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Based on the extended Huygens–Fresnel principle, the analytical expressions for the cross-spectral
density function of mixed circular edge-screw dislocations beams propagating through atmospheric
turbulence have been derived, and used to study the dynamic evolution of mixed circular edge-screw
dislocations in free space and atmospheric turbulence. It is shown that the radius of circular edge
dislocations increases with increasing propagation distance, and both the positions of the optical
vortex and the center of circular edge dislocations are located at the point (0, 0) when mixed circular
edge-screw dislocations propagate in free space. When mixed circular edge-screw dislocations
propagate in the atmospheric turbulence, the position of optical vortices varies with increasing
propagation distance, the circular edge dislocation evolves into a pair of optical vortices with the
opposite topological charge ±1, and the pair of optical vortices will annihilate as soon as the prop-
agation distance becomes large enough.
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turbulence.

1. Introduction

Recently, much interest has been exhibited in optical beams carrying phase singularities
because of their theoretical importance and attractive potential applications in optical
manipulations, atom trapping, optical communication, optical tweezers, semiconduc-
tor patterning, high-resolution metrology and micromachining, etc. [1–8]. In 1974,
NYE and BERRY proposed the concept of optical wavefront dislocation, and summarized
the three main phase singularities of monochromatic light waves: screw dislocation,
edge dislocation and mixed dislocation [1]. In a screw dislocation a spiral phase ramps
around a singularity where the phase of the wave is undefined and whose amplitude
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vanishes. An edge dislocation is the π-shift in the wave phase located along a line or
circle in the transverse plane, thus edge dislocation can be divided into linear edge dis-
location and circular edge dislocation [2]. Mixed dislocation is composed of an edge
dislocation and screw dislocation. DIPANKAR et al. have investigated the trajectory of
an optical vortex in atmospheric turbulence in 2009 [9]. JINHONG LI et al. have analyzed
the propagation of optical vortices formed by the partially coherent beam array [10].
YAMEI LUO and BAIDA LÜ pointed out that the position of linear edge dislocations is
dependent on the amplitude ratio and waist width ratio of beams [11]. The dynamic
evolution and classification of optical vortices in atmospheric turbulence have been
researched in literatures [12, 13]. The linear edge and circular edge dislocations were
also researched in detail in [14–16].

The mixed dislocations have attracted researchers’ attention extensively. PETROV

reported that an optical vortex induces the splitting of a linear edge dislocation into
vortices of topological charges whose positions and number depend on which phase
dislocation is shifted from the host beam [17]. HONGWEI YAN and BAIDA LÜ have stud-
ied the interaction of the vortex and linear edge dislocation in the presence of an astig-
matic lens, and pointed that for the aberration-free case the linear edge dislocation bend
and break up into a pair of oppositely charged vortices [18]. DE HE et al. have inves-
tigated the interaction of the vortex and linear edge dislocation, and found that the lin-
ear edge dislocation will be broken, and the vortices may be moved, created and
annihilated by varying beam parameters in the free-space propagation [19]. HAITAO

CHEN et al. have studied analytically and numerically the interaction between a vortex
and an edge dislocation nested in a cos-Gaussian beam passing through a tilted lens [20].
KAICHENG ZHU et al. have analyzed the intensity distribution and the corresponding
phase distribution of the generalized sine-Gaussian beams with a topological charge +1
and an edge dislocation [21]. The interaction of the vortex and linear edge dislocations
also has been reported in literature [22–26]. It is interesting to ask: what will happen
when the mixed circular edge-screw dislocations are propagating through free space
and atmospheric turbulence? The purpose of this paper is to make a detailed study on
the dynamic evolution of the mixed circular edge-screw dislocations in free space and
atmospheric turbulence. In the second section, the cross-spectral density function of
the mixed circular edge-screw dislocations beams propagating through atmospheric
turbulence is derived. The dynamic evolution of mixed circular edge-screw disloca-
tions propagating through free space and atmosphere turbulence is studied in the third
and forth section, respectively. Finally, the fifth section summarizes the main results
of this paper.

2. Theoretical model

The initial field of Laguerre–Gaussian (LG) beam at the plane z = 0 reads as [27, 28] 
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where s and θ are the radial and azimuthal coordinates, w0 denotes the waist width of
the Gaussian part,  denotes Laguerre polynomial. For m ≠ 0 and n ≠ 0, LG beams
are typical mixed circular edge-screw dislocations beams, namely, Eq. (1) is the initial
field of mixed circular edge-screw dislocations beams at the plane z = 0. Using Eq. (1),
the normalized intensity distribution and phase distribution of mixed circular edge-screw
dislocations beams are plotted in Fig. 1. The calculation parameters are w0 = 1 cm,
m = 1, and n = 1. From Figs. 1a and 1b we can see that the mixed circular edge-screw
dislocations beams exist a circular edge dislocation and an optical vortex with topo-
logical charge is +1 at the source plane.

Using the relations between Laguerre polynomial and Hermite polynomial [29] 

(2)

the initial field of mixed circular edge-screw dislocations beams at the plane z = 0 can
be expressed as follows: 
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Fig. 1. The normalized intensity distribution (a) and phase distribution of mixed circular edge-screw
dislocations beams at the source plane (b).
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The cross-spectral density function of mixed circular edge-screw dislocations beams
at the source plane z = 0 is expressed as

(4)

where * denotes the complex conjugate, and

In accordance with the extended Huygens–Fresnel principle [30], the cross-spectral
density function of mixed circular edge-screw dislocations beams propagating through
atmospheric turbulence is given by

(5)

where

and ρ1 ≡ (ρ1x, ρ1y), ρ2 ≡ (ρ2x, ρ2y) denote the position vector at the z plane, k is the wave
number related to the wavelength λ by k = 2π/λ,  denotes the average over
the ensemble of the turbulence medium. It is worth mentioning that a quadratic ap-
proximation of the Rytov phase structure function [31] is used in Eq. (5), which can
be written as

(6)

where  denotes the spatial coherence radius of spherical wave
propagation through turbulence and  denotes the generalized structure constant.
The larger  is, the stronger the atmospheric turbulence is.
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Substituting Eqs. (4) and (6) into Eq. (5), we used the following formulas and the
Hermite functions [32]: 

(7)

(8)

(9)

(10)

after complex integral operation, we obtain the cross-spectral density function of mixed
circular edge-screw dislocations beams propagating through atmospheric turbulence
as follows:
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and 
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According to the symmetry, Ay and Fy can be obtained by the replacement of ρ1x and
ρ2x in Ax and Fx with ρ1y and ρ2y. For  Eq. (11) becomes the cross-spectral
density function of mixed circular edge-screw dislocations beams in free space. 

The spectral degree of coherence is defined as [33] 

(12)

where I(ρi, z) = W(ρi, ρi, z), (i = 1, 2) stands for the spectral intensity of the point (ρi, z).
The position of optical vortices is determined by [34] 
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where Re and Im denote the real and imaginary parts of μ(ρ1, ρ2, z). The sign of optical
vortices are determined by the vorticity of phase contours around singularities [35],
namely, when varying the phase in counterclockwise direction and clockwise direc-
tion, the sign of the topological charge corresponds to plus and minus, respectively,
and the phase changes 2mπ, the corresponding topological charge is m.

3. Dynamic evolution of mixed dislocations 
in free space

Figure 2 gives curves of Re(u) = 0 (solid curves) and Im(u) = 0 (dashed curves) and
contour lines of phase of mixed circular edge-screw dislocations beams at the source
plane and propagating through free space at the propagation distance z = 0.3 and 2 km,
the abscissa represents ρ2x direction, ordinate represents ρ2y direction, and their units
are cm. The calculation parameters are λ = 632.8 nm, w0 = 1 cm, ρ1 = (7 cm, 7 cm),
m = 1, n = 1. Figures 2a and 2d indicate that there exists a mixed circular edge-screw
dislocation at the source plane, which is composed of an optical vortex (marked as A)
with topological charge m = +1 and a circular edge dislocation (marked as B). The po-
sition of the optical vortex A is (0, 0), the radius of circular edge dislocation B is
rB = 1.02 cm, the position of the center of circular edge dislocation B is located at (0, 0).
Figures 2b and 2e show that when mixed circular edge-screw dislocations propagate
in free space, the positions of the optical vortex A and the center of the circular edge
dislocation B do not move, and the radius of the circular edge dislocation B increases
to rB = 1.18 cm at z = 0.3 km. From Figs. 2c and 2f we can see that the positions of
the optical vortex A and the center of the circular edge dislocation B still do not move,
and the radius of the circular edge dislocation B continues to increase to rB = 4.20 cm
at z = 2 km. Figure 2 indicates that with the increase of the propagation distance, the
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radius of the circular edge dislocation increases gradually. The positions of the optical
vortex and the center of the circular edge dislocations do not move when mixed circular
edge-screw dislocations beams propagate in free space.

4. Dynamic evolution of mixed dislocations 
in atmospheric turbulence

Figure 3 gives curves of Re(u) = 0 (solid curves) and Im(u) = 0 (dashed curves) and
contour lines of the phase of mixed circular edge-screw dislocations beams propagat-
ing through atmospheric turbulence at the propagation distance z = 0.3, 2 and 5 km.
The calculation parameters are m–2/3, and the others are the same as in
Fig. 2. Figures 2a, 2d, 3a, and 3d indicate that the position of optical vortex A moves
to (0.32 cm, –0.15 cm) from (0, 0), circular edge dislocation B evolves into a pair of
optical vortices (marked as B+ and B–) with topological charge +1 and –1, whose po-
sitions are located at B+(1.04 cm, –0.67 cm) and B–(–0.65 cm, 1.04 cm) at z = 0.3 km.
Figures 3b and 3e show that with the increment of the propagation distance, the posi-
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tions of optical vortices A, B+, B– move. Figures 3c and 3f  indicate that when the trans-
mission distance is far enough, the pair of optical vortices B+ and B– will annihilate,
and optical vortex A still exists. Figure 3 indicates that the position of optical vortices
varies with the increasing propagation distance, and each circular edge dislocation
evolves into a pair of optical vortices with the opposite topological charge when mixed
circular edge-screw dislocations beams propagate in atmospheric turbulence. It is as-
sumed that the atmospheric turbulence is a random media, in which the wavefront of
the mixed circular edge-screw dislocations beams will be distorted and broken. When
the propagation distance is far enough, the pair of optical vortices will annihilate.

5. Conclusion

In this paper, by using the extended Huygens–Fresnel principle, the analytical expres-
sions for the cross-spectral density function of mixed circular edge-screw dislocations
beams propagating through atmospheric turbulence have been derived, and used to
study the dynamic evolution of mixed circular edge-screw dislocations in free space
and atmospheric turbulence. For mixed circular edge-screw dislocations beams in free
space, with the increment of the propagation distance, the radius of the circular edge
dislocations increases gradually, the positions of the optical vortex and the center of
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the circular edge dislocations do not move. In the atmospheric turbulence, the position
of optical vortices varies with increasing propagation distance, each circular edge dis-
location evolves into a pair of optical vortices, as soon as the propagation distance be-
comes large enough, the pair of optical vortices will annihilate. The results obtained
in this paper will deepen the understanding of the characteristics of the dynamic evo-
lution of the phase singularities, and will help to explore the potential applications of
the new effects of phase singularities.
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