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ARTIFICIAL NEURAL NETWORK AND REGRESSION
TECHNIQUES IN MODELLING SURFACE WATER QUALITY

Surface water quality variables with the common nature of complex, nonlinear, multivariable
and high variability need the application of alternative techniques to define optimum input variables
and to develop effective models. The present paper describes the systematic or hierarchical develop-
ment and validation of artificial neural network (ANN) and multiple linear regression (MLR) models
for the purpose of predicting chlorophyll a (Chl-a) concentration from nine surface water quality
variables in order to investigate the significant input variables and their contribution order. A multi-
layer feed-forward network (FFN) trained by back-propagation algorithm was used as ANN ap-
proach. Both FFN and MLR techniques were first calibrated with the same three-fourth of the water
quality data (304 samples) and then tested with the remaining one-fourth of the data. The perform-
ances of hierarchical models of both techniques were evaluated by using two statistical parameters
such as coefficient of determination (R2) and root mean square error (RMSE). The systematic or hi-
erarchical analysis results showed that only four input variables such as biological oxygen demand
(BOD), water temperature (T ), dissolved oxygen (DO), and phosphorus (P) among nine variables
explained 75 and 88% of the variability in Chl-a compared to the full models of FFN and MLR tech-
niques, respectively. Using these four substantial input variables and adding their powers and possi-
ble interaction terms as inputs increased the prediction ability of MLR technique by 13%. The best
model of MLR was better than the full model of FFN for predicting Chl-a based on R2 of 0.69 and
0.61%, and RMSE of 14.99 and 16.35, respectively. The study results show that both FFN and MLR
techniques are capable of simulating Chl-a with acceptable accuracy and suggest that the abilities of
them should be further investigated in different environments and under different conditions with hi-
erarchical model development.

1. INTRODUCTION

Chlorophyll a (Chl-a) concentration is an indicator of the abundance and variety of
phytoplankton (microscopic plants or algae) or algal biomass is represented by Chl-a
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in surface waters. Chl-a is a pigment which allows plants (including algae) to use the
sunlight as energy and some nutrients (mainly nitrogen and phosphorus) as food to
produce organic compounds through the process of photosynthesis. Chl-a concentra-
tion can be used as an effective measure of trophic status, hence, the quality of water
resources [1]. The presence of an excess amount of these nutrients can stimulate algal
blooms, hence, Chl-a concentration, resulting in reduced water clarity, reduced
amount of good quality food, and depleted oxygen levels in deeper water. This proc-
ess, called eutrophication, causes not only the degradation of water quality but also of
aquatic life in ecosystem. Chl-a concentrations are often higher after rainfall due to the
flow of rain water with nutrients such as nitrogen and phosphorus into the water. Slow
moving or stagnant waters are more susceptible to eutrophication compared to running
waters because they allow nutrients to increase and cell numbers to grow [2].

Water quality variables, especially Chl-a concentration, generally exhibit a com-
plex pattern with time and in space. Modelling water quality has a considerable degree
of complexity due to a great number of variables used, nonlinearity of the processes,
and scarcity of data [3]. Many statistically based models such as multiple linear re-
gression (MLR) are commonly used to solve many problems, but sometimes MLR has
some shortcomings due to the assumption of linear principles even though water qual-
ity variables have nonlinear relationships [4]. Unlike many statistically-based water
quality models, artificial neural networks (ANNs) are very powerful computational
technique for modelling complex nonlinear relationships which are the nature of water
quality variables [5]. One of the main advantages of ANNs over other modelling tech-
niques, including the statistically-based models, is that they have the ability to model
complex, nonlinear processes without using a priori knowledge of the relationships
between input and output variables [6].

Recently, ANNs have been used in different ecological studies such as groundwa-
ter [7] and surface water ([4] and [8]) quality modelling and the determination of
eutrophication levels of lakes or reservoirs ([9]–[12]). In these studies, the most com-
monly used ANN structure, a multi-layer feed-forward network (FFN) trained by
back-propagation algorithm, has been applied alone to a variety of ecological model-
ling. However, the application of MLR to ecological or water quality problems is
scarce and its comparison with FFN is absent or very limited, even if being available
in the literature. Researchers might underestimate its prediction capacity for nonlinear
water quality variables without investigating its capacity thoroughly. In addition, LEE
et al. [11] observed noted that an optimal choice of input variables was not built based
on ecological considerations and most of researchers used almost all possible envi-
ronmental parameters as inputs. The use of all possible input variables in the model
may cause a noise instead of being useful information because some of the input vari-
ables may have double effects. The systematic or hierarchical development of FNN
and MLR models with various number of input variables is very limited [11]. Investi-
gation of an optimal choice of input variables among several water quality variables
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using FFN and MLR techniques may offer the better understanding of the characteris-
tics of the relationships between input and output variables and improve the predictive
capacities of the models. In addition, such an investigation may prevent unnecessary
parameter measurements if the addition of more variables does not affect the model
performance.

Therefore, the objective of this study is to simulate Chl-a concentration by FFN
and MLR techniques using nine water quality variables such as water temperature (T ),
dissolved oxygen (DO), biological oxygen demand (BOD), electrical conductivity
(EC), turbidity (TU), organic nitrogen (ON), nitrite+nitrate nitrogen (N), ammonium
nitrogen (NH4), and phosphorus (P) as the input variables of the models. Systematic
and hierarchical models of FFN and MLR are developed by trimming the most com-
plicated network and using backward selection procedure in order to investigate the
significant input variables and their contribution order. After the data (304 samples)
was normalized as preprocessing, FFN was then trained and tested by using three-
fourth and one-fourth of the data set, respectively. The same data sets of FFN for
training and testing were used for derivation and validation of MLR models. Finally,
the performances of FFN and MLR hierarchical models for prediction of Chl-a con-
centration were evaluated by using two statistical parameters, the coefficient of deter-
mination (R2) and the root mean square error (RMSE).

2. MATERIALS AND METHODS

2.1. SITE CHARACTERISTICS AND WATER DATA

The Saginaw Bay watershed is located in the east-central lower part of Michigan
(figure 1) and is the largest watershed in Michigan (approximately 22261 km2), in-
cluding 9 sub-watersheds and 22 counties. It has the largest contiguous freshwater
coastal wetland system in the USA, extending along the shores of Saginaw Bay and
providing habitat for millions of migrating waterfowls and songbirds, and over 90 fish
species. Most of the watershed area drains into Saginaw Bay through the Saginaw
River system. The watershed also includes 175 lakes, around 11265 km of rivers and
streams, and drains approximately 15% of total land area of Michigan. Twenty-eight
rivers, creeks, and agricultural drains flow directly into Saginaw Bay. Mean annual
precipitation is between 68.58 and 78.74 cm. Mean annual runoff is between 20.066
and 40.132 cm, depending on precipitation, slope, land use and land cover [14].

The Saginaw Bay watershed is one of the ecologically most diverse areas in
Michigan, supporting agriculture, industry, tourism, outdoor recreation, forestry, and
a variety of wildlife. Land use is very diverse in the Saginaw Bay watershed and con-
sists of: agriculture (46%), forest (29%), open lands (11%), urban (8%), wetlands
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(4%), and water (2%). Agricultural activities include sugar beet, corn, dry bean, bar-
ley, wheat, and potato production. Extensive land use alterations have significantly
changed the quantity, diversity, and quality of habitat for wildlife. Poultry, dairy and
beef cattle are also raised in the watershed. Automobile manufacturing and suppliers
are main industrial activity in the watershed [14].

Fig. 1. The map of Saginaw Bay watershed in Michigan (adopted from:
http://www.gis.iwr.msu.edu/storet/Form_Lev1.asp?Mode=Watershed&Water=Surface)

The main water quality problems lie in eutrophication (excessive nutrients which ac-
celerate growth of aquatic plants and reduce oxygen levels), sedimentation, and toxic
chemical contamination. Various point and nonpoint sources continue to contribute to the
contamination of the Saginaw River and Saginaw Bay with industrial and municipal dis-
charges, storm water overflows, contaminated sediments in the river and bay bottom,
agricultural runoff, urban storm water runoff, landfill leaching, and atmospheric deposi-
tion [14].

Water quality in Saginaw Bay was described as mesotrophic to eutrophic based on
the productivity level of monitoring data for nutrients from 1993 to 1999. The
amounts of especially phosphorus and nitrogen are the limiting factors for the produc-
tivity level, hence, eutrophication level of a water body. Nearly two tons of total phos-
phorus per day were introduced into Saginaw Bay by the Saginaw River during the
1970s and 1980s, resulting in the growth of blue-green algae. In addition, an increased
biological productivity in the bay caused an increase in the organic debris such as de-
composing algae, aquatic plants, and small invertebrate animals. Benthic species in the
bay are characterized as pollution-tolerant (bottom-dwelling worms and midges),
a characteristic of a eutrophic system. Improved agricultural management practices to
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control fertilizer runoff in the watershed reduced the total phosphorus loads entering
Saginaw Bay from 1700 MT/yr in 1973 to 665 MT/yr in 1982, leading to its concen-
tration greater than 0.015 mg/dm3 which exceeds targets (0.015 mg/dm3) for the bay.
Approximately 80–90% of phosphorus loads entering Saginaw Bay come from non-
point sources (agricultural area). The concentration of Chl-a often exceeds 10 μg/dm3,
a threshold for eutrophic waters. The nitrogen/phosphorus ratios in the bay are ap-
proaching a level which no longer favours the production of blue-green algae [14].

Sediments carrying contaminants into the Saginaw River can cause significant
water quality problems. Sediments in the part of the Saginaw River extending into
Saginaw Bay contain a wide range of pollutants such as residue from oil and grease
discharges, different forms of phosphorus and nitrogen, heavy metals (lead, zinc,
nickel, arsenic, cadmium, chromium, copper, and mercury detected above acceptable
levels), and organic chemicals (pesticide residues such as DDT derivatives, dieldrin,
and chlordane and industrial compounds such as polychlorinated biphenyls (PCBs),
polybrominated biphenyls (PBBs), phenolic compounds, and different chloroben-
zenes). Therefore, knowing sediment yield is a critical factor in identifying the extent
of water quality problems [14]. OUYANG and BARTHOLIC [13] estimated the sediment
yield in the Saginaw Bay watershed through three different methods by using a sedi-
ment delivery ratio (SDR), expressed as the per cent of gross soil erosion by water that
is delivered to a particular point in the drainage system. SDR ranged from 17.1% to
21.6% in the Saginaw Bay watershed.

These heavy metals and organic compounds attached to sediments are toxic at low
concentrations and persist for a long time in the environment. Besides, there are
a number of potential sources of bacteria from human waste, including sanitary sewer
overflows and treatment plant discharges. Sewer discharges of communities in the
Saginaw Bay watershed were approximately 27 million gallons in 1996, 12 million
gallons in 1997, and only 800 000 gallons in 2001 [14].

The data used in this study was taken from the database http://www.gis.
iwr.msu.edu/storet/default.htm for station of 090162 located in Bay County of
Saginaw watershed in Michigan, USA. The database included several surface water
quality variables measured at different times, starting from 1973 to 1994 for this sta-
tion. When the database was screened for such water quality variables as T, DO, BOD,
EC, TU, ON, N, NH4, P, and Chl-a, which were input and output variables used in this
study, a number of 304 samples resulted in, because some of the parameter measure-
ments were missing for a given time.

2.2. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) have a computing system similar to human
nervous system where several neurons are connected and communicate with each
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other to arrive at a decision. The most important advantage of ANNs over other mod-
elling techniques is their ability to model complex and nonlinear processes without
any a priori knowledge of input and output relationships. A multi-layer feed-forward
network (FFN) trained by back-propagation algorithm is ANN type often used in the
modelling of processes in a variety of fields, including ecology, water quality, and
hydrology. Figure 2 illustrates the architecture of a typical three-layered FFN (input,
hidden, and output layers). FFN is briefly introduced as the following and extensive
information on it and can be obtained from [15] which includes fundamental concepts
and mathematical expressions. In developing the model for the estimation of Chl-a
(output parameter) from input parameters (T, DO, BOD, EC, TU, ON, N, NH4, P),
a relationship between input and output parameters is developed by a training process,
which is explained in the next paragraph. The information flows from the input layer
towards the output layer through the hidden layer where the input layer receives in-
formation from the input data, processes it in hidden layer(s), and produces the output.
A total effect, i.e. the sum of all effects of all the inputs on a given node, is determined
by adding the product of each input and the corresponding weight, and then the total
effect is transformed to the output using an activation function, and finally the output
is transferred to each neuron of the next layer through a connection weight. A non-
linear transfer function as an activation function is used to process the sum and to gen-
erate the results. The S-shaped sigmoid function is one of the transfer functions most
commonly used.

Input layer Hidden layer Output layer
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Fig. 2. The structure of a three-layered FFN
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An FFN must be trained before testing its ability to predict the response variable.
The aim of learning is to determine the set of weights that minimize the error function.
A back-propagation method is used in the training of FFN to adjust the connection
weights and to obtain the best match between the FFN’s response and the expected
response. In a training procedure, firstly, the weights are initialized with a set of ran-
dom values. Then the weights are systematically updated based on the training rule.
After several attempts, the training process is terminated when the difference between
the measured and predicted values is less than the specified criteria. One of the com-
mon problems arising from the training process is the over-training or over-fitting
which might produce incorrect results. The over-training of FFN depends on the use of
the optimal number of nodes in the hidden layer. If the number of hidden nodes are
too small, then the network may have insufficient degrees of freedom to learn the pro-
cess adequately. If the number is too high, then the training takes a long time and the
network may over-fit the data. The number of nodes in the hidden layers are deter-
mined by a trial-and-error procedure in this study.

In the application of FFN technique, after the complete data set (304 samples) was
normalized as preprocessing, three-fourth of the data (228 samples) was used to train
FFN. The trained networks were then tested using one-fourth of the data (76 samples).
Systematic models were essentially developed with a network trimming process,
starting with the most complicated network, removing one parameter at a time. A total
of nine networks were compared in order to predict Chl-a using testing data set. All
simulations were carried out by the neural network toolbox of the MATLABTM pack-
age (version 6.5, MathWorks, Inc., USA).

2.3. MULTIPLE LINEAR REGRESSIONS

Multiple regression is used to predict a dependent variable from several independ-
ent variables. A set of independent variables explains the proportion of the variance in
a dependent variable at a significant level. Hierarchical regression allows someone to
see how variance in the dependent variable can be explained by adding or removing
one or more independent variables. In MLR model development, it is assumed that the
variables have normal distribution, the relationship between dependent and independ-
ent variables is linear, and the values of variables are measured reliably or accurately.
The significance of the difference between two cases (before and after removing an
independent variable from the model) can be tested by the coefficient of determination
(R2) and the root mean square error (RMSE). Power terms and interaction or cross-
product terms can be added as independent variables to explore curvilinear and inter-
action effects, respectively. Hierarchical multiple regression is similar to stepwise
regression, but the user (not the computer) determines the order of entry/removal of
the variables to/from the model. F-test is used to compute the significance of each
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removed variable (or set of variables) to the explanation reflected in R2. In this study,
firstly, all possible regression models were developed using all independent variables.
Secondly, the four most important input variables were selected and then their main
effects, powers, and possible interaction terms were included in the model using the
Statistical Analysis System software (SAS Institute Inc., Cary, NC). In this study, the
independent variables were chosen based on the literature ([10]–[12]) and the avail-
ability of the data in the database. The general form of multiple linear regression can
be expressed as:
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where Y is the dependent variable representing Chl-a, b0 is the intercept, b1, ..., bn refer
to the regression coefficients, and X1 to X4 are independent variables referring to the
four important water quality variables in the model. The same FFN training and test-
ing data set was used for the derivation and validation of MLR models.

2.4. PERFORMANCE EVALUATION

The performances of FFN and MLR methods in predicting chlorophyll a concen-
tration from different water quality parameters were evaluated using two statistical
parameters: the coefficient of determination (R2) and the root mean square error
(RMSE). Each of these criteria is based on the differences between the measured and
predicted values and defined as follows:
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where R is the correlation coefficient and its square provides the coefficient of deter-
mination (R2); n is the total number of the set of measurements; Mi and Pi are respec-
tively the measured and predicted data, i = 1, 2, 3, ..., n; M  is the average of the
measured values, and P  is the average of the predicted values. 1 and 0 refer to the
ideal values of R2 and RMSE, respectively, corresponding to a perfect matching be-
tween the measured and predicted data. In addition, the analysis of variance
(ANOVA) test was performed using SAS (SAS Institute Inc., Cary, NC) to determine
whether there were differences between the means of Chl-a obtained by using FFN
and MLR techniques.
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3. RESULTS AND DISCUSSION

The descriptive statistics of surface water quality data used in the training or deri-
vation of FFN and MLR models are given in table 1. They testify to the large varia-
tions in Chl-a observed between the samples with a coefficient of variation (CV =
standard deviation/mean) significantly exceeding 100% (163.11%). The relatively
large variations in TU (91.88%), NH4 (90.24%), T (76.04%), and N (71.43%) corre-
spond to the large variations in Chl-a. Relatively similar trends are observed in the
testing or validation data set. The large variations in these water quality variables may
be because of the substantial geographical differences in climate, water resources,
ecology, soil characteristics, and land use in the Saginaw Bay watershed. In addition,
the variety of activities such as agriculture, industry, tourism, outdoor recreation, and
forestry in the watershed may cause such a large variation in the variables.

T a b l e  1

Descriptive statistics of water quality parameters used in the calibration and validation of FFN and MLR

Training or derivation of data set Testing or validation of data set
Water quality variables

Min. Max. Mean SD* Min. Max. Mean SD
Temperature (°C) 0.00 27.50 12.02 9.14 0.00 26.00 12.16 9.57
Dissolved oxygen (mg/dm3) 2.70 16.80 8.70 2.66 3.50 13.10 8.41 2.44
Biological oxygen demand
(mg/dm3)

1.00 16.00 4.04 1.90 1.40 8.50 4.00 1.63

Electrical conductivity
(mmhos)

240.00 1140.00 690.31 138.76 318.00 1016.00 724.25 117.97

Turbidity (Ftu) 1.80 160.00 19.95 18.33 2.80 170.00 17.27 19.84
Organic nitrogen (mg/dm3) 0.52 2.80 1.13 0.34 0.50 2.00 1.15 0.33
Nitrogen (NO2+NO3) (mg/dm3) 0.14 5.20 1.40 1.00 0.28 3.70 1.19 0.78
Ammonium (NH4) (mg/dm3) 0.01 2.80 0.41 0.37 0.06 2.30 0.48 0.42
Phosphorus (mg/dm3) 0.04 0.57 0.18 0.09 0.06 0.48 0.17 0.08
Chlrophyll a (μg/dm3) 0.20 520.10 25.13 40.99 0.20 94.00 25.63 25.77

*SD: standard deviation.

The FFN parameters are the number of input, output, and hidden nodes and itera-
tion or epoch number. The number of input and output nodes were 9 and 1, referring
to the input and output variables, respectively. Several iterations were made until the
optimum number of hidden layers and numbers of neurons in each hidden layer were
determined as 3 hidden layers and 10 neurons in each hidden layer. Therefore, the
architecture of FFN was determined by a trial-and-error approach. The over-training
or over-fitting problem was controlled by using the optimum number of hidden layers
and neurons, and epoch number of 1000 determined by trial-and-error procedure to
minimize the MSE values.
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T a b l e  2

Different neural networks tested for the prediction of Chl-a

Model Input variables* R2 RMSE
9 BOD 0.13 32.22
8 BOD, T 0.34 28.23
7 BOD, T, DO 0.41 26.73
6 BOD, T, DO, P 0.46 25.34
5 BOD, T, DO, P, TU 0.34 27.98
4 BOD, T, DO, P, TU, ON 0.37 27.62
3 BOD, T, DO, P, TU, ON, NH4 0.34 28.33
2 BOD, T, DO, P, TU, ON, NH4, EC 0.40 26.95
1 BOD, T, DO, P, TU, ON, NH4, EC, N 0.61 16.35

* BOD: biological oxygen demand (mg/dm3), T: water temperature (°C),
DO: dissolved oxygen concentration (mg/dm3), P: phosphate (mg/dm3),
TU: turbidity (Ftu), ON: organic nitrogen (mg/dm3), NH4: ammonium nitro-
gen (mg/dm3), electrical conductivity (mmhos), N: nitrite+nitrate nitrogen
(mg/dm3), R2: coefficient of determination, and RMSE: root mean square error.

In the systematic analysis of FFN performance, each of nine FFN models was
evaluated by R2 and RMSE and the results are displayed in table 2. It can be seen from
the table that the models from 2 to 5 show similar performance with approximately
similar R2 (0.40–0.34) and RMSE (26.95–27.98 μg/dm3) during testing. However,
relatively significant differences between the models from 6 to 9 were observed with
R2 of 0.46–0.13 and RMSE of 25.34–32.22. The model 1 (the full model) was the best
in the prediction of Chl-a with R2 of 0.61 and RMSE of 16.35, but the improvement
was only 15%, referring to the model 6 (R2 from 0.46 to 0.61). The results show that
using more environmental variables as the network inputs does not give much advan-
tage. This improvement in the models can be sacrificed to time, labour, and expenses
in the measurements of additional five variables if this much accuracy is considered to
be unimportant. In the prediction of Chl-a from ten input variables such as solar ra-
diation, total inorganic nitrogen, time-lagged Chl-a, phosphorus, DO, secchi-disc
depth, T, rainfall, wind speed, and tidal range with ten different tested systematic neu-
ral networks, LEE et al. [11] defined the network that consisted of time-lagged Chl-a
only as inputs as the optimal network. The testing accuracies of their ten networks
were in the ranges of R2 = 0.83–0.95 and RMSE = 3.045–5.653 μg/dm3. YABUNAKA et
al. [9], KARUL et al. [10], and KUO et al. [12] simulated Chl-a using similar water
quality variables as inputs in lakes or reservoirs YABUNAKA et al. [9] and KUO et al.
[12] found that the R2 values for the prediction of Chl-a were 0.64 and 0.74, respec-
tively. The R2 values between the measured and calculated Chl-a values were between
0.36 and 0.56 in Keban Dam Reservoir, whereas R2 was as high as 0.90 in Mogan and
Eymir Lakes in the study of KARUL et al. [10]. Some of these studies have somewhat
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better simulation abilities than this study, but this may be normal because these studies
were conducted in a relatively much smaller geographic area compared to this study
which covers large and ecologically diverse the Saginaw Bay watershed. A variety of
point and nonpoint contaminant sources resulted from different activities such as agri-
cultural runoff, industrial and municipal discharges, sewer overflows, and contami-
nated sediments may be responsible for large variability in water quality variables,
thereby inversely affecting the performances of the models.

T a b l e  3

Coefficients of variables used in hierarchical MLR models for prediction of Chl-a

Model Input variables* Coefficients R2 RMSE
9 BOD –19.46257, 11.03946 0.23 23.14
8 BOD, T –27.04492, 9.15228, 1.26546 0.46 19.81
7 BOD, T, DO –91.45760, 8.37836, 2.55198, 5.98324 0.45 21.09
6 BOD, T, DO, P –140.66649, 5.13716, 3.11359, 9.09703,

162.32572
0.49 21.16

5 BOD, T, DO, P, TU –142.37270, 4.76658, 3.22499, 9.62101,
9.62101, –0.31724

0.34 40.12

4 BOD, T, DO, P, TU, ON –145.22126, 3.91909, 2.96398, 9.17404,
172.80993, –0.33955, 13.72112

0.53 19.39

3 BOD, T, DO, P, TU, ON, NH4 –120.40021, 4.31718, 2.31407, 7.48578,
196.59744, –0.46263, 14.89556, –16.86663

0.55 19.06

2 BOD, T, DO, P, TU, ON, NH4,
EC

–135.65783, 4.12085, 2.19854, 7.35297,
200.02004, –0.37001, 13.86446, –22.25491,
0.02831

0.55 19.11

1 BOD, T, DO, P, TU, ON, NH4,
EC, N

–127.91475, 3.96400, 2.04117, 7.25249,
194.28967, –0.35338, 15.16170, –23.85886,
0.02715, –2.62499

0.56 18.46

10 BOD, T, DO, P, BOD2, T2,
DO2, P2, BOD.T, BOD.DO,
BOD.P, T.DO, T.P, DO.P

138.2, –22.25, –1.597, –14.35, –279.4,
0.0290, –0.029, 0.345, 60.65, 0.284, 1.550,
37.27,
0.189, 7.700, 9.353

0.69 14.99

*BOD: biological oxygen demand (mg/dm3), T: water temperature (°C), DO: dissolved oxygen
(mg/dm3), P: phosphate (mg/dm3), TU: turbidity (Ftu), ON: organic nitrogen (mg/dm3), NH4: ammonium
nitrogen (mg/dm3), electrical conductivity (mmhos), N: nitrite+nitrate nitrogen (mg/dm3), BOD2:
BOD.BOD, T 2: T.T, DO2: DO.DO, P2: P.P, R2: coefficient of determination, and RMSE: root mean
square error.

Note: The first values of the coefficients of each variable represent the intercept and the others corre-
spond to the variables in respective order. Bold coefficients are statistically not significant at 5% level of
probability ( p > 0.05). All of the ten models are statistically significant at the probability level of
p < 0.00001.

Hierarchical MLR models developed by the backward selection method to investi-
gate the contribution of each water quality variable to the prediction of Chl-a using
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validation data set are presented in table 3. As can be seen from the table, during vali-
dation the models from 1 to 6 show similar performance with approximately similar R2

(0.56–0.49) and RMSE (18.46–21.16 μg/dm3) except the model 5. However, relatively
significant differences between the models from 6 to 9 were observed with R2 of 0.49–
0.23 and RMSE of 21.16–23.14. The model 5 had some instability, maybe because of
collinearity, which is a near perfect linear relationship between some or all of the in-
dependent variables in the regression model. This means that there is some degree of
redundancy or overlap among the independent variables. This causes a difficulty in
distinguishing the individual influences of the independent variables on the response
variable (Chl-a). The model 9 relating Chl-a to BOD alone explained 23% of the vari-
ability (R2 = 0.23). The addition of the second variable (T ) significantly improved (23%)
the prediction capacity of the model 8. Similar to FFN, the inclusions of the first four
variables to MLR models significantly improved their performances for prediction of
Chl-a, where R2 increased from 0.23 to 0.49 and the corresponding RMSE decreased
from 23.14 to 21.16. However, further additions of the remaining variables to the models
improved their performances in total by only 7 (= 0.56–0.49)%. Since the further addi-
tions of input variables to the models had no significant effect on the prediction capacity
of the models, these four essential input variables were selected and then their main ef-
fects, powers, and possible interaction terms were included to the model (model 10). The
ability of this model with only four variables proved to be by 13% better than that of the
full model (model 1). This indicated that the interaction and power terms in the model
increased its prediction capacity. However, the contribution of the some of the variables
and terms (bold coefficients in table 3) to the model were not statistically significant.
This suggests that – as in FFN – the simpler the model, the better the result.

The time-series of measured and predicted values of Chl-a for training and testing
the full FFN model and for the derivation and validation of the best MLR model are
presented in figure 3. The time-series in figure 3 cover the time range between January
1, 1974 and January 22, 1992. As can be seen, FFN was very successful in the training
with an R2 of 0.89. The results of the testing procedures (R2 = 0.61) were also satis-
factory but not as good as those of training. The results of the derivation procedures of
MLR were also very successful with an R2 of 0.81, but the derivation procedures (R2 =
0.69) were not so successful as opposed to the derivation. In general, both FFN and
MLR techniques simulated acceptably Chl-a concentrations with time, even though Chl-
a had large variations with time. The predicted results of the best models of both tech-
niques are exhibited in figure 4. Less scattering of data points around the line passing
through the origin and the right corner of the plots indicates that MLR is somewhat bet-
ter than FFN in predicting Chl-a. Although MLR was slightly better than FFN in the
prediction of Chl-a, ANOVA test results showed that this difference was not statistically
significant ( p > 0.05). Therefore, the results of this study indicated that both FFN and
MLR techniques can be applied in the modelling of surface water quality, even though
these variables are complex, nonlinear, and show large variations with time.
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Fig. 3. Time-series of measured (triangle) and predicted (dotted circle line) values of Chl-a for
the training or derivation (left) and testing or validation (right) of the best FFN and MLR models
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Fig. 4. Measured versus predicted values of Chl-a for the best FFN and MLR models

4. CONCLUSION

In this study, Chl-a concentration was simulated by FFN and MLR techniques us-
ing nine water quality variables as the input to the models. Systematic or hierarchical
models of FFN and MLR were developed by trimming the most complicated network
and using backward selection procedure in order to investigate the significant input
variables and their contribution order. Of nine input variables, four explained a sig-
nificant variability in Chl-a based on systematic or hierarchical model analyses of both
techniques. The best model of MLR was somewhat better than the full FFN model in
the prediction of Chl-a, but this difference was not statistically significant.

In this study, the selection of effective input variables and then further analysis
may make MLR technique superior to FFN. This suggests that even though water
quality variables are complex and non-linearly related, statistically based models such
as MLR which assumes linear relationship between input and output variables [5]
should be investigated further for different environmental conditions. In addition, as
concluded by LEE et al. [11], the effect of sampling intervals (daily, weekly, or
monthly) on the performances of both techniques for real-time predictions of Chl-a
need to be further evaluated.
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