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We discuss a Λ-like model of atomic levels involving two autoionizing (AI) states of the same
energy. The system is irradiated by two external electromagnetic fields (strong – driving and
weak – probing). For such a system containing degenerate AI levels we derive the analytical
formula describing the medium susceptibility. We show that the presence of the second AI level
leads to the additional electromagnetically induced transparency (EIT) window appearance. We
show that the characteristics of this window can be manipulated by changes of the parameters
describing the interactions of AI levels with other ones. This is a new mechanism which leads to
additional transparency windows in EIT model, that differs from the mechanism where a bigger
number of Zeeman sublevels is taken into account.
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1. Introduction
Electromagnetically induced transparency (EIT) discovered for the first time by
HARRIS and co-workers [1–3] relies on the destructive quantum interference of
the transition amplitudes. Such interference leads to suppression of absorption or even
to complete transmission of the resonant weak probe beam. This phenomenon arises
in the presence of a second (strong) laser beam coupling coherently one of the states
which participate in absorption, with some other atomic state. Some reviews
concerning EIT are given in literature (see for instance [4, 5] and the references quoted
therein). EIT, in its classical model, can be observed for three basic atomic levels
configurations. They are Λ-, V-type and cascade (ladder) ones. In these basic schemes,
a single peak of enhanced transmission, or one transparency window appear. Neverthe-
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less, one can find in the literature the schemes in which additional transparency
windows can appear. Such models can be potentially applied for slowing down of light
pulses at various frequencies [6]. The models allowing for multiple transparency
windows generation were proposed and discussed, for example in [7] (for the cascade
system) and in [8, 9] (Λ-model) (and the references quoted therein). 

EIT phenomena can be discussed not only for the models involving discrete levels
but also for those containing continuum ones. In particular, as it was shown in [10–12],
it is possible to create transparency windows for systems with autoionizing (AI) states,
or equivalently, with Fano structured continua. Quite recently, in [13], the model with
a single AI level was discussed in this context, and the strictly deterministic control
laser field was replaced by a so-called white noise signal.

AI systems involving discrete levels located above a continuum threshold (AI levels)
were considered for the first time in the classical paper by FANO [14]. Fano diago-
nalization, based on the Coulomb mixing of AI states with the continuum, leads to
a nontrivial structure of the latter [15–17] (and the references quoted therein). Such
structure can be even more complicated, leading to non-trivial effects in the photoelec-
tron spectra, if we assume that the AI system interacts with other ones, not necessarily
containing AI states [18, 19]. Such models can lead to the quantum entanglement gen-
eration, as well [20]. It should be stressed out that the models involving the structured
continuum (or continua) described by the Fano profiles play an essential role in various
physical processes, and have also a considerable practical meaning. Since first
discussions concerning Fano models in atomic physics [14], the Fano profile has been
found in several functioned materials as plasmonic nanoparticles, quantum dots,
photonic crystals and electromagnetic metamaterials – for exemplary considerations
concerning these problems see [21, 22] (and the references quoted therein). Discus-
sions concerning those special properties associated with its asymmetric lineshape give
us potential applications in a wide range of technologies [23]. An interesting review
on Fano profiles in nanostructures is given in [24].

In this paper, we present a model comprising continuum states in which the inter-
ference between two autoionization channels leads to the appearance of additional
transparency EIT windows. The mechanism presented here differs from that for
the systems involving only discrete levels without continua. In particular, we will show
that the presence of additional AI states can lead to new quantum interference effects.
As a result, the additional EIT windows appear. Moreover, changing the parameters
corresponding to the transition to (from) AI states, one can manipulate the charac-
teristics of these windows and the distances between them. However, one should keep
in mind that for some particular experimental realizations of our model, some dif-
ficulties could appear during the adjustment of the parameters involved in the problem.

The model discussed here is an extension of that involving AI resonances
considered by RACZYŃSKI et al. [12] by including the second AI level into our consid-
erations. As it was shown in [25–28], the presence of additional AI states can lead to
new quantum interference phenomena present in the system. As a result, additional
zeros can appear in long-time photoelectron spectra. In this paper, for simplicity, we
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will restrict ourselves to the case when two AI levels are of the same energy, i.e., they
are degenerate. We will show that such interference related to the presence of
additional AI level can lead to the additional EIT window appearance. Moreover,
changing the parameters corresponding to the transition to (from) AI states, we can
manipulate the characteristics of that window. Our model is easily expendable just
by adding more than one extra AI state. In such a situation, new, supplementary
transparency windows will appear.

2. The model and solution

In this section, we extend the Λ-like model discussed by RACZYŃSKI et al. [12] which
contains a single autoionizing level and a flat continuum coupled to other two lower
discrete levels by an external laser field. In our model, instead of the one AI level, we
discuss two AI levels   with the same energy E1 = E2. Moreover, they are
embedded in the same flat continuum  All of these states are coupled by a weak
probe field of frequency ωp with a discrete level  and by a relatively strong driving
control field with frequency ωc with another level  The scheme of the model is
shown in Fig. 1. The configurational coupling between the AI levels   and
flat continuum  is described correspondingly by the parameters U1 and U2. We call
such scheme a double-Λ system. 

In the scheme presented here, the coupling between the excited levels  (i =
= {1, 2}) and the lower discrete ones (  and ) is implemented by external laser
fields. In particular, the state  is coupled to the continuum  and AI levels by
a weak probe field with amplitude ε1, whereas the state  by a control field of
amplitude ε2. It is well-known that non-resonant interactions with other levels lead to
a level shift. Therefore, the field frequencies (especially, the frequency of the strong
driving field ω2) should be properly chosen to omit such a shift.

a1| 〉, a2| 〉
E| 〉.

b| 〉
c| 〉.

U2

U1

|a2〉
|a1〉

E2 ≡ E1

ωp

Probe

ωc

Drive

|b〉

|c〉

Fig. 1. Scheme of the discussed model. Due to the presence of the configurational interaction coupling
(U1 and U2) between two AI levels  and  and the flat continuum  all these states can be
replaced by the double Fano structured continuum |E ). This continuum (|E )) is coupled by the weak probe
and strong control fields of the frequencies ωp and ωc, respectively.

a1| 〉 a2| 〉, E| 〉

a1| 〉, a2| 〉
E| 〉

ai| 〉
b| 〉 c| 〉
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We start from the full Hamiltonian for the system

(1)

where

(2a)

(2b)

where d corresponds to the electric dipole moment, whereas ε1 and ε2 describe strengths
of the probe and control fields, respectively. Moreover, the matrix elements 
(i = 1, 2) describe the configuration interaction between AI levels and flat continuum
states. As usually in the papers concerning AI, we suppose now that the energies of
the AI levels and the laser field frequencies are considerably higher than the energy
of the threshold of the continuum. In consequence, we can neglect all threshold effects
and as a result, all integrals over the energies, appearing here will be extended over
the entire real axis. Moreover, we assume that all matrix elements appearing in (2) and
corresponding to the transitions to (from) the flat continuum are energy independent. 

It is possible to replace the subset of flat continuum states { } and coupled to
them AI levels  (i = 1, 2) by continuum states |E ) (denoted here by symbols with
round braces, contrary to the flat ones labeled by the usually used symbols ) with
some structure (density function). This function can be derived with the use of Fano
diagonalization method proposed in [14] and then developed, for instance in [17]. This
procedure leads to the scheme in which discrete levels  and  are coupled to
the excited continuum characterized by some density of states. This density function
is referred to as double Fano profile. Its shape is determined by the ratio between
the matrix elements corresponding to the transitions from (to) a considered discrete
level  to (from) a flat and structured continua [14, 25]:

(3)

where the widths  and  are autoionization
widths of AI states. Similarly as in [25], we defined Fano asymmetry parameters
q1 j and q2 j which can be expressed as:

(4a)
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(4b)

where j = b, c. These parameters describe ratios of the direct transition between one
of the lower states and AI state and its counterpart via (flat) continuum state. It
follows from the form of (4) that when the direct ionization is negligible, the values
of the q-parameters become high.

After performing the diagonalization procedure, the system can be described by
the following Hamiltonian:

(5)

where

(6a)

(6b)

In this formula, all excited levels considered here are replaced by structured continuum
states |E). 

For further study, we derive the appropriate equations for the density matrix ρ.
For this purpose, we use Liouville–von Neumann equation and apply the rotating
wave approximation (RWA) [29] which allows to remove rapidly rotating terms from
our set of equations. This procedure leads to the following differential equations for
the matrix elements of the density matrix ρ :

(7a)

(7b)

where the Fano diagonalization formalism was applied. The above equations are valid
within the first order perturbation with respect to the probe field ε1. The parameter d
appearing here is the electric atomic dipole moment and the matrix elements
ρEb =  and ρEc = . Moreover, similarly as in [12], we have introduced
the width γcb. It is a phenomenological relaxation rate for the coherence ρcb.

In general, it is possible to find the full solution of the differential Eqs. (7), but we
will restrict our considerations to the long-time limit and find the steady-state solution
following the way described in [12]. To solve Eqs. (7), first we eliminate ρcb expressing
it in terms of ρEb to get the integral equation which will be solved in the next step, and
next, ρEb will be found.
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Since, we are interested in EIT, we should calculate the component of the electric
polarization of the irradiated medium. It can be expressed as a function of the matrix
element ρEb in the following way

(8)

where N is the atom density, ε0 is the vacuum electric permittivity, whereas χ is
the medium susceptibility. In our model, the last can be expressed as [12] 

(9)

with

( j, k = b, c) (10)

The limit η → 0+ assures that the imaginary part of χ  will be greater than zero, whereas
ΔE = E2 – E1 tends to zero for the degenerate AI levels. It is worth noting that the func-
tion inside the integral contains matrix elements corresponding to the transitions to
(from) the structured continuum |E ). Since such elements are energy dependent, we
apply the formula (3) to get the explicit dependence of the integrand on the energy.
Thus, we can write 

( j, k = b, c) (11)

where the functions Fj(E ), Fk(E ) inside the integral correspond to matrix elements
related to the transitions to (from) the structured continuum |E ). The matrix elements
of the dipole moment transition  and  are denoted by Dj and Dk ,
respectively. As it was emphasized earlier, we neglect threshold effects, so we extend
the integration limits for Rjk(ωp) from minus to plus infinity. Thanks to this assumption
(and other mentioned earlier), we can find the analytical solution for this parameter
and hence, for the medium susceptibility χ.
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3. Results and discussion

Since we deal with the degenerate case, the analytical solution for Rjk (ωp) can be
written as:

(12)

where the argument was redefined as  Similarly as in [25], we
introduced here the effective asymmetry parameters Qj, Qj21, Γ21 and AI width Γ  de-
fined as

j = c, b (13a)

(13b)

Moreover, we defined the quantities

j = c, b (13c)

(13d)

If we assume that both AI levels are characterized by the same values of parameters
describing interaction between them and other levels, i.e., asymmetry parameters and
AI widths, the quantities Γ21 = 0, Qb21 = Qc21 = 0. In consequence, our result becomes
identical to that derived by RACZYŃSKI et al. [12].

Further, for easier comparison of our results to those presented in [12], we take
the same values for the parameters describing our system as those presented there.
Thus, we assume that Γ = 10–9 a.u., Db = 2 a.u., Dc = 3 a.u. and the atomic density
N = 0.33×1012 cm–3. Moreover, the values of the asymmetry parameters are assumed
to be ~10–100, whereas the field amplitude ε2 is within the range from 10–9 to 10–6 a.u. 

Thus, Figure 2 shows the real (dispersion) and imaginary (absorption) parts of
the medium susceptibility as a function of the frequency 
expressed in the units of Γ. Actually, we see that for the case when Γ21 = 0,
Qb21 = Qc21 = 0 (solid line), we get the same result as that for the model with a single
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AI level discussed by RACZYŃSKI et al. [12]. In fact, this is the situation mentioned
above, when two degenerate AI levels can be treated as a single one described by
the effective asymmetry parameter and AI width. However, if we assume that the pa-
rameters describing two AI levels differ from each other, i.e., Qb21 ≠ 0 and Qc21 ≠ 0,
the situation changes considerably, because an additional zero appears in Imχ, leading
to the second absorption window occurrence (dashed-dotted line). In consequence,
two windows are apparent and they are placed symmetrically with respect to the point
ω = 0. The position of these windows depends on the values of the parameters
describing our system and for some cases the windows coalesce to a single one with
a sharp peak inside (dashed line). Such behavior resembles that discussed in [25],
concerning long-time photoelectron spectrum. The second window for our model
corresponds to the additional zero in the spectrum discussed in [25] as a result of
existence of extra ionization channel via the second AI level. In consequence, an addi-

Fig. 2 The real (a) and imaginary (b) parts of the susceptibility χ as a function of the detuning ω (in units
of Γ ). We assume that ε2 = 4×10–7 a.u., Γ21 = 0 and Qb = Qc = 20. Solid lines – Qb21 = Qc21 = 0, dashed
lines – Qb21 = 1, Qc21 = 2, dashed dotted lines – Qb21 = 1, Qc21 = 8.
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tional quantum interference effect becomes present in the system leading to generation
of the second zero in photoelectron spectra and the transparency window, as well.
Moreover, for the system considered here one can observe an additional region of
anomalous dispersion related to the presence of the second transparency window (as
we compare our result with that discussed in [12]). Thus, the presence of the second
AI state in the system can lead to nontrivial results, analogously to the situation
presented in the discussion concerning photoelectron spectra [25–28]. 

The structure of created windows is very clear. It can be manipulated in potential
applications, for example in simultaneous slowing down of light pulses at various
frequencies [6]. In particular, the position and widths of the transparency windows can
be changed by the strength of a control field. In Figure 3 we show the real and
imaginary parts of the medium susceptibility again for various strengths of this field
intensity ε2. One can see that its changes can influence the positions and widths of
the windows. If we increase the value of ε2, both the distance between the windows

Fig. 3. The same as in Fig. 2 but for Qb21 = 1, Qc21 = 8 and various values of ε2. The remaining parameters
are the same as in Fig. 2. 
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and their widths increases considerably. Thus, we can use the intensity of the control
field as a control parameter for EIT effects.

In Figures 4 and 5, we show how the values of the autoionization widths can
influence the number, position and width of the transparency windows. Thus, Fig. 4
corresponds to the situation when the effective asymmetry parameters Qb21 = Qc21 = 0.
For this case, the result resembles that for the model involving single AI level,
discussed in [12]. We observe only a single transparency window, and its position and
width do not depend on the value of Γ21. We can only observe well-defined changes
in the amplitude of variations of the real and imaginary parts of χ, so the depth of
the window becomes more distinct as Γ21 increases. However, if we assume that Qb21
and Qc21 become different from zero (see Fig. 5), the situation changes considerably
again. Similarly as in Figs. 2 and 3, an additional transparency window and region of
anomalous dispersion appear. From Fig. 5 we see that with increasing difference

Fig. 4. The real (a) and imaginary (b) parts of the susceptibility χ as a function of the detuning ω (in units
of Γ ) for identical AI levels (Qb21 = Qc21 = 0) and various values of Γ21. We assume that ε2 = 4×10–7 a.u.,
and Qb = 15, Qc = 20. 
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between the values of AI widths (Γ21), the separation and widths of both windows
become more pronounced. These facts justify the statements that the phenomena
related to the autoionization processes strongly depend on the continuum shape and
their characters. The strengths of the effects observed in the system can be changed
considerably by varying the parameters describing the profile of the continuum, so we
can have various possibilities of controlling these phenomena in practice.

4. Conclusions

In this paper we considered the Λ-like model involving two AI levels (for simplicity
we assumed that they are of the same energy). This model is an extension of that with
a single AI level, discussed by RACZYŃSKI et al. [12]. For such a model we have derived
the analytical formula describing the media susceptibility χ. We have shown that due

Fig. 5. The real (a) and imaginary (b) parts of the susceptibility χ for various values of Γ21, Qb21 and Qc21.
Solid lines – Qb21 = Qc21 = 0, Γ21 = 0, dashed lines – Qb21 = 1, Qc21 = 6, Γ21 = 0.1, dashed dotted lines –
Qb21 = 1, Qc21 = 6, Γ21 = 0.4. The remaining parameters are the same as in Fig. 4. 
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to the presence of the second AI level we can observe an additional transparency
window and extra region of the anomalous dispersion. We have shown that the prop-
erties (position and width) of the window depend on the values of the parameters
describing the interaction of these levels with the driving field. Moreover, the depth
of the window can be manipulated by changes of the asymmetry parameters related to
the transitions induced by the probe field, they especially depend on the difference
between the values of the autoionization widths. In addition, for the degenerate case,
if the parameters describing two AI levels are identical, our model behaves as that with
one AI level characterized by some effective AI width and asymmetry parameter. If
the parameters corresponding to the two AI levels start to differ from each other,
the additional EIT window appears despite the presence of degeneracy. This situation
resembles that discussed in [25] concerning the long-time photoelectron spectra, when
for various values of the AI level’s parameters, an additional zero appeared for
the degenerate case. This is a result of the existence of two channels of autoionization
and quantum interference between them. Such interference disappears if two AI levels
are identical. We have shown that inclusion of an additional AI state into the model
can lead to new and interesting effects that are absent in the single level models. 

The most important phenomenon discussed here is the appearance of the additional
transparency windows in the system, where various channels of ionization (autoioni-
zation) exist. Such channels can interfere with each other giving new EIT windows.
These effects could seem to be similar to those observed in the systems involving only
discrete levels but they are of completely different physical character. Indeed, for
the model discussed here, we deal with a structured continuum interacting with two
discrete ground levels. In consequence, for the system considered here, we have a new
possibility to simultaneously slowing down of light pulses at various frequencies. 

References 

[1] IMAMOGLU A., HARRIS S.E., Lasers without inversion: interference of dressed lifetime-broadened
states, Optics Letters 14(24), 1989, pp. 1344–1346.

[2] HARRIS S.E., FIELD J.E., IMAMOGLU A., Nonlinear optical processes using electromagnetically induced
transparency, Physical Review Letters 64(10), 1990, pp. 1107–1110.

[3] BOLLER K.-J., IMAMOGLU A., HARRIS S.E., Observation of electromagnetically induced transparency,
Physical Review Letters 66(20), 1991, pp. 2593–2596.

[4] FLEISCHHAUER M., IMAMOGLU A., MARANGOS J.P., Electromagnetically induced transparency: optics
in coherent media, Reviews of Modern Physics 77(2), 2005, pp. 633–673.

[5] KOWALSKI K., CAO LONG V., DINH XUAN K., GŁÓDŹ M., NGUYEN HUY B., SZONERT J.,
Electromagnetically induced transparency, Computational Methods in Science and Technology,
Special Issue (2), 2010, pp. 131–145.

[6] WANG J., KONG L.B., TU X.H., JIANG K.J., LI K., XIONG H.W., YIFU ZHU, ZHAN M.S.,
Electromagnetically induced transparency in multi-level cascade scheme of cold rubidium atoms,
Physics Letters A 328(6), 2004, pp. 437–443.

[7] KOWALSKI K., CAO LONG V., NGUYEN VIET H., GATEVA S., GŁÓDŹ M., SZONERT J., Simultaneous
coupling of three hfs components in a cascade scheme of EIT in cold 85Rb atoms, Journal of
Non-Crystalline Solids 355(24–27), 2009, pp. 1295–1301.



Electromagnetically induced transparency... 483

[8] BO WANG, YANXU HAN, JINTAO XIAO, XUDONG YANG, CHANGDE XIE, HAI WANG, MIN XIAO,
Multi-dark-state resonances in cold multi-Zeeman-sublevel atoms, Optics Letters 31(24), 2006,
pp. 3647–3649.

[9] PAUL-KWIEK E., GŁÓDŹ M., KOWALSKI K., SZONERT J., GATEVA S., VASEVA K., Multiple peaks due
to EIT and Autler-Townes effect in lambda-probing of the strongly driven 5P3/2 manifold of cold
85Rb atoms in MOT, Proceedings of SPIE 7747, 2011, article 77470I.

[10] VAN ENK S.J., JIAN ZHANG, LAMBROPOULOS P., Effect of the continuum on electromagnetically induced
transparency with matched pulses, Physical Review A 50(3), 1994, pp. 2777–2780; VAN ENK S.J.,
JIAN ZHANG, LAMBROPOULOS P., Pump-induced transparency and enhanced third-harmonic
generation near an autoionizing state, Physical Review A 50(4), 1994, p. 3362–3365.

[11] PASPALAKIS E., KYLSTRA N.J., KNIGHT P.L., Propagation dynamics in an autoionization medium,
Physical Review A 60(1), 1999, pp. 642–647.

[12] RACZYŃSKI A., RZEPECKA M., ZAREMBA J., ZIELIŃSKA-KANIASTY S., Electromagnetically induced
transparency and light slowdown for Λ-like systems with a structured continuum, Optics
Communications 266(2), 2006, pp. 552–557.

[13] DOAN QUOC K., CAO LONG V., LEOŃSKI W., Electromagnetically induced transparency for Λ-like
systems with a structured continuum and broad-band coupling laser, Physica Scripta T147, 2012,
article 014008.

[14] FANO U., Effects of configuration interaction on intensities and phase shifts, Physical Review 124(6),
1961, pp. 1866–1878.

[15] RZĄŻEWSKI K., EBERLY J.H., Confluence of bound-free coherences in laser-induced autoionization,
Physical Review Letters 47(6), 1981, pp. 408–412.

[16] JOURNEL L., ROUVELLOU B., CUBAYNES D., BIZAY J.M., WUILLEUMIER F.J., RICHTER M., SLADECZEK P.,
SELBMANN K.-H., ZIMMERMANN P., BERGERON H., First observation of a Fano profile following one
step autoionization into a double photoionization continuum, Journal de Physique IV 3(C6), 1993,
pp. 217–226.

[17] DURAND PH., PAIDAROVÁ I., GADÉA F.X., Theory of Fano profiles, Journal of Physics B: Atomic,
Molecular and Optical Physics 34(10), 2001, pp. 1953–1966.

[18] PEŘINA J. JR., LUKŠ A., LEOŃSKI W., PEŘINOVÁ V., Photoionization electron spectra in a system
interacting with a neighboring atom, Physical Review A 83(5), 2011, article 053416; PEŘINA J. JR.,
LUKŠ A., LEOŃSKI W., PEŘINOVÁ V., Photoelectron spectra in an autoionization system interacting
with a neighboring atom, Physical Review A 83(5), 2011, article 053430.

[19] PEŘINA J. JR., LUKŠ A., PEŘINOVÁ V., LEOŃSKI W., Fano zeros in photoelectron spectra of an autoioni-
zation system interacting with a neighboring atom, Optics Express 19(18), 2011, pp. 17133–17142;
PEŘINA J. JR., LUKŠ A., PEŘINOVÁ V., LEOŃSKI W., Photoelectron ionization spectra in a system
interacting with a neighbor atom, Journal of Russian Laser Research 32(5), 2011, pp. 454–466.

[20] LUKŠ A., PEŘINA J. JR., LEOŃSKI W., PEŘINOVÁ V., Entanglement between an autoionizing system
and a neighboring atom, Physical Review A 85(1), 2012, article 012321.

[21] TROCHA P., BARNAŚ J., Quantum interference and Coulomb correlation effects in spin-polarized
transport through two coupled quantum dots, Physical Review B 76(16), 2007, article 165432.

[22] RIDOLFO A., DI STEFANO O., FINA N., SAIJA R., SAVASTA S., Quantum plasmonics with quantum
dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics, Physical
Review Letters 105(26), 2010, article 263601.

[23] LUK’YANCHUK B., ZHELUDEV N.I., MAIER S.A., HALAS N.J., NORDLANDER P., GIESSEN H., CHONG TOW

CHONG, The Fano resonance in plasmonic nanostructures and metamaterials, Nature Materials 9(9),
2010, pp. 707–715.

[24] MIROSHNICHENKO A.E., FLACH S., KIVSHAR Y.S., Fano resonances in nanoscale structures, Reviews
of Modern Physics 82(3), 2010, pp. 2257–2298. 

[25] LEOŃSKI W., TANAŚ R., KIELICH S., Laser-induced autoionization from a double Fano system, Journal
of the Optical Society of America B 4(1), 1987, pp. 72–77.



484 THUAN BUI DINH et al.

[26] LEOŃSKI W., TANAŚ R., DC-field effects on the photoelectron spectrum from a system with two
autoionising levels, Journal of Physics B: Atomic, Molecular and Optical Physics 21(16), 1988,
pp. 2835–2844.

[27] LEOŃSKI W., BUŽEK V., Quantum laser field effect on the photoelectron spectrum for auto-ionizing
systems, Journal of Modern Optics 37(12), 1990, pp. 1923–1934.

[28] LEOŃSKI W., Squeezed-state effect on bound-continuum transitions, Journal of the Optical Society
of America B 10(2), 1993, pp. 244–252.

[29] ALLEN L., EBERLY J.H., Optical resonance and Two-Level Atoms, Wiley, 1975.

Received November 14, 2012
in revised form January 21, 2013


