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THE POSSIBILITIES OF MODELLING 
THE MEMBRANE SEPARATION PROCESSES 

USING ARTIFICIAL NEURAL NETWORKS 

Despite the substantial progress observed in last years in membrane science, many initial prob-
lems associated with membrane processes have not been solved, including limitations in ability to 
control and predict membrane fouling and selectivity. That is why a suitable method for process op-
timization should be developed which will allow the most important membrane parameters to be 
modelled. 

The paper describes the possibilities of forecasting the parameters of the membrane processes 
using artificial neural network (ANN). The modelled parameters vary in their properties, so different 
ANN may be used for their testing and forecasting. 

1. MEMBRANE PROCESSES 

The development and application of membrane separation processes are among the 
most significant advances in chemical and biological process engineering. Membrane 
processes are based on advanced filtration which utilises the separation properties of 
organic or inorganic films. 

In recent years, a substantial increase in the application of membrane processes 
can be observed in water and wastewater sector. Membranes are used for liquid–
solid separation, desalination, softening, removal of organic and inorganic contami-
nants, disinfection, gas transfer or sludge thickening. Today, very effective mem-
brane processes are capable to replace the majority of separation processes used in 
environmental engineering. In this area, pressure-driven membrane processes pre-
dominate. 
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Ranging from microfiltration to reverse osmosis, the pressure-driven membrane 
processes make the removal of nearly all undesired compounds from a given solution 
possible (figure 1). 
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Fig. 1. The range of pressure-driven membrane processes of separation [1] 

Despite the substantial progress achieved recently in membrane science, many ini-
tial problems associated with membrane processes have not been solved, including 
limitations in our ability to control and predict membrane fouling and selectivity. That 
is why a suitable method for process optimization should be developed to model the 
most important membrane parameters. The method of process modelling based on 
Artificial Neural Network is recently very popular in chemical engineering. The objec-
tive of this paper was to show how ANN can be applied to modelling membrane pa-
rameters which are responsible for the efficient separation processes. 

2. ARTIFICIAL NEURAL NETWORK (ANN) 

The idea of ANN is based on the structure of nervous system that transmits the 
signals from outside the cell. Neurones (figure 2), the main elements of nervous sys-
tem, are responsible for the transferring of information. Input signals are carried to the 
cell by synapse. Output signals are conducted away from the cell body by axon. In the 
nervous system, nervous impulses from one cell to another are conducted due to spe-
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cial chemical substances called neuromediators. Artificial neural networks  try to copy 
human brain functioning. The intellectual functions of the brain are connected with 
cerebral cortex that includes 1010 nerve cells. The number of interconnections between 
cells are equal to 1015 with the distances of 0.01 mm–1.00 m. The frequency of the 
transmission of information is estimated on the level of 1–100 Hz, but the time of 
transmission is equal to 1–2 ms. The above mentioned numbers prove that human 
brain is really fast and best known natural processor. Information transmission is 
based on the difference of the action potentials. This action-potential difference arises 
due to the difference between Na+ and K+ ion concentration that occurs when neurones 
are activated by the external or internal factors.  
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Fig. 2. The image of a natural neuron Fig. 3. The image of a multi-layer perceptrone [2] 

Artificial neural network is a simplified model of human nervous system. The 
network consists of neurones which are data processors. Each neurone is responsible 
for summarizing input signals. ANN just computes output values from input values. 
The sum of the transferred information is weighted. These weighted connections are 
shown in figure 3 [2]. The sum of the values is transmitted to the next network 
layer. 

The first model of artificial neurone was constructed by McCulloch and Pitts in 
1943. According to MCCULLOCH and PITTS [3] the output signals are expressed by: 
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where: 
yi – the output signal; 
xj – the input signal; 
wij – the weights between node i and node j; 
bi – the threshold value. 
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The function f(u), as shown in equation (1), is called the activation function that 
stimulates the information transmission. The above mentioned model is quite simple 
and since 1943 ANN has been developed and improved to be sufficient for modelling 
a lot of dynamic processes. Neural networks enable non-linear and complex problems 
to be modelled. 

Neural networks can be divided into three categories: 
• recurrent networks, 
• radial networks (RBF), 
• feed forward multi-layer perceptrone (MLP) (figure 3) which is the most popular 

one.  
In MLP, neurones form the layers (input, hidden and output layers). The neurones 

from two adjacent layers are interconnected. The way of transmition is based on dif-
ferent activation functions.  

The way of ANN learning is very important, since it has the significant influence 
on the predicted parameters. There are known two main methods of ANN learning:  

• supervised learning, 
• unsupervised learning.  
In the technical aspects, the first manner is more suitable because of required con-

vergence between experimental and forecasted parameters. The most popular super-
vised learning is called backpropagation algorithm with the learning coefficient 
η ∈ (0; 1). This method is based on the negative gradient optimization. The aim is to 
define the objective function. The derivative (gradient) of this function specifies the 
weight Δwij of the first connection between neurones. The algorithm is repeated since 
Δwij = 0. Another way of learning is the graph method that is applied in, for example, 
recurrent networks. 

The modelling using ANN may be quite good manner of predicting membrane pa-
rameters. The prediction by ANN approach is dynamic and efficient which is impor-
tant because of changing parameters during operation time. 

3. APPLICATIONS OF ANN IN MEMBRANE TECHNOLOGY 

In this part of the article, the way of ANN applications in the membrane separation 
processes will be discussed. The most important parameters of ANN and membrane 
technology will be considered here. In all the papers mentioned below, ANN was 
computed with the help of MATLAB program and its special toolbox considering 
neural networks. The most popular activation function used for learning process is 
sigmoid function 
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3.1. MEMBRANES IN FOOD INDUSTRY 

In 2003, RAZAVI et al. [4] applied ANN to predict the permeate flux J, total hy-
draulic resistance R and the rejection of solutes (protein, fat, lactose, minerals and total 
solids) in the crossflow UF of milk. The conditions of the process have been changing 
due to the change of the transmembrane pressure (TMP) (51; 101.33; 152; 203 and 
253 kPa) and the temperature (30 °C; 40 °C and 50 °C). Feed concentration was con-
stant and the feed flow equalled 15 dm3/min. In the experiments, they used the poly-
sulfone capillary amide membrane with the cut-off of 20 kDa. The permeate amount 
was recorded every 30 seconds. The supervised learning of ANN was based on the 
backpropagation method. The sigmoid function as an activation function, being re-
sponsible for a suitable prediction of the outputs, was used. Only 14.2% of data were 
used for the training, the rest – for validation. In this case, the values were normalised 
using the linear normalisation method. A single hidden layer with 15 hidden neurones 
allowed a sufficient convergence between the data predicted by ANN and the experi-
mental ones: J decreased with the process time, R increased with TMP and tempera-
ture; the rejection of solutes estimated by ANN was very similar to that obtained ex-
perimentally. The examples of theses results are shown in figure 4. In this case, the 
authors used for validation 756 points, and for training – 84 points. ANN was success-
fully used for predicting milk ultrafiltration.  
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Fig. 4. Total hydraulic resistance (a) and dynamic flux (b) predictions during the milk ultrafiltration 
as the function of transmembrane pressure. Temperature was constant and equal to 40 °C [4] 

PIRON et al. [5] have compared ANN, called also “black box”, with semi-physical 
approach in the crossflow microfiltration. “Black box” model does not require any 
exact description of the process. This method is based on the network capability to 
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approximate the system. On the contrary, semi-physical approach is rather a priori 
way of approximation. The suspensions of bakers’ yeast were used in the experiments 
performed at different pressures (50; 100; 160; 200; 300; 400 kPa) and different cross-
flow velocities (2; 3; 4 m/s) at a constant temperature of 20 °C. MF module used in the 
test consisted of 7 tubular mineral membranes whose filtration area reached 0.16 m2. 
Analyzing the results obtained it became evident that the hydraulic resistance in-
creased with the pressure and decreased with cross-flow velocity. The filter cake for-
mation on the membrane surface was chiefly responsible for these relationships and 
for this reason force compensation and back transport were analysed. The authors used 
sigmoid function for the learning and activation processes. The inputs to this neural 
architecture were: hydraulic resistance, cross-flow velocity, pressure and concentra-
tion. The output signal was defined as permeate flux. Figure 5 shows the example of 
the neural network used. The authors concluded that semi-physical approach (hybrid 
model) was more precise, and ANN could provide only additional help in accurate 
computing. 
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Fig. 5. The image of two-layer feedforward network used by PIRON et al. [5] 
to model MF of bakers’ yeast [5] 

DORNIER et al. [6] dynamically modelled MF membrane fouling caused by a raw 
cane sugar suspension using ANN. In the experiment, ceramic membrane (1.4 μm pore 
size) with multichannel profile was used. The experimental setup was connected to 
computer which enabled the data to be simultaneously computed by ANN. Membrane 
eouling is a result of the mass flow, back diffusion connected with high feed concen-
tration and electrochemical interactions between membrane and feed solution. In this 
case, the hydraulic resistance of the membrane was changing with time, but the tem-
perature (80 °C) and concentration were constant. MLP network was designed in such 
a way as to carry out an accurate simulation being based on backpropagation learning 
method and the sigmoid activation function. The simulation was run using two series 
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of experimental data. In the first series both pressure and flow velocity had constant 
values, while in the second series, other values were included in the range of interest. 
ANN with two and one hidden layers was tested. Finally, a good convergence (97%) 
was obtained with 5 neurones in the first hidden layer and 3 neurones in the second 
hidden layer (NN5/3). The experiment and ANN predictions revealed that fouling 
increased with the duration of the membrane process. Figure 6 shows the comparison 
between the experimental and calculated total hydraulic resistance (fouling) at the 
pressure of 150 kPa and the flow velocity of 5 m/s. 
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Fig. 6. The comparison between the experimental 
and calculated total hydraulic resistance (NN5/3) in the microfiltration of raw cane sugar [6] 
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Fig. 7. ANN predictions and experimental points obtained for the ultrafiltration 
of proteins solution of different pH (a) and ionic strength (b) [7] 

ANN was applied by BOWEN et al. [7] to predict the dynamic dead-end ultrafiltra-
tion of proteins. The input signals (pH = 5÷9, zeta potential ξ = –2.62÷ –42.78 mV and 
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ionic strength I = 0.03÷0.15 M) were measured and based on their values ANN was 
able to generate the rate of the ultrafiltration which was the output value. The pressure 
was constant and equal to 400 kPa.  This rate of ultrafiltration and the relation between 
time (t, min) and volume of filtrate (V, cm3) could be identified. In figure 7, t/V versus 
V is shown. The curves are becoming steeper with a decrease in pH values and with an 
increase in ionic strength. According to the authors the quality of the inputs is more 
important than their quantity. All ANNs used in the work had one single layer. The 
number of neurones in the hidden layer were estimated by the trial-and-error method. 
The sigmoid function applied proved to be quite efficient because of its differentiabil-
ity, continuity and monotonicity. What is more important, the derivative of this func-
tion could be expressed by the function itself. The weights of the connections between 
neurones were minimized by backpropagation method. The authors reached reason-
able agreement between the experimental data and the outputs generated by ANN. An 
average error was less than 2.7%. 

RAI et al. [8] applied ANN modelling in ultrafiltration of synthetic fruit juice 
and mosambi juice in order to predict the permeate flux and total soluble solid in the 
permeate. To reach this aim, it was necessary to have such inputs as: TMP = 276, 
414, 552 kPa, the concentration of both sucrose (10, 12, 14, 11.2%) and pectin (0.1, 
0.25, 0.3, 0.5%) in the feed solution, and the duration of the process. In the experi-
ments, composite polyamide UF membrane of 50 kDa cut-off and an effective filtra-
tion area of 15.2 cm2 was used. Sucrose and pectin solution was responsible 
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Fig. 8. Methodology of developing MLP (a) and procedure of training MLP (b) 
for modelling fruit juice ultrafiltration [8] 
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for the membrane gelation that caused permeate flux decline. It is worth noticing 
that sucrose was not retained on the membrane, but it made the pectin layer fairly 
thick which delayed the sucrose transport. In order to model typical feedforward 
neural network, a sigmoid activation function was used. Learning data were divided 
into two groups: in the first one the flux is considered, and in the second one – solu-
ble substances in the feed solution. In this case, the network of two hidden layers 
was the optimal type of ANN. The model of ANN architecture-developing and 
training procedure is shown in figure 8. The results obtained from ANN and mean 
absolute error method were compared. The ANN model was sufficient for predicting 
output signals. 

3.2. MEMBRANES IN WATER AND WASTEWATER TREATMENT 

Dynamic modelling the crossflow MF of bentonite suspension using recurrent neu-
ral network was described by HAMACHI et al. [9]. A recurrent network (figure 9), 
more complicated than MLP, enabled the forecasting of such parameters as the perme-
ate flux J and the deposit thickness ep. The above mentioned unknowns were predicted 
on the basis of TMP (P = 50÷300 kPa), cross-flow velocity (u = 0÷0.75 m/s) and the 
concentration of suspension (c = 0÷0.5 g/dm3). In the experiment, we applied a ce-
ramic tubular membrane with an external skin. Optical devices and laser beam allowed 
the deposit thickness to be measured. 
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Fig. 9. The structure of recurrent neural network used in modelling 
the crossflow MF of bentonite suspension [9] 

It is obvious that the results generated by ANN showed the same trend as experi-
mental values. Permeate flux was decreased and deposit thickness increased during 
operation time. To obtain such a convergence it was necessary to choose the range of 
the input variables properly. The learning method was based on the quasi-Newtonian 
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approach. The model designed by using sigmoid function could satisfactorily predict 
the output values. All data were divided into two groups: a testing group and a validat-
ing group. Single hidden layer with seven neurones turned out to be sufficient for reli-
able prediction of the parameter.  

DELGRANGE et al. [10] have used ANN to predict total hydraulic resistance of 
the membrane at the end of a municipal water ultrafiltration cycle and after back-
washing. The output values such as fouling and hydraulic resistance were connected 
with the clogging of the capillary modules and adsorption of organic matter on the 
membrane surface. In the experiment, the rate of permeate flow, pressure and feed 
water turbidity were used as input signals. Learning process was based on 
a proper estimation of the weight generated by the inputs. The authors used sigmoid 
activation function to predict output parameters. In this case, water was pretreated 
by passing it through 200 μm filter. Figure 10 shows the schema of a pilot plant. 
This figure is quite important because it shows that before the membrane processes 
it is necessary to pretreat (for example, by typical filters) the raw solution, otherwise 
UF membrane would be plugged earlier and backwashing would be more frequent. 
Modelling showed that for the prediction of reversible fouling water turbidity was 
an efficient parameter. 
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Fig. 10. Schema of the pilot plant used in ANN modelling of water ultrafiltration [10] 

DELGRANGE-VINCENT and co-workers [11] designed ANN model responsible for 
predicting reversible and irreversible fouling of UF membranes used for drinking wa-
ter production. The model was based on two interconnected (but trained separately) 
recurrent neural networks (figure 11). 
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Fig. 11. The structure of interconnected neural networks designed to predict reversible 
and irreversible fouling of UF membranes used for drinking water production [11] 

During long-term prediction (more than 100 filtration cycles) of fouling, water 
quality and process parameters were changed. The authors noticed that in the con-
struction of ANN models, permeate flux, time of filtration, turbidity, dissolved oxygen 
concentration, pH, UV absorbance and pressure of backwashing proved to be very 
important. These parameters were used as input values. The results showed that irre-
versible fouling was rapidly increasing when permeate flux reached the values of 
70÷80 dm3/h·m2. Figure 12 presents the resistance R of an experimental membrane 
after a number of cycles. 
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Fig. 12. The changes in the resistance of the membrane  
used in natural water ultrafiltration after a number of cycles [11] 

In other experiments, DELGRANGE et al. [12] made attempt to predict the changes 
in TMP during ultrafiltration. They carried out the next analysis more comprehensive 
than the first one, and in this case the input signals (very important for efficient ANN) 
were as follows: flow rate (250÷700 dm3/h), turbidity (0÷100 NTU) during the cycle, 
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and temperature (5÷15 °C). These parameters were measured on-line, but such pa-
rameters as UV absorbance and total organic carbon concentration (TOC) being meas-
ured only pointwise. The experiment with drinking water was performed on the cellu-
lose acetate hollow fibre membranes. The schema of the pilot plant was the same as in 
other authors’ experiments (figure 10). The sigmoid activation function applied to one 
hidden layer accurately estimated all parameters. According to Delgrange et al. water 
turbidity proved to be the crucial parameter responsible for the learning and training of 
ANN.  

CABASSUD et al. [13] described the algorithm for the control of the drinking water 
production from raw surface water. The objective of their work was to avoid irreversi-
ble fouling of membrane. To reach the target the authors designed two networks. One 
of them modelled hydraulic resistance at the beginning of the cycle of ultrafiltration, 
while the other one – at the end. The networks have been learning separately. The 
input values for the first network were as follows: feed water parameters and resis-
tance during this cycle of filtration. For the second network the input value was based 
on the resistance at the end of filtration calculated by the first network. In this work, 
the authors made use of the results obtained previously [11], [12]. The results of pilot 
plant experiments were compared with these obtained under industrial conditions. 

SAHOO and RAY [14] analyzed the prediction of the flux decline in crossflow 
membrane filtration of water containing colloidal particles, proteins, macromolecules 
and biological particles. They investigated a decrease in the permeate flux under dif-
ferent conditions and at changeable values of water physicochemical parameters. The 
aim of the work was to compare the results generated by ANN with those generated by 
genetic algorithms (GA). It was shown that GA prediction for permeate flux decline 
was more accurate than that of ANN model, calibrated using trial-and-error method. A 
radial function with two hidden layers was defined to compute output values. A total 
mean square error calculated based on GA and ANN allowed a valid comparison in 
each iteration to be made. 

SHETTY and CHELLAM [15] described the possibilities of predicting membrane 
fouling by using ANN. In their work, surface water and groundwater were purified 
using nanofiltration. As the inlet parameters for ANN they chose feed flow and water 
quality (pH, UV, total dissolved substances and temperature). These parameters 
changed, depending on the type of membrane, season and the place of sample collect-
ing. The examples of these values are given in the table. 

In ANN learning, they used the sigmoid function for the hidden layers and linear 
functions for the input and output layers. The Levenberg–Marquardt algorithm was 
employed for ANN training. In the experiments use was made of the flat-sheet and 
spiral membrane modules. Modelling by ANN brought about sufficiently good results, 
but it was important to take account of the concentration of colloids and bacteria in the 
calculations. 
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T a b l e 

Summary of pilot and full-scale experiments used in ANN learning [15] 

Location 
Water 
source 

Feed water quality 
Pretreatment Membrane 

pH 
TDS, 

mg/dm3 UV254, 1/cm T, °C 

West 
Palm 
Beach, FL 

Floridian 
aquifer 

5.80–7.2 291–338 0.46–0.509 23.1–25.8 pH adjustment using 
H2SO4; 1.0 mg/dm3 anti-
scalent addition; 
5 μm cartridge filtration 

TFC (Koch fluid 
systems, San 
Diego, CA) 

Boyton 
Beach, FL 

Well 
water 

5.9–6.53 595–617 0.369–0.489 23.3–25.5 pH adjustment using 
H2SO4; 5 μm cartridge 
filtration 

NF70 (Dow 
FilmTec, Mid-
land, MI) 

Boca 
Raton, FL 

Biscayne 
aquifer 

5.7–6.75 349–408 0.186–0.465 24.2–25.6 pH adjustment using 
H2SO4; 4.0 mg/dm3 anti-
scalent addition; 
5 μm cartridge filtration 

NF200-4040 
(Dow FilmTec, 
Midland, MI) 

Dayton 
Beach, FL 

Floridian 
aquifer 

5.6–7.12 330–408 0.26–0.308 20.6–23.9 pH adjustment using 
H2SO4; 3.0 mg/dm3 anti-
scalent addition; 
5 μm cartridge filtration 

BW30-4040 
(Dow FilmTec, 
Midland, MI) 

Deltona, 
FL 

Floridian 
aquifer 

5.91–6.96 180–280 0.083–0.089 20.2–27.4 pH adjustment using 
H2SO4; 5 μm cartridge 
filtration 

TFC (Koch fluid 
systems, San 
Diego, CA) 

SHETTY et al. [16] studied the prediction of the contaminant removal from surface 
and groundwater in nanofiltration process. Their attention was focused on the reten-
tion of dissolved organic carbon, precursors of total organic halides, four triha-
lomethanes, nine haloacetic acids and total dissolved solids. In order to model the 
above mentioned complex problem, the inputs such as flux (10÷35 dm3/h·m2) and feed 
water quality parameters (pH, total dissolved solid concentration, a surrogate for ionic 
strength) were used. At the beginning of the process, the ratio of Cp/Cf, i.e., the ratio of 
the permeate concentration to the feed concentration of each contaminant, affected 
greatly the retention. Then in the calculations by ANN, the normalized ratio of Cp/Cf 
was also predicted. During the learning of neurones in two hidden layers (a typical 
sigmoid activation function) of ANN, Shetty et al. employed the backpropagation 
method with the Levenberg–Marquardt algorithm. For each contaminant, different 
ANN model was designed The results showed that ANNs could model the rejection on 
NF membranes, using very heterogeneous compound. 

BOWEN et al. [17] made use of ANN modelling to predict salt rejection (NaCl, 
Na2SO4, MgCl2, MgSO4) at nanofiltration spiral-wound membrane modules. In the 
experiment, temperature and cross-flow were constant and could not be treated as 
input variables. As the input signals the transmembrane pressure, salt feed concentra-
tion, pH and the kind of the salt were used. The way of learning was estimated by a 
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typical sigmoid activation function. The agreement between ANN and experimental 
data proved to be satisfactory. The results showed that rejection increased, depending 
on operation conditions, and that the salt rejection in the mixtures of monovalent and 
divalent anions was more reliably predicted by ANN than by the experiment. NaCl 
rejection, calculated by ANN and measured during NF at variable pH of solution, is 
shown in figure 13. 
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Fig. 13. ANN predictions for NaCl rejection as a function of salt concentration and pH: 
a) pH 4, b) pH 6.25, c) pH 9 [17] 

BOWEN et al. [18] estimated the rate of crossflow ultrafiltration using ANN ap-
proach. They examined the removal of colloidal silica suspension at different pH val-
ues (4÷9), ionic strength (0.0077÷0.072 M), zeta potential (–80.5÷ –6.3 mV) and pres-
sure (40÷300 kPa). These three groups of data were used for learning, testing and 
validating ANN. In the experiment, they used the membrane made from polyethersul-
fone with a 30 kDa cut-off. The problem was non-linear and complex, that is why the 
modelling with help of ANN being applied. A typical sigmoid activation function in 
one hidden layer was used for learning the network. The researchers aimed to predict 
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the changes in permeate flux with time. Silica particles could be treated as representa-
tive of other charged particles as well as of inorganic, polymer and biological matter. 
This aspect of representation was considered during designing the neural network, 
which allowed a high compatibility between experimental data and the data generated 
by ANN to be achieved. 

CHEN and KIM [19] used a radial basis function for predicting the permeate flux 
decline during crossflow filtration of colloidal suspension. They tried to compare the 
results of, radial networks (RBF) with those of both backpropagation method and lin-
ear regression method. In a radial network, tan-sigmoid function 

 xe
xf −+
=

1
1tan)(  (3) 

was used as activation function. The input values such as TMP (P), the time of filtra-
tion (t), the radius of the rejected particles (PS), pH and ionic strength (IS) were cho-
sen quite precisely. Figure 14 shows schematically the architecture of the network 
applied. The parameters bi, called biases, are responsible for the training process. Only 
17% of data were used for training, the rest was responsible for validation. As ex-
pected, permeate flux decreased with the time of operation and also was changing, 
depending on pH value. The possibilities of applying the modelling to industry by 
using RBF seem quite serious because the results obtained by CHEN and KIM [19] are 
accurate and sufficient. 
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Fig. 14. The architecture of the neural network with one hidden layer used for 
predicting the permeate flux decline during crossflow filtration of colloidal suspension [19] 

CURCIO et al. [20] analyzed flux decline during the ultrafiltration of BSA solution, 
using a polyethersulfone membranes with a 20 kDa cut-off. The ANN approach ap-
plied allowed us to predict the permeate flux. The experiment was carried out under 
pulsating conditions which were important for dynamic modelling. They dealt with 
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such conditions (pulse duration of 10 s) when the valve EV4 was periodically open and 
closed (figure 15). In those investigations, these pulsating work conditions seemed 
extremely interesting because all changes were measured on-line. Neural network had 
the architecture based on the MLP with two hidden layers in which neurones were 
trained by a typical sigmoid activation function. TMP was not considered to be the 
input value because it had not significant influence on the output value. ANN consists 
of three input signals, i.e., time, flow (0.12÷0.36 m3/h) and operation time (60÷120 s). 
The output is defined as normalized permeate flux.  
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Fig. 15. Schema of pulsating TMP ultrafiltration plant used for BSA ultrafiltration [20] 
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Fig. 16. The structure of ANN used for prediction 
of normalized permeate flux during microfiltration 

of polydispersed suspension [21] 
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CHELLAM [21] used ANN model for the prediction of fouling and normalized 
permeate flux during microfiltration of polydispersed suspension (glass and silica). 
The greater the initial permeate flux, the bigger the changes in the morphology of 
filtration cake and hydrodynamic parameters of specific resistance that was quite im-
portant for the range of fouling. The model included the input signals feed concentra-
tion (C0), initial permeate flux (J0), entrance shear rate (γ), instantaneous transmem-
brane pressure (P(t)) and filtration time. During the training the use was made of the 
Levenberg–Marquardt algorithm. Figure 16 shows the structure of ANN as well as the 
input and output values used by the author [21]. 

At the beginning of the process, the permeate flux was the most important parame-
ter influencing the fouling. Chellman employed different kinds of networks, depend-
ing on the changes in the type of suspension. The more complex the suspension, the 
longer the time of learning. The results showed that using ANN model it is possible to 
obtain better effects based on the nonlinear and dynamic parameters than using previ-
ous mechanistic models. 

ZHAO et al. [22] discussed the prediction of water quality after RO and NF. The 
aim of their work was to compare the results obtained from modified solution diffu-
sion model with those obtained from ANN. They used two different networks: the first 
based on MLP and the second based on RBF. The authors concluded that hybrid nu-
merical model and ANN used together were able to make the prediction of membrane 
performance more reliable. 

NIEMI et al. [23] modelled using ANN the separation of ethanol and acetic acid 
in reverse osmosis and ultrafiltration of bleachery effluent. The neural model was 
built in order to predict permeate flux and rejection at changeable process parame-
ters such as: temperature, supericial flow velocity, pressure and concentration of 
solute. In this case, chemical oxygen demand and permeate flux were the input val-
ues of ultrafiltration. The network consisted of one hidden layer with neurones 
trained by a sigmoid activation function. The Levenberg–Marquardt method was 
used for interpolation. The accuracy of calculations proved to be sufficient and time 
of computing reduced using ANN approach. The results obtained using ANN were 
compared with those based on the mass transfer model and it turned out that the 
predictability of output variables using ANN was almost the same as that obtained 
using finely porous model. 

AYDINER et al. [24] analyzed phosphate removal by fly ash which was separated 
using crossflow microfiltration membranes (anisotropic cellulose acetate and cellulose 
nitrate). The experiments were performed at cross-flow velocity of 5.2 m/s and 
a constant temperature of 20 °C. The aim of the paper was to predict flux decline in 
the operation time. For this purpose the authors compared the results obtained using 
ANN (two networks NN1 and NN2 were designed) with the Kołtuniewicz method 
being based on the surface renewal model (two types K1 and K2) [24]. The Koł-
tuniewicz model was used for the stochastic nature of the cake on the membrane. In 
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the experiments based on the Kołtuniewicz model, an average error of prediction ex-
ceeded 10%. Variable values of transmembrane pressure and the concentration of pol-
lutants were used as inputs for ANN. ANN was built from one to four hidden layers 
with a changeable number of neurones and trained with the help of backpropagation 
algorithm. This approach was more compatible with experimental data than the Koł-
tuniewicz model. The error distribution, responsible for the compatibility between 
experimental and predicted data, is given in figure 17 which presents the information 
allowing the comparison between two above mentioned models.  
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Fig. 17. The error distribution of all the data predicted by ANN 
and the KOŁTUNIEWICZ method [24] 

Based on ANN TEODOSIU et al. [25] tried to predict membrane flux before and af-
ter backwashing in dead-end flow ultrafiltration of refinery wastewater. Hollow fibre 
membrane modules with capillary membranes of the cut-off equal to 150 kDa were 
used. Each membrane module with membranes made from polyethersulphone and 
polyvinylprolidone had 50 fibres. The internal fibre diameter was 1.5 × 10–3 m and 
membrane area was equal to 0.1 m2. 

TEODOSIU et al. [25] built two ANN models: one describing flow during UF as a 
function of time and initial permeate flux value and another describing flow after 
backwashing. This approach made a global description of flux evolution with time 
possible. As authors have forecasted, the permeate flux decreased all the time of the 
process. The learning of the network was based on the backpropagation method, adap-
tive learning rate and momentum. The use of ANN approach led to relatively small 
errors (figure 18). The model could be adapted to other membrane technology condi-
tions which is of a real importance for both science and industry. 
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Fig. 18. ANN approximation for backwashing cycles [25] 
in ultrafiltration of refinery wastewater 

3.3. MEMBRANES IN GAS SEPARATION 

SHAHSAVAND et al. [26] compared radial basis function (RBF) with multi-layer 
perceptrone (MLP) in modelling membrane processes using hollow fibre membranes 
made from polyphenylene oxide and carbon-type polyimide. The aim of the experi-
ment was to separate carbon dioxide from methane. The experimental setup is shown 
in figure 19. 
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Fig. 19. The schema of membrane system used in gas separation [26] 
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It was shown that the predictions made by RBF (as more complicated network struc-
ture) turned out to be more reliable compared with those of MLP. On the other hand, the 
predictions of MLP were also compared with experimental data and the convergence 
was quite high. The authors considered and modelled the disturbances during membrane 
processes and during learning of ANN and proved that the parameters chosen properly 
for the regularization of the network were crucial in this investigation. 

4. CONCLUSIONS 

ANN proved to be an efficient tool for the modelling of different membrane pa-
rameters. Since 1990, a lot of investigations have been done using this way of fore-
casting the membrane processes. The aspects shown in the paper will be examined in 
the future, because the modelling techniques connected with ANN and membrane 
technology are evolving all the time. As could be seen, the possibilities of using neural 
networks for technical forecasting are really great and beneficial because of a simple 
way of experimental applications. The crucial point in this topic is a huge number of 
experimental data that must be collected. This is very important for the learning and 
validating of network structure. 
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MOŻLIWOŚCI MODELOWANIA PROCESÓW SEPARACJI MEMBRANOWEJ 
Z WYKORZYSTANIEM SZTUCZNYCH SIECI NEURONOWYCH 

Pomimo znaczącego w ostatnich latach rozwoju technik membranowych pozostało jeszcze wiele 
problemów związanych z procesami separacji, a także ograniczeń w kontrolowaniu foulingu i selektyw-
ności membran. Dlatego konieczny jest rozwój metod optymalizacji, które umożliwiają zamodelowanie 
najważniejszych parametrów procesów membranowych. 

W artykule opisano możliwości prognozowania parametrów procesów membranowych z użyciem 
sztucznych sieci neuronowych. Właściwości modelowanych parametrów są zmienne, dlatego do testo-
wania i prognozowania użyto różnych typów sieci neuronowych.  
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