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In many evolutionary games, such as parental care games, the length of time spent playing a re-
alisation of the game is dependent on the strategy of an individual. Also, the payoff of a deserting
male cannot be defined in isolation from the strategies used in the population as a whole. Such games
should be defined as games against the field (large population games) rather than two-player games.
Several examples are presented to illustrate the theory of such games against the field.
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1. Introduction

In the classical two-player symmetric war of attrition (see Maynard Smith and
Price [13]), two players decide the time they are prepared to wait, in order to obtain
a resource of value V. The player who chooses the longest waiting time obtains a net
reward of V-ct, where t is the time the opponent was willing to wait and c is a positive
constant. The other player obtains a net reward of -ct. The evolutionarily stable strat-
egy (ESS) in this game is to choose one’s waiting time from the exponential distribu-
tion with expected value V/c. The expected length of the game is V/2c and the mean
net reward gained is 0.

Cannings and Whittaker [5] argued that individuals who wait for shorter lengths of
time are able to play the game more often and thus there is a trade off between the
mean reward obtained per game and the mean number of games played per unit time.
They defined the following game against the field (referred to as the supergame).
Time is discrete and there is a finite time horizon k. Each individual uses a determi-
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nistic waiting time that is an integer number of units. Initially an individual is paired
with an opponent chosen at random from the population to play the war of attrition
game (referred to as the subgame). On finishing a subgame an individual is then
paired with an opponent who has also just finished playing a subgame. A subgame is
won by the individual with the longest waiting time, who receives a payoff of 1. If
both players in a subgame use the same waiting time, then they both receive a payoff
of 0.5. The total payoff of an individual in the supergame is the sum of the payoffs
obtained in the subgames. The set of ESSs in such a game is heavily dependent on k
and its derivation becomes increasingly complex as k increases.

Eriksson et al. [8] consider a model which is very similar to the one presented
here. In their model individuals can be in one of two states: playing a war of attrition
subgame or not playing a war of attrition subgame. Individuals who are not playing
a war of attrition game enter such subgames at rate λ and the opponent is picked at
random from the population of individuals who are not presently involved in a war of
attrition subgame. An individual uses the same deterministic waiting time (a positive
real number) in each subgame and the length of a subgame is the shortest waiting
times of the two players involved. The winner (the one choosing the longer time) ob-
tains a reward of 1 and the loser receives a reward of c, where 0 ≤ c < 1. They use
replicator dynamics to observe the evolution of the population when the fitness of
a strategy in the present generation is taken to be the mean rate at which rewards are
obtained. Depending on the parameters of the game, limit cycles may be observed.

Another situation in which there are tradeoffs between the mean rate at which
games are played and the mean reward gained in each game arises in parental care
games. In simple terms, deserters will breed more often than carers, but carers will
have more surviving offspring per breeding attempt. Maynard Smith [14] considered
three different models of parental care. The first two models were defined as standard
two-player games. However, he was aware that such models are inappropriate as the
payoff of e.g. a deserting male depends on the availability of females, which in turn
depends on the strategies used by the population as a whole. Hence, he proposed
a third model in which the payoffs of an individual are dependent on the strategies
used within the population as a whole. He could not however find an analytic solution
to such a game.

Houston and McNamara [12] consider the problems involved in developing good
models of parental care. They state that although it is necessary when defining
a model to consider some aspects in isolation from others, this leads to a distorted
picture when there is clear feedback between two factors. For example, the opera-
tional sex ratio (OSR, the ratio of the number of males searching for a mate to the
number of females searching for a mate) is a key factor in such models. However, the
OSR is obviously dependent on the strategies employed. The more females care for
their young, the higher the OSR. Hence, a model cannot define a value for the OSR
without referring to the strategies used within the population. Also, to be self-
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consistent a model must take into account the fact that the total number of offspring of
males is equal to the total number of offspring of females.

The model presented here assumes that there is no breeding season. It is in some
ways an extension of Yamamura and Tsuji’s model [26]. This model was adapted to
the life history of St. Peter’s Fish by Balshine-Earn and Earn [3]. In the models men-
tioned above, individuals of the rarer sex in the pool of searchers immediately find
a mate, while in the model presented here such individuals find mates at an appropri-
ately faster rate than individuals of the more common sex. Similar models have been
considered for species that breed seasonally, but several breeding attempts are possi-
ble in a season (see Webb et al. [25], McNamara et al. [17]).

2. The general concepts used

2.1. Phases

The models presented here are based on the concept of phases, which were intro-
duced by Erlang in the first half of the 20th century and developed by himself and
others. Erlang considered the distribution of the number of active calls in a telephone
exchange. The simplest case occurs when calls come in as a Poisson process of rate λ
and the length of calls has an exponential distribution with mean length μ = 1/r, where
r is termed the rate at which calls are concluded. The phase (state) of the telephone
exchange can be understood as the number of active calls. The phase changes each
time an event occurs, where an event is understood as an incoming call or the conclu-
sion of a call. Given that there are i active calls, the time until the next change of state
has an exponential distribution with mean 1/(λ + ir). With probability λ/(λ + ir), this
event is an incoming call and hence the number of active calls increases to i + 1. Oth-
erwise, the event is the conclusion of a call. In this case, the number of active calls
decreases to i – 1. Suppose there are n lines available in the exchange and denote the
equilibrium (long run) proportion of time for which i calls are active by pi. We can
derive these proportions using the fact that the total rate at which the phase changes
from i to i + 1, pi times the rate at which the phase changes from i to i + 1 (here λ),
must be equal to the total rate at which the phase changes from i + 1 to i, calculated
analogously. This leads to the following system of equations:
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Cox [6] extended this theory to include a wider range of distributions for the time
between events of a given type. The concept of phases was applied to foraging theory
in the middle of the 1970s (see Beddington [4] and DeAngelis et al. [7]). Foragers are
either searching for food or feeding. While feeding, they may be interrupted by other
individuals. Van der Meer and Smallegange [24] apply these ideas to small popula-
tions. Similar methods have also been used to model the passage of patients through
hospital and aid the management of hospitals (see McClean and Millard [16], Shaw
et al. [21]). These ideas are also applied in the field of actuarial science (see e.g.
Haberman and Pitacco [11]).

The concept of phase will be used in this paper to describe the state of an animal.
For example, in the parental care model considered here a female may be in one of
three states: receptive, non-receptive or breeding. In the receptive state a female finds
a mate at some defined rate and hence enters the breeding phase. The rate of passing
between phases and the payoff gained in a given phase may be dependent on the strat-
egy used by an individual and the strategy used by any other player that the individual
interacts with. In particular, a female who cares for her young will spend longer on
average in the breeding phase than a female who deserts, but will rear more young per
breeding attempt. In order to illustrate the concept of such “life history” games and
obtain analytic results, we assume that the set of available pure strategies is small and
the rates of transition between phases are constant. The long run proportion of indi-
viduals in each phase can be calculated using a method analogous to the one described
above (see the three examples given later). It is also assumed that mortality does not
depend on the strategy used and so individuals aim to maximise the rate at which they
obtain (appropriately defined) payoffs. However, such models can be easily extended
to consider larger strategy sets and differential mortality. Although it might be diffi-
cult to obtain analytic results for such models, it would be relatively easy to obtain
interesting numerical results.

2.2. Concepts of evolutionary stability

There are several concepts of stability used in evolutionary game theory. The most
commonly used one is the concept of an evolutionarily stable strategy (ESS, see
Maynard Smith [15]). In the context of this paper, each individual wishes to maximise
his/her payoff rate. Hence, a strategy is an ESS if the following condition holds:

Definition 1. Whenever all the population use an ESS, then an individual mutant
cannot obtain a greater payoff rate by using a different strategy and if an individual
mutant can obtain the same payoff rate, then whenever the proportion of mutants in
a population is sufficiently small (but non-zero), they obtain a strictly lower payoff
rate than the incumbents.
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It should be noted that this definition assumes that the population is large (essen-
tially infinite). In the case of a finite population of size N: 1) mutants using strategies
that are selected against fixate with a non-zero probability, 2) a strategy that is an ESS
according to Definition 1 may be selected against when there is just one mutant (i.e.
the proportion of mutants in the population is 1/N, see Schaffer [19]).

When we consider games against the field, it is often difficult to derive the payoff
of individuals when there is a small proportion of mutants in the population. Hence,
another useful criterion for stability is given by the concept of a neighbourhood in-
vader strategy (NIS) introduced by Apaloo (see [1], [2]). Let f (a; b) be the expected
payoff of an individual using a strategy a when all the population use the strategy b.

Definition 2. An NIS, denoted πN
, is a strategy that satisfies f (π N; π) > f (π; π) for

all π in some suitably defined neighbourhood of π N such that π ≠ π N.
This states that if all the population uses a strategy π which is similar to π N, then

a group of individuals using the strategy π N will obtain a higher payoff rate. In [1],
Apaloo shows that an ESS is not necessarily an NIS and vice versa. In the second
paper, he notes that a strategy which is both an ESS and an NIS (a so called ESNIS)
has strong stability properties in a wide range of games. That is to say, using replica-
tor dynamics the population evolves to a population using an ESNIS if at the begin-
ning of the simulation they all used similar strategies, but this is not the case if a strat-
egy is just an ESS or just an NIS. Ramsey [18] describes a large population mate
choice game, in which there may exist an ESS that cannot invade a population using
any similar strategy.

Example 1 is based on the war of attrition game and is used to illustrate these two
concepts of stability. For the purposes of this example, we assume that the only ad-
missible mixed strategies involve choosing a waiting time from an exponential distri-
bution. In this case a mixed strategy can be denoted by the parameter of this distribu-
tion (taken to be the reciprocal of the mean waiting time). A neighbourhood of such
a mixed strategy is defined to be the set of mixed strategies corresponding to an expo-
nential distribution with a sufficiently similar parameter value.

A global invading strategy, denoted π G, satisfies f (π G; π) > f (π; π), ∀π ∈ S, where S
is the set of admissible strategies. It is clear that if π G is a GIS, then no other strategy
can be an ESS.

It is assumed that all the mutants use the same strategy (i.e. we do not consider
simultaneous invasions by mutants using various strategies).

Example 2 is used to illustrate the concept of an evolutionarily stable polymor-
phism (ESP). In terms of evolutionary game theory, a polymorphism can be charac-
terised as follows: 1) each individual in the population uses a pure strategy, 2) there is
variation in the population. In addition, at an ESP: a) selection does not favour any
pure strategy that is present in the population (i.e. in the support of the strategies
used) and acts against any pure strategy that is not present, b) when the distribution of
the strategies used is sufficiently similar to an ESP, then selection will act towards the
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ESP. Example 2 considers a Hawk–Dove type game in which there are only two pure
strategies available. In this context, the following definition of an ESP will be used.

Definition 3. Suppose there are only two pure strategies available, A and B, and
mixed strategies cannot be used. A polymorphism in which a proportion q of the
population play A is an ESP if the following two conditions are satisfied: 1) all indi-
viduals obtain the same payoff rate, 2) ∃ q1 and q2 with q1 < q < q2, such that selection
favours individuals using A when the proportion of A players is in (q1, q), but favours
individuals using B when the proportion of A players is in (q, q2).

One question addressed by Maynard Smith [15] concerns the stability properties
of polymorphisms in two-player games. Suppose the set of available pure strategies
is finite. If such a polymorphism is stable, then the proportions of individuals play-
ing each pure strategy must correspond to the probabilities of choosing the relevant
action under a mixed ESS. It is shown that this is not true for the class of games
considered here.

Example 3 introduces a parental care game that will be investigated in more detail
in a forthcoming paper. The population is split into two types, males and females.
Define gm(π; πm, πf) and gf(π; πm, πf) to be the payoff rates (reproduction rates) ob-
tained by an individual male and female, respectively, when the individual uses π, the
population of males use πm and the population of females use πf . Suppose the sets of
strategies available to males and females are Sm and Sf , respectively. A sufficient set
of conditions for a profile of pure strategies ( ‡

mπ , ‡
fπ ) to be an ESS profile is given by

the following two inequalities
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for all πm ∈ Sm, πf ∈ Sf, πm ≠ ‡
mπ , πf ≠ ‡

fπ . We will not consider mixed ESSs or ESPs
for such asymmetric games in this paper.

3. Example 1 – A war of attrition type game

Suppose individuals can be in one of two states: A – playing a war of attrition
game and B – not playing a war of attrition game. It is assumed that when in state B
individuals gain rewards at rate c per unit time. The rate at which an individual enters
war of attrition games is assumed to be λ independently of the strategy used in the war
of attrition game. In the war of attrition game the two players choose waiting times
t1 and t2. The player who chooses the larger waiting time obtains a resource assumed
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to be of value V. If the players choose the same waiting time, the winner is chosen at
random (i.e. each has an expected payoff of V/2).

Arguing as in the case of the standard war of attrition, no pure strategy can define
an ESS. Suppose each individual is prepared to wait a time t. Each individual gains an
average reward of V/2 in a war of attrition game and each war of attrition lasts t units.
Hence, the mean reward rate is c[1–p]+pV/2t, where p is the equilibrium proportion of
time spent playing war of attrition games. It should be stressed that the term
“equilibrium proportion” will be used strictly to describe the proportion of time an
individual is in a particular state given that the strategies used by the population do
not change over time. One important aspect to note is the feedback between selection
and these equilibrium proportions. Selection changes the frequencies of the strategies
used, which in turn affects the equilibrium proportions. Unless a specific strategy
profile is being considered, simplified notation will be used, which does not reflect
the dependency of the equilibrium proportions on the strategies used.

By choosing a waiting time of t + δ units, where δ > 0, a mutant obtains a reward
rate of c[1 – p] + pV/t. This is due to the following facts: 1) since each game lasts
t units, a mutant spends the same proportion of time playing war of attrition games as the
rest of the population. 2) The mutant will always win the war of attrition, thus obtaining
a reward rate of V/t in such games. Hence, a mutant who is prepared to wait slightly
longer than the rest of the population will always be able to invade the population.

Now assume that each member of the population chooses a waiting time from an ex-
ponential distribution. Hence, the strategy used by an individual may be denoted by the
parameter of the exponential distribution from which the waiting time is chosen (defined to
be the reciprocal of the expected waiting time). When all the population use the strategy μ,
each individual wins a war of attrition with probability ½ and the distribution of the length
of the game is exponential with parameter 2μ. It follows that the reward rate gained in the
war of attrition games is Vμ. Given the population follow such a strategy, the equilib-
rium proportion of time spent playing war of attrition games, p(μ) satisfies

2μp(μ) = λ[1– p(μ)].

Here, the left hand side gives the relative rate of exiting from a war of attrition
game in the population as a whole and the right hand side gives the relative rate of
entering into a war of attrition game. It follows that p( μ) = λ/(2μ + λ).

Let f (α; μ) be the reward rate obtained by an individual using strategy α when the
rest of the population use μ. The reward rate obtained by each member of the popula-
tion is given by
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Now consider the payoff rate of an individual using strategy α. This mutant wins
a war of attrition with probability μ /( μ+ α) and on average a game lasts 1/( μ + α)
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units of time. Hence, the reward rate of the mutant in war of attrition games is Vμ.
The proportion of time the mutant spends playing war of attrition games can be calculated
as the mean length of the games it plays divided by the mean cycle length (the mean length
of a game plus the mean time between games). Since the rate at which an individual en-
ters into war of attrition games is λ, the mean cycle length for the mutant is

λαμ
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It follows that the proportion of time the mutant spends in war of attrition games is
given by
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The mutant can invade the population if g(α; μ) = f(α; μ) – f(μ; μ) > 0. Note
g(μ; μ) = 0 and
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Note that this partial derivative is positive if and only if μ < c/V, i.e. when the
population wait on average more than V/c units of time, then any mutant can invade
by choosing any shorter mean waiting time. Similarly, when the population wait on
average less than V/c units of time, a mutant can invade by choosing any longer mean
waiting time. It follows that the strategy μ = c/V is a GIS. It should be noted that such
a strategy is not a continuously stable strategy (CSS, see Eshel [9], Eshel and Motro
[10]). A CSS, denoted πC , satisfies the condition that a strategy π which is suffi-
ciently close to πC can only be invaded by a strategy that is closer to πC.

We now give a sketch proof of the fact that the strategy μ = c/V is an ESS in the
sense that a uniform group of mutants making up a proportion ε of the population will
be selected against when the remaining individuals use the strategy μ. Suppose the
mutants use the strategy α , where α  > μ, i.e. mutants give up at a faster rate than the
incumbents. Let pm and pi be the proportion of time spent in war of attrition subgames
by mutants and incumbents, respectively. Intuitively, mutants spend a smaller propor-
tion of their time in war of attrition games than incumbents. Let q be the probability
of being matched with a mutant in a war of attrition game. Since an opponent is cho-
sen at random from those not presently playing a war of attrition game, it follows that
q > ε. Using a similar argument as the one used to find the payoff rate of a mutant
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against an incumbent in war of attrition games, it follows that both mutants and in-
cumbents gain rewards at rate Vα  when playing against mutants. Hence, the payoff
rates obtained by mutants and incumbents, Rm and Ri respectively, are given by
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It follows that both groups obtain rewards at the same rate as each other in war of
attrition games and since Vα  > Vμ = c, this rate is faster than the rate achieved outside
of war of attrition games. Since incumbents spend a higher proportion of time in war
of attrition games, they obtain a higher payoff rate. It can be shown analogously that
mutants who are prepared to wait longer will be selected against. Hence, when indi-
viduals can choose a waiting time according to an exponential distribution, μ de-
scribes an ESNIS in the sense considered.

It should be noted that this model can be adapted by assuming that the rate of en-
tering war of attrition games depends on the proportion of individuals not involved in
such games. For example, this rate may be proportional to the fraction of individuals
not involved in a war of attrition game, i.e. λ(1 – p). Assume all the population choose
a waiting time from the exponential distribution with parameter μ. In this case, the
equilibrium condition for p(μ) is given by

2)](1[)(2 μλμμ pp −= .

Suppose a mutant chooses a waiting time from the exponential distribution with
parameter α . Arguing as above, the proportion of time a mutant spends playing war of
attrition games is given by
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The expected payoff of such a mutant is f (α; μ) = pmVμ + (1 – pm)c, hence
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It is relatively simple to check that ∂pm /∂α  < 0, ∀α  > 0. Hence, for μ > c/V, i.e.
the population are prepared to wait for a relatively short time, we have ∂ f (α; μ)/∂α  < 0
and so any mutant waiting a longer time on average can invade. Similarly, for μ < c/V,
any mutant waiting a shorter time on average can invade. Arguing as above, μ = c/V is
the unique ESNIS.

It is interesting to compare this result with the classical war of attrition game. The
assumption made in the model considered here is that outside of the war of attrition
game, the reward gained in time t by an individual is ct. This is analogous to assuming
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in the classical game that the costs of waiting for time t are ct. It is interesting that the
ESS derived here is identical to the ESS in the classical game and is robust to as-
sumptions regarding the rate at which individuals enter into war of attrition games. In
accordance with foraging theory (see Stephens and Krebs [22]), the payoff rate in the
war of attrition is equalised with the payoff rate outside of such games.

Finally, it seems that this ESS does not correspond to the ESP of such a problem,
i.e. if individuals each choose their own deterministic waiting time, then the distribu-
tion of the waiting times used at an ESP is not exponential. This is due to the fact that
individuals who choose short waiting times will spend a smaller proportion of time in
subgames. Hence, the distribution of the waiting time conditional on the event that an
individual is not playing a subgame (i.e. the distribution of the waiting time of a ran-
domly chosen opponent) will be biased towards lower waiting times. Eriksson et al.
[8] consider such a problem, but their framework is somewhat different to the one
presented here, so it is difficult to directly compare the results. The next example
considers an example based on the Hawk–Dove game, which highlights the difference
between an ESS and an ESP.

4. Example 2 – A simple Hawk–Dove type game

We now consider a game in which individuals can take one of two actions, Hawk
or Dove, denoted H and D, respectively. Individuals that are not presently playing
a Hawk–Dove game enter into such games at a rate of λ. When a Hawk meets a Dove,
the Hawk obtains a resource of value V and returns to the population of non-players at
rate μHD. This rate reflects the time it takes to chase off the Dove and consume the
resource. The Dove does not obtain any reward and returns to the population of non-
players at rate μDH. It is assumed that μDH > μHD. When two individuals play Hawk,
each wins the resource with probability ½. In this case they return to the population of
non-players at rate μHH. The mean time spent in such an interaction reflects the ex-
pected time spent fighting, consuming resources and recovering from any wounds
incurred. It is assumed that μHH < μHD. When two Doves meet, both players obtain
a reward of V/2 and return to the population of non-players at rate μDD. In the case
where the resource can be shared and individuals can react quickly to the action taken
by an opponent, it seems reasonable to assume that μDD = 2μHD. In the case where the
resource cannot be shared, the individuals may some type of war of attrition game
(not considered here), but in this case we may assume that μDD < 2μHD. In general, we
assume that μDD ≤ 2μHD. Outside of these interactions, individuals accrue rewards at
a rate of c per unit time. It is assumed that VμHD > c, i.e. the rate of reward from con-
suming the resource is greater than the mean reward rate gained outside the interactions.
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We first consider the conditions necessary for a pure ESS to exist. Suppose that all
the population are using the strategy D. The expected reward gained per cycle (from
the end of one Hawk–Dove game to the end of the next) is V/2 + c/λ. The expected
length of such a cycle is

DD
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Now consider a mutant playing Hawk. The expected reward of this mutant per cy-
cle is V+c/λ. The expected length of a cycle is
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Hence, the reward rate gained by this mutant is
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It is relatively easy to show that under the assumptions made above, such a mutant
will invade. Hence, D can never be an ESS in such a game, as in the standard Hawk–
Dove game.

Now we consider the conditions under which H is an ESS. Suppose all the popu-
lation are playing H. Considering the expected reward gained per cycle and the ex-
pected length of a cycle as above, the reward rate gained by the population is
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Similarly, the reward rate gained by a single Dove mutant is cμDH /(λ + μDH). Com-
paring the reward rate of the Dove mutant with the reward rate of the population as
a whole, it follows that H is an ESS if
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In particular, when μDH → ∞, i.e. Doves do not lose any time when interacting
with Hawks, this condition simplifies to V/2 > c/μHH. The left-hand side in this ine-
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quality is the expected reward from the contest, whereas the right-hand side is the
expected cost of the contest in terms of time lost. This condition is completely analo-
gous to the condition that H is an ESS in the standard Hawk–Dove game.

Now assume that Inequality (1) does not hold and individuals can only play pure
strategies. It is expected that there will be an ESP. Suppose at such an ESP a propor-
tion qH of the population play H and a proportion qD = 1 – qH play D. Since the mean
length of time an individual spends in an interaction depends on the strategy used, the
equilibrium proportion of Hawk players in the population of individuals not interact-
ing at a given moment will differ from qH. Let p1,H and p1,D be the equilibrium propor-
tions of time for which Hawks and Doves, respectively, do not interact. Let p1 be the
equilibrium proportion of the total population that are not interacting. Using Bayes
laws, we have p1 = p1,HqH + p1,D qD. A proportion p1,HqH/p1 of players enter into games
with Hawks and a proportion p1,DqD /p1 enter into games with Doves. It follows that
the mean time a Hawk spends playing a game is
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Hence, the equilibrium condition for the proportion of non-interacting Hawks is
given by
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Arguing similarly, the equilibrium condition for the proportion of non-interacting
Doves is given by
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In addition, at an ESP the mean reward rate of Hawks and Doves must be equal.
The mean cycle length for a Hawk is given by
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When not playing, a Hawk obtains rewards at rate c. In the Hawk-Dove game
a Hawk obtains V when playing against a Dove and V/2 on average when playing
against a Hawk. It follows that the expected reward of a Hawk per cycle is
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Hence, the reward rate obtained by Hawks, RH is
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Similarly, it can be shown that the reward rate obtained by Doves is
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Equations (2)–(3), together with the equation RH = RD gives a system of three
equations for three unknowns, p1,H, p1,D and qH. Intuitively, the relative advantage of
Hawks increases as the proportion playing Dove increases. Given this is true and no
pure ESS exists, there will be only one valid solution of this system of equations.
Also, whenever the proportion of Hawks is greater (less) than the qH corresponding to
this solution, then selection acts so as to reduce (increase) the proportion of Hawks.
Thus this solution is an ESP. It should be noted that Hawks gain a greater expected
reward from each interaction than Doves (regardless of the proportion of individuals
playing H ). Hence, at an ESP, Hawks must spend on average a longer time in each
interaction. It follows that at the ESP, the probability that a randomly chosen oppo-
nent plays H is less than qH .

Now we consider the mixed ESS for this game. Suppose this is given by the strat-
egy “Play H with probability q‡”. Consider what happens when all the population use
the mixed strategy “Play H with probability qH ”, then the probability that a randomly
picked opponent plays H is simply qH (i.e. greater than at the ESP). When there is no
pure ESS, the larger the probability of playing against a Hawk, the more selection will
favour Doves. Thus it is expected that q‡ < qH .

Suppose the population all use the mixed strategy: “Play H with probability q”.
The expected length of a game played by a mutant using the strategy “Play H with
probability r” is given by T(r; q) where
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The expected reward gained by such a mutant in a Hawk–Dove game is
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The reward rate obtained by such a mutant, f (r; q), is given by the mean reward
per cycle divided by the mean cycle time, i.e.
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where T0 = λ–1 is the mean time between interactions. An ESS must satisfy
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This leads to the quadratic equation a[q‡]2+bq‡+c = 0, where (the form of the so-
lution is given for completeness)
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From the assumptions made, a, c > 0, b < 0. It can be shown that whenever H is not
an ESS, there is one solution to this equation in the interval (0, 1). This is given by

a
acbbg

2
42

‡ −−−
= .

Numerical solutions for various sets of parameters are given in Table 1.

Table 1

Evolutionary Stable Strategies and Polymorphisms in the Hawk-Dove type game. It is assumed μDD =
2μHD, V = 2, c = 1. qc gives the probability of playing Hawk at the ESS of the classical Hawk–Dove game,

which is obtained by letting λ → 0, μHD, μDD, μDH → ∞, while leaving μHH unchanged

Case λ μHH μHD μDH p1,H P1,D qH q‡ qc

1 0.001 0.25 1000 106 0.9990 1– 4×10–7 0.2499 0.2497 0.25
2 0.1 0.25 10 106 0.9115 0.9961 0.2389 0.2232 0.25
3 0.01 0.25 10 106 0.9899 0.9996 0.2405 0.2387 0.25
4 1 0.25 10 106 0.6245 0.9582 0.1845 0.1285 0.25
5 0.1 0.25 100 106 0.9147 0.9996 0.2474 0.2313 0.25
6 0.1 0.25 1 106 0.8776 0.9584 0.1418 0.1314 0.25
7 0.1 0.5 10 106 0.9109 0.9973 0.4849 0.4623 0.5
8 0.1 0.125 10 106 0.9118 0.9956 0.1186 0.1097 0.125
9 0.1 0.25 10 103 0.9115 0.9961 0.2390 0.2232 0.25

10 0.1 0.25 10 102 0.9113 0.9959 0.2396 0.2238 0.25
11 0.1 0.25 10 10 0.9094 0.9939 0.2457 0.2297 0.25
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Case 1 illustrates the relation between the asymptotic properties of the game con-
sidered here and the standard Hawk–Dove game. In the case where interactions are
rare (λ → 0), the resource can be consumed immediately (μHD, μDD → ∞) and Hawks
do not disturb/harm Doves (μDH → ∞), individuals should simply maximise their ex-
pected reward from an interaction, understood to last the mean time spent by two
Hawks in an interaction. In Case 1, Hawks will fight on average for 4 units of time.
Each Hawk has an expected reward of 1 from the fight. If a Hawk met a Dove, in 4
units of time the Hawk would instantly consume the resource (payoff of 2) and ob-
tains further rewards at rate 1. Thus a Hawk obtains a total payoff of 6 in this period.
In this case the Dove obtains a payoff of 4. When two Doves meet, they share the
resource and obtain further rewards at rate 1, giving a total reward of 5. Subtracting 4
from each payoff to obtain the standard form of the Hawk–Dave game, we obtain the
following matrix game

H D
H (–3, –3) (2, 0)
D (0, 2) (1, 1)

The ESS in this game is to play H with probability 1/4.
The effect of the interaction rate, λ, is illustrated by Cases 1–4. It can be seen that

as the interaction rate increases the probability of playing H decreases. However, we
should not conclude that as the population density increases, then in general the level
of aggression decreases. The examples considered assume that individuals obtain
rewards at a fixed rate outside the interactions. This may be interpreted as assuming
that in each realisation individuals have the same level of access to resources. How-
ever, as the population density increases, we would expect access to resources to de-
crease. Hence, a more complex model would be required to study the interaction be-
tween the level of aggression, population density and the availability of resources.

In order to see why this model predicts that the level of aggression falls as the in-
teraction rate increases, suppose all the population use a pure strategy. As the interac-
tion rate increases, the probability that an individual plays D given that he/she is not
involved in a game increases. There are two opposing effects:

1. Since an opponent in a game is chosen at random from the individuals not in-
volved in Hawk–Dove games, an individual is more likely to be paired with a Dove
than if the opponent was chosen at random from the population as a whole. This ef-
fect acts to increase the proportion of Hawks in the population.

2. Since Doves spend less time on average in each interaction, they play the
Hawk–Dove game more frequently than Hawks. This effect acts to increase the pro-
portion of Doves in the population.

For the parameter sets investigated, the second effect is stronger and as the inter-
action rate increases, the proportion of Hawks in the population decreases. When each
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individual plays a mixed strategy, the first effect is no longer present and so q‡ falls
more rapidly than qH as the interaction rate increases.

Cases 2, 5, 6 illustrate the effect of μHD . This parameter may be interpreted as the
rate at which the resource can be consumed. As μHD increases, the resource gives
a higher rate of reward and thus becomes more valuable. As expected, the level of
aggression is increasing in μHD.

Cases 2, 7, 8 illustrate the effect of μHH. This parameter may be interpreted as
a measure of the expected costs of fighting (the expected costs are 1/μHH). This pa-
rameter has a very clear effect on the level of aggression. As μHH increases (the costs
of fighting decrease), the level of aggression rises.

Cases 2, 9, 10, 11 illustrate the effect of μDH. This parameter may be interpreted as
a measure of the harm Hawks inflict on Doves before Doves escape (the expected
damage is 1/μDH). As expected the more harm that Hawks can inflict on Doves with-
out retaliation, the higher the level of aggression.

It should be noted that as in the standard Hawk–Dove game, we can extend the set
of available strategies to include other types of behaviour such as retaliation.

5. Example 3 – A parental care game

We present a simple model of this kind for which we can give analytical results. It
is assumed that there is no breeding season and individuals do not form lasting part-
nerships. Males may be in one of two states: searching or breeding. Females may be
in one of three states: receptive, non-receptive or breeding. For simplicity, it is as-
sumed that when individuals are in the breeding state they do not attempt to breed
with other partners. The sex ratio is assumed to be one. Denote the equilibrium pro-
portions of males in the two states, searching and breeding, as p1

 and p2, respectively.
The proportions of females in the three female states, receptive, non-receptive and
breeding, are denoted by q1, q2 and q3, respectively. These proportions depend on the
strategies adopted by the population, but unless we are considering a particular strat-
egy profile, this dependence will not be made apparent by the notation.

Males in the searching state find a mate at a rate proportional to the number of re-
ceptive females, namely at rate λ1q1. That is to say that in a small interval of time of
length δ units, a proportion λ1q1δ of the searching males will find a mate. Similarly,
receptive females find a mate at a rate proportional to the number of searching males,
i.e. at rate λ1p1. It should be noted that these assumptions satisfy the condition that the
number of males entering the breeding state equals the number of females entering the
breeding state. Receptive females become unreceptive at rate μ1, i.e. the mean length
of their receptive period is 1/μ1. Unreceptive females become receptive at rate μ2.
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Given a female does not mate, she will be receptive for a proportion μ2/(μ1 + μ2) of
the time. It is assumed that the parameters μ1 and μ2 are fixed according to the
physiological processes in a species. By letting μ2 → ∞, we obtain a model in which
non-breeding females are always receptive.

The rates at which breeding males rejoin the pool of searching males and breeding fe-
males return to the pool of receptive females depend on whether they care for their young
or not. Deserting males return to the pool of searching males at rate λ2,N, that is to say
that on average the mating process and time to replenish sperm supplies occupies 1/λ2,N
units of time. Similarly, if females do not care for their young, they return to the pool
of receptive females at rate μ3,N . For example, in mammals and birds λ2,N tends to be
much larger than μ3,N , i.e. male deserters can return to searching for a new mate much
faster than female deserters. When they care for their offspring, males and females return
to the pool of individuals searching for a mate at rates λ2,C and μ3,C, respectively. It is
assumed that λ2,C ≈ μ3,C. The transition between states is illustrated in Fig. 1.

Fig. 1. Transition rates between states
• represents C or N according to whether a given sex cares for their offspring or not

The number of young surviving to maturity is measured in relation to the number
surviving when no parental care is given. Suppose the relative number of young sur-
viving to maturity when a) just the female cares, b) just the male cares and c) both
parents care are kf, km and kb, respectively. It is assumed that the goal of each individ-
ual is to maximise the rate of producing offspring that survive until maturity. For sim-
plicity, this will be referred to as the reproduction rate.

In order to investigate pure ESSs of such a game, we must first derive the equilib-
rium proportions of individuals in each state when each member of the population fol-
lows a given strategy appropriate to its sex. Considering the transition of females from
receptive to non-receptive, the relative number of females becoming non-receptive per
unit time is the proportion of receptive females times the rate of transition from being
receptive to being non-receptive, i.e. μ1q1. Similarly, the relative number of females
becoming receptive per unit time is μ2q2. Hence, at equilibrium we have

2211 qq μμ = . (4)
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Considering firstly the transition of receptive females to/from mating females and then
the rate of transition of searching males to/from mating males, since p2 = 1 – p1 we obtain

3,3111 qqp •= μλ , (5)

)1( 1,2111 pqp −= •λλ , (6)

where each • corresponds to N or C according to the strategy adopted by the appropri-
ate sex. In addition, we have

1321 =++ qqq . (7)

Rearranging Equations (4)–(7), we obtain a1q1
2 + bq1 + c = 0, where (the appropri-

ate form of the solution is given just for completeness)
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The remaining equilibrium proportions may be calculated from the following relations
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Since these equilibrium proportions depend on the strategies adopted, they will be
denoted using subscripts indicating firstly the strategy used by males and secondly the
strategy used by females. For example, p1,CN  denotes the equilibrium proportion of
males searching when males care for their offspring, but females do not.

First, we consider the conditions for no parental care to be an ESS. To find the
equilibrium frequencies when neither sex cares for offspring, we set μ3,• = μ3,N in
Equations (5)–(6). It is clear that the mean reproduction rate of both sexes must be
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equal. Hence, we calculate the reproductive rate of males, since this is the simpler calcula-
tion. The reproduction rate of males is given by the relative number of offspring surviving
from breeding divided by the mean cycle time, which is the mean time required to move
from the searching state to the breeding state and back again. Assume neither parent cares
for the offspring. Define this mean cycle time to be TNN. We have
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Note that from Equation (6), we obtain
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Hence, the reproduction rate is 1/TNN = λ1q1,NN  p1,NN. This is intuitively clear, since
the mean reproduction rate of the population must be the rate at which mating occurs,
here λ1q1,NNp1,NN, time the relative number of surviving offspring, here 1.

In order for no parental care to be an ESS, this rate must be greater than the repro-
duction rate of a mutant of either sex who cares for their offspring. Calculating
as above, the expected cycle time of a male mutant, denoted Tm,NN who cares for his
offspring is
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Since the relative number of offspring surviving to maturity is km, it follows that a
male mutant cannot invade if
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The mean cycle time for a female is the mean time required to go from the respon-
sive state to the breeding state and back. Denote the mean cycle time of a mutant fe-
male who cares for her offspring when no-one else cares by Tf,NN. The rate at which
the state of a responsive female changes, denoted μR,NN, is the sum of the rate of find-
ing a mate and the rate at which she becomes unresponsive, i.e. μR,NN = λ1p1,NN + μ1.
The mean time to the first change of state is 1/μR,NN. The probability that she finds
a mate before becoming non-receptive is λ1p1,NN /μR,NN. Given she first finds a mate,
then the mean time for a mutant female who cares for young to return to the receptive
state is 1/μ3,C. Given she first becomes non-receptive, she must then return to the re-
ceptive state (after an expected period of 1/μ2 units) and then the additional length of
time expected to complete the cycle is Tf,NN, as she has simply returned to her starting
point. Hence, conditioning on the type of the first change of state, we have
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This equation leads to

NNC

CNNC
NNf p

p
T

,1,321

,31,112,32
, μμλ

μμλμμμ ++
= .

It follows that a female mutant cannot invade the population if
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The derivations of the stability conditions for the remaining three possible pure
equilibria are analogous. Therefore, we present just the conditions themselves. In each
case the left hand side of the inequality is the reproduction rate of the population, the
first entry on the right hand side is the reproduction rate of a mutant male and the
second entry is the reproduction rate of a mutant female.

To find the equilibrium frequencies when only males care for offspring, we set μ3,•
= μ3,N and λ2,•  = λ2,C. in Equations (4)–(7). Only male parental care is an ESS if
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To find the equilibrium frequencies when only females care for offspring, we set
μ3,• = μ3,C and λ2,• = λ2,N  in Equations (4)–(7). Only female parental care is an ESS if
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To find the equilibrium frequencies when both parents care for offspring, we set
μ3,• = μ3,C and λ2,• = λ2,C in Equations (4)–(7). Biparental care is an ESS if
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Inequalities (8)–(12) can be used to show how the set of ESSs depends on the
benefits of parental care. Assume that μ1 = μ2 = 1, μ3,C = λ2,C = 0.05, μ3,N = 0.2, λ2,N = 5,
λ1 = 20.

1. No parental care is an ESS when km < 4.57572 and kf < 3.8754.
2. Just female care is an ESS when kf > 3.8824 and kb < 1.9701kf.
3. Just male care is an ESS when km >30.4512 and kb < 1.7402km.
4. Biparental care is an ESS when kb > 8.8322 kf and kb > 3.1119km.
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The set of pure ESSs for the case km = kf is illustrated in Figure 2. An approximate
log scale is used, ln(kb) is on the y-axis and ln(kf) is on the x-axis.

Fig. 2. Set of Pure ESSs in the parental care game

Two pure ESSs exist for some sets of parameters. Both biparental care and no pa-
rental care can be ESSs when there is little gain from uniparental care, but biparental
care gives significant benefits. What system evolves in this case would depend on the
initial set of strategies used within a population.

Uniparental care will evolve if there is a significant gain when one parent cares
compared to no parental care, but care by a second parent gives very little benefit. In
the case of mammals, it would be expected that female care would evolve, as males
have the opportunity of defecting before offspring are born. One possible adaptation
of this model would be to take into account the order in which decisions are made and
allow females to react to the strategy used by their partner.

For many sets of parameters there is no pure ESS. In such cases a mixed ESS will
exist. There are two types of such ESSs possible:

1. A totally mixed ESS, in which some individuals of both sexes care and some
defect.

2. A mixed ESS in which members of one sex always care or always defect and
some of the members of the other sex care and some defect.

In many such cases, a female will be able to gain by reacting to the choice of
a male and this will affect the set of ESSs. Mixed ESSs and the adaptation of the
model so that females react to the choice of their partner will be considered in a forth-
coming paper.
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6. Conclusion

This article has considered the necessity of considering certain evolutionary
games, such as the war of attrition and parental games, as games against the field
rather than two-player matrix games. This results from two factors:

1. The strategies used in a game may involve choosing a “waiting time”, in this
case players who choose a shorter mean waiting time may be able to play the game
more often. Hence, there is a trade off between the number of games played per unit
time and the mean reward obtained in each game.

2. The expected reward from a given strategy cannot be defined in a consistent
manner without taking into account the strategies used in the population as a whole.

Three simple examples were considered based on the concept of phases. Individu-
als move between phases (states) at rates that depend on their strategy and the strate-
gies used by the population as a whole. In certain phases an individual interacts with
another and plays a subgame. The goal of each individual is to maximise the rate at
which he/she obtains rewards.

Three examples were given. The first example was based on the war of attrition.
Strategies that are both evolutionarily stable and neighbourhood invader strategies
within a class of mixed strategies were derived. By appropriately interpreting the re-
wards gained in the game against the field, the solution given here corresponds to the
solution of the classical war of attrition game. The second example was based on the
Hawk-Dove game and was used to show how an evolutionarily stable polymorphism
differs from a mixed ESS in such games against the field.

The third example gives an introductory analysis of a parental care game. It
seems that such an approach can be adapted to give more insight into the factors
determining the system of parental care that has evolved in various species. The
model should also be extended to take mate choice into account, as there is a large
amount of feedback between patterns of mate choice and patterns of parental care
(see Székely et al. [23]). This could be done by introducing individuals of differing
levels of quality.

As Selten [20] notes, there cannot be a mixed ESS in an asymmetric two-player
game. However, this does not apply to games against the field in which there are two
classes of players. There are mixed equilibria in the parental game considered above,
where e.g. all females care but only some males care. Such equilibria will be consid-
ered in detail in a forthcoming paper.

Although the models presented here are very simple, they present a framework
that can easily be generalised to more complex models. For example, strategy depend-
ant mortality rates could be introduced. The assumption that states change at given
rates is a simplification. If there are no seasons, it seems reasonable that at the popu-
lation level the rate of switching between states is constant. At an individual level this
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assumption (i.e. the time spent in a given state is exponentially distributed) is more
problematic. However, this assumption should not affect the qualitative interpretation
of the results. A more major problem in the applicability of this model to various sce-
narios is the assumption of a lack of seasons. Using such a phase type approach, it
does not seem easy to get round this problem. Although it would be difficult to obtain
analytic results for more complex models of this form, numerical results may give us
more insight into such systems.
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Wieloosobowe gry ewolucyjne typu „cyklu życiowego”

W dziedzinie gier ewolucyjnych zwykle zakłada się, że każda jednostka gra wiele razy w dany rodzaj
gry dwuosobowej, z tym że za każdym razem jej przeciwnik zmienia się. W przypadku gier ewolucyj-
nych, takich jak „wojna na wyczerpanie” czy „opieka rodzicielska”, czas wykorzystany na realizację gry
zależy od strategii wybranej przez jednostkę. W takich przypadkach należy brać pod uwagę nie tylko
średnią wypłatę z każdej realizacji gry, ale też średni czas potrzebny na jej realizację. W tej sytuacji mo-
del standardowej gry dwuosobowej powinien być zastąpiony grą wieloosobową. Dodatkowo, w grach
typu „opieka rodzicielska” wypłata samca, który nie opiekuje się swoimi dziećmi, zależy od możliwości
uzyskania dodatkowych partnerek, co z kolei zależy od strategii używanych w całej populacji. W pracy
rozważono kilka przykładów gier wieloosobowych, które są wygenerowane przez grę dwuosobową.

Słowa kluczowe: gry ewolucyjne, gry wieloosobowe, faza, strategia ewolucyjnie stabilna, strategia lokalnie
wypierająca, polimorfizm
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