
Optica Applicata, Vol. XLVII, No. 3, 2017
DOI: 10.5277/oa170305

Improved method for passive ranging 
based on surface estimation of an airborne object 
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A new method for passive ranging using image size measurements from one sensor has been
presented. The method relies on pixel filtration with histogram-based thresholding, followed by
intensity and gradient magnitude analysis. Its efficiency and robustness were assessed in real infra-
red surveillance sequences, and it has proved to lead to better results than non-filtering techniques.
The object distance estimation mean relative error does not exceed 3%, which implies that the sug-
gested method enables precise range estimation based on object size measurements. To maximize
the benefits of the suggested method, Kalman filter has been included in the algorithm in order to
overcome fluctuations of the estimated object size.
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1. Introduction
Passive sensors based object tracking systems can be used in various applications, such
as video surveillance and security, speed control, air traffic control, missile guidance,
weapon fire control, obstacle detection, robotics. Such systems can also be used to de-
termine object distance, and the challenge is to get satisfactory performances when ap-
plying only one sensor [1–4]. There are many researches whose field of interest is
tracking systems with one passive sensor, whether in daylight or at night [5–7]. In [8],
a detail review of night vision technology is given. In cases of sensor saturation or ma-
jor background fluctuations, approaches based on Beer–Lambert law and atmospheric
propagation model do not generate reliable results [9].

One of the first researches which shows the solution on passive ranging based on
image sequences is [10]. Research [11] is an enhancement of distance estimation based
on intensity measurements when a sensor operates in saturation conditions. The accu-
racy of distance estimation in the approach which exploits scale changes depends on the
method applied in image processing when determining the surface of the object. Passive
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ranging is also treated in defence systems in a variety of atmospheric conditions [12].
Traditional intensity-based techniques for determining the segmentation threshold, such
as [13, 14], are used for extraction and determination of its surface. A gradient-based
object extraction method is reliable when the object intensity value differs significantly
from the background intensity, which is not the case in infrared (IR) images [15].
The idea for searching, detecting and tracking an object smaller than 100 pixels has
been presented in [16].

The idea proposed in this research is to join the intensity- and gradient-based methods
and thus define a new approach to determining the contours. Pixel weighted coefficients
in the analyzed gate are computed on the basis of intensity and gradient magnitude
probability density functions. This idea is based on the new technique for motion de-
tection that incorporates several innovative mechanisms, which were presented in [17],
where the proposed technique stores a set of values taken in the past. Sequential im-
portance sampling [18] is then used for pixel filtration (PF) based on normalized weight-
ed coefficients. The suggested approach enables a more reliable estimation of the object
surface, which directly decreases the error of object distance estimation. The error of
the estimated distance to the object varies in time and directly depends on the quality
of the object extraction. In the 1970s, Kalman developed an algorithm for optimal fil-
tration for linear process with Gaussian noise measurement. Therefore, the suggested
approach includes Kalman filter for filtration of the estimated object size fluctuations.
The proposed method is recursive and improves distance estimation based on the surface
of an airborne object in a frame in comparison to known methods for passive ranging
with one sensor. 

2. Method description
Figure 1 shows passive ranging process flow. A window gate, Fig. 1b, represents
an adaptive rectangular window, whose dimensions are calculated based on the previ-
ously estimated object size. The window gate is isolated in each frame, within which
pixel segmentation threshold IT is defined using the algorithm suggested by OTSU [13].
The threshold value IT is used in pixel filtration procedure. In infrared images, it is
necessary to take the pixels whose intensity values are near the threshold because the
contours of the object cannot be strictly defined. Gaussian distribution, which attrib-
utes a weight coefficient to every single pixel in the window gate, is suggested in [19]:

(1)

where  is the weight of i-th pixel based on pixel’s intensity I (i )(k) at k-th frame,
IT (k) is the intensity threshold in the current frame and  is intensity variance for
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the window gate. The intensity variance is calculated using the following two equa-
tions:

(2)

(3)

where N is the number of pixels and IM is mean pixel intensity in the window gate. It
is assumed that the gradient magnitude is highest at the edges of the object, thus the
Roberts operator is applied and the following distribution defined:

(4)

where  and  is the i-th pixel gradient
magnitude value. Weight coefficients from (1) and (4) need to be normalised, and then
the joined weight coefficient for every pixel is defined as 
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Fig. 1. Representation of the method flow (see text for explanation). 
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(5)

Joined coefficients p(i)(k) are also normalised, with:

(6)

Values of  agree with pixel intensity in Fig. 1c, where brighter pixels rep-
resent larger values of  

Pixel filtration is performed on the basis of weight coefficients and filtering thresh-
old value of 1/N. The idea for such filtering has been derived from a sequential impor-
tance sampling method, commonly used in particle filters framework [18]. Filtered pixels
represent the area of the object contours APF(k), and they are highlighted in Fig. 1d.

The sum of filtered pixels and pixels within the enclosed contour of the filtered
pixels, Fig. 1e, represents the estimated size of the object APF(k). In the ideal video
sequence, the object size increases while the object is approaching, and decreases while
it is moving away from the sensor, i.e., its change in size is monotonously following
the distance change. The presence of noise and the fact that the edges of the object are
not clear in infrared images are the main factors influencing the fluctuation of APF(k)
estimations in real applications. The usage of Kalman filter (KF) – see Fig. 1f – with
the filtration model of constant acceleration for object size estimation AKF(k) has been
suggested for overcoming fluctuations of APF(k). This model has been accepted, know-
ing that the size change follows the quadratic law. The state vector is accepted as 

(7)

where states of X(k) are: area of object  rate of area change  and acceleration
of area change  The Kalman filter relations are [20]:
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(14)
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(18)

where pixel represents a measurement unit for the object surface and T  is a sampling
interval.

The estimated distance De (see Fig. 1g) is calculated based on the filtered object
area AKF, initial object area A0 and initial distance to the object D0. 

3. Pseudo-synthetic sequence
Pseudo-synthetic sequence is formed of an airborne object from one video sequence
and the background from the other video sequence, Fig. 2. It lasts for 350 frames with
the frame rate of 30 fps. The airborne object area in a frame is a constant value of
AT(k) = 259 pixels, Fig. 3. This simulation works under an assumption that an airborne
object does not change an attitude or make a maneuver and during the simulation, dis-
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Fig. 2. Example frames from pseudo-synthetic sequence.
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tance is constant. Minimal intensity value of the airborne object is Imin = 110. Two sce-
narios have been analyzed, where the main task is to estimate the airborne object area
and then evaluate the proposed method. The minimum intensity of the airborne object
is higher than the intensity of the background and in the second one, the intensity of
airborne object is decreased for 20, which implies the edge detection problem. The cri-
terion of a relative area error is adopted as an evaluation method, 

(19)

The following figures represent the parameter estimation, which are compared with
results using standard segmentation methods of Otsu and Tsai.

The estimated airborne object area Ae(k) is represented in Figs. 4a and 5a, while
the relative area error, ErrA(k), is shown in Figs. 4b and 5b. The other estimated pa-
rameters can be seen in Figs. 4c, 4d, 5c and 5d. Considering the values of Ae(k) and
ErrA(k), the proposed method has a better area estimation than standard methods. 
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Fig. 4. Estimated parameters: the airborne object area (a), the relative area error (b), intensity in the
window gate (c), and the airborne object dimensions (d); Imin = 110. 
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The described method gives good results whether the airborne object intensity is
higher than the background intensity or absorbed in it. The results in Figs. 4c and 5c
represent the intensity threshold, which is very important for a recursive algorithm.
The expected position of the airborne object in frame depends on its center and size
estimation. Figure 4d shows perfect airborne object size estimation when its intensity
is over 110, while Fig. 5d represents very slight fluctuation when the airborne object
intensity is within background intensity. To sum up, these results justify the proposed
recursive method, which can be easily used for distance estimation based on size
measurements.

4. Experiments

The proposed method was tested in three real infrared image sequences recorded by
dual observer passive ranging system (DOPRS) [9], which is designated for tracking
airborne objects. The system uses two thermal cameras to estimate the object distance
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Fig. 5. Estimated parameters: the airborne object area (a), the relative area error (b), intensity in the
window gate (c), and the airborne object dimensions (d); Imin = 90. 
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by triangulation, with the absolute error less than five metres. Sequences recorded by
one camera were used in this research, while distance obtained by DOPRS was used
in analyzes as the reference in determining the estimation error. Based on the object
size, distance De(k) is estimated by [21] 

(20)

where Ae denotes the estimated object area as: AKF – estimated according to algorithm
in Fig. 1, APF – calculated by the same algorithm without Kalman filter (see Fig. 1f ),
areas AOt and ATs are the outputs of block sequence a → b → e → g in Fig. 1 and the
corresponding method for intensity threshold calculation: Otsu’s [13] and Tsai’s meth-
ods [14], respectively.

Estimated object width wx(k) and height wy(k) are used for adaptation and calcu-
lation of the new window gate size, which is three times larger than the object. The new
window gate is positioned at the estimated center of the object (xc(k), yc(k)) which is
calculated by simple mean of the position of object pixels by coordinates x and y. As
a new window gate is being generated for object detection, an optimal intensity thresh-
old is provided.

The airborne object is moving towards the sensor in all the sequences that last for
NT frames. The background is on a nearly constant grey level in the first sequence,
Fig. 6a, while the background intensity fluctuates in the second sequence, Fig. 6b.
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The object intensity is saturated in the third sequence, Fig. 6c. Selected video sequenc-
es were previously analyzed in [9], where Tsai’s method [14] was used to calculate
the intensity threshold.

Object distances were determined by Eq. (20), where D0 was taken over from DOPRS.
Object surfaces were estimated by the proposed method, Fig. 1, and two histogram
-based techniques: Tsai’s moment-based thresholding [14] and Otsu’s method [13],
without weighting and filtration blocks in Fig. 1. The results are presented in distance
estimation graphs (Figs. 7–9) and mean relative error of the distance value for every
sequence (see the Table) using the following equation: 

(21)

Object distance estimation in the first video sequence is shown in Fig. 7, where
D stands for DOPRS distance, DTs is the distance estimated by Tsai based approach,
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DOt represents estimation relying on Otsu’s method and DPF is the distance obtained
using the method suggested in this research. The blurred object edges in the IR sequence
cause the variations in object size measurements and distance estimation using pixels
filtration and traditional methods, which justifies the application of Kalman filter. It
can be seen that DPF is of a slightly smaller distance estimation variance in comparison
to DTs, while the result is significantly better than DOt, since the estimated distance
DKF is of the smallest variations, as expected.

Figure 8 shows that the suggested method has the smaller distance estimation error,
except in cases of drastically changed background intensity, and then the distance es-
timation by Otsu’s method proves slightly better. As in the previous sequence, the es-
timated distance on Kalman filter output shows the lowest error. 

Justifiability of the method presented in this research is best seen in Fig. 9, where
distance estimation is nearly ideal. Other two methods give less reliable distance es-
timations when the object intensity is saturated. In this sequence, the object surface is
relatively large (Fig. 6c), and the contribution of Kalman filter is not obvious as in the
preceding sequences. 

According to the results in the Table, it is evident that the proposed method is robust
as it estimates object distance with errors below 3% in all the analyzed sequences, while
the distance estimation error by non-filtration techniques notably depends on the se-
quence. 
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Fig. 9. Distance estimation for the third sequence. 

T a b l e. Mean relative error of distance.

Method

Sequence

First Second Third

Tsai 2.38% 6.77% 3.64%

Otsu 6.85% 2.79% 4.29%

Pixel filtration 2.28% 2.89% 1.16%

Pixel filtration (KF included) 1.67% 2.71% 1.10%
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5. Conclusion
The robust method for distance estimation using a single sensor, involving Otsu’s method
for intensity threshold and pixel filtration using intensity and gradient magnitude, has
been proposed. It was shown that mean relative error is under 3% in all the analyzed
scenarios, and below 2% for approximately constant backgrounds. The suggested pixel
filtration method for object size measurement with Kalman filter produces significant-
ly better results for distance estimation in comparison to traditional methods. The im-
portant contribution is visible in the sequences with distanced objects of small surfaces
on nearly constant backgrounds, while the most significant results are obtained from the
sequence with saturated object intensity. Further research will be focused on minimising
a distance estimation error under complicated backgrounds.
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