective) of NLC and
the phase of reflections was approximated by a polynomial function (Eq. (3) or (4)),
adequately. This approximation can increase the error between the peaks position of
Tth and the peaks position of Tex. Therefore, the approximation procedure is a part of
the optimization task. In literature it is not strictly described how to approximate the
discrete values of the phase of reflection. The authors propose that the approximation
should look like the Cauchy form, but the phase of reflection may change values be-
tween the discrete values and the modified approximation result considerably. The dif-
ferences between the results of the phase of reflection for each other media are
a consequence of different depth of the plate penetration by waves with different wave-
lengths. 

4. Results for 5CB and 1292 nematic liquid crystalline media

The results of calculation (Figs. 5–12) are shown for two different NLCs media – well
known and widely described in literature 5CB (4-cyano-4'-pentylbiphenyl) and the liq-
uid crystalline nematic mixture 1292 (from the laboratory of prof. Dąbrowski from
Military University of Technology, Department of Chemistry, Poland). All curves of
refractive indices are monotonically decreasing in accordance with expectations. All
points on the figures below present the calculated values. Their positions (on the λ-axis)
correspond to the positions of transmittance maxima obtained from the experiment.
The approximation values are shown in the form of the solid lines. 
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The values of coefficients of approximation polynomials (Eqs. (3) and (4)) are giv-
en in Table 1. This Table includes information about calculated optical cavity width
of filled FPF. 

The decreased profile of refractive indices of liquid crystalline agrees with the
theory of the optical dispersion of materials for a visible spectrum range. The decreased
phase of reflection, in that case, denotes the different depth of the penetration wave.
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Fig. 5. Profile of ordinary refractive index for 5CB. 
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Fig. 6. Profile of phase of reflection for ordinary waves, and for FPF filled by 5CB (variant).
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Precisely, it is the difference between the LC layer and the plate boundary and the first
wave node inside the plate structure. Thus, the wave of short wavelength and higher
energy penetrates more than longer waves. For two differently oriented linear polari-
zations and one construction, two different profiles of the phase of reflection have been
obtained in this work. How is it possible? It is not only a numerical result. The coef-
ficient of reflection on the boundary of two media is different for two perpendicular
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Fig. 8. Profile of phase of reflection for FPF filled by 5CB, and extraordinary wave (variant). 
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Fig. 9. Profile of ordinary refractive index for 1292.
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Fig. 10. Profile of phase of reflection for ordinary waves, and for FPF filled by 1292 (variant). 
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linear polarizations, because two different refractive index values for one medium (NLC)
were found. Thus, the coefficient of reflection depends on linear polarizer orientation
and then the phases of reflection may be different. 

5. Conclusions
The calculation of optical dispersion of refractive indices and the phase of reflection
for all observed waves at the same time offers a new quality for building Fabry–Pérot
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Fig. 11. Profile of extraordinary refractive index for 1292. 
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Fig. 12. Profile of phase of reflection for FPF filled by 1292, and extraordinary waves (variant).
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T a b l e 1. Results of calculation of refractive indices and phases of reflection.

*Coefficients values of approximate polynomial.

NLC
Refractive 
index

Refractive indices* Phase of reflection* Cavity width

a0 a1 a2 b0 b1 b2 d [μm]

5CB
no +1.52078 +0.00161 –0.00079 –11.5345 +10.6690 –2.03727

8.9800
ne +1.66866 –0.00043 +0.02032 17.9172 –16.8874 +4.08523

1292
no +1.53779 –0.00325 +0.00076 –5.21304 +5.27097 –0.82360

9.3910
ne +1.59049 +0.00130 +0.00081 –12.30070 +8.40024 –1.00380
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optical filters. Using those results, one can observe and correct parameters values of
a filter working in different weather and experimental conditions. Such method will
be useful for another part of spectrum as well. Results are shown for FPF with dielectric
plates only. The phase of reflection on the boundary LC/dielectric plates includes in-
formation about the depth of penetration into plates. The decreased penetration of
longer waves into dielectric plates and, inversely, the growing penetration for shorter
waves (as a consequence of Eq. (1), where dR is defined) has been observed. The opti-
mization task seems to be much more effective than the reverse task to obtain coefficients
in Cauchy polynomials. The reverse task is really hard to be properly defined here.
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