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This paper presents a low complex, highly energy efficient sensor image fusion scheme explicitly
designed for wireless visual sensor systems equipped with resource constrained, battery powered
image sensors and employed in surveillance, hazardous environment like battlefields etc. Here
an energy efficient simple method for fusion of multifocus images based on higher valued AC
coefficients calculated in discrete cosine transform domain is presented. The proposed method
overcomes the computation and energy limitation of low power devices and is investigated in terms
of image quality and computation energy. Simulations are performed using Atmel ATmega128
processor of Mica 2 mote, to measure the resultant energy savings and the simulation results
demonstrate that the proposed algorithm is extremely fast and consumes only around 1% of energy
consumed by conventional discrete cosine transform based fusion schemes. Also the simplicity of
our proposed method makes it more appropriate for real-time applications. 

Keywords: sensor image fusion, discrete cosine transform (DCT), energy consumption, computation
complexity, fusion metrics. 

1. Introduction
Image fusion is the process of combining multiple source images from sensor network
into a single one, which contains a more accurate description of the scene, more infor-
mative and suitable for both visual perception and further processing [1]. In the multi-
focus image fusion technique, several images of a scene captured with focus on dif-
ferent objects are fused such that all the objects will be in focus in the resulting image.
So far, several researches have been focused on image fusion which is performed on
the images in the spatial and spectral domain [2–5]. The sharpness measure [3] is
exploited to perform adaptive multifocus image fusion in wavelet domain and proved
to give better fused results than other discrete wavelet transform (DWT) based multi-
focus image fusion schemes. In automated battlefields, where the robots collect image
data from sensor network, since the computational energy is much less than the trans-
mission energy, data are compressed and fused before transmission [6]. Hence, when
the source images are to be coded in Joint Photographic Experts Group (JPEG) standard
or when the resultant fused image is to be saved or transmitted in JPEG format, the fu-
sion methods in discrete cosine transform (DCT) domain will be more efficient [4, 5].
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But the standard JPEG-DCT and the mean, contrast and variance calculation [4, 5]
involve complex floating point arithmetic operations which incur high energy consump-
tion in resource constrained sensor nodes. In general, the transform (DCT and DWT)
based image fusion methods are complex, time-consuming and highly energy-consum-
ing which are not best suitable for real-time applications and in resource constrained
battery powered sensors. 

In this paper, a low-complexity and energy efficient multifocus image fusion
scheme that is suitable for resource constrained (processing, bandwidth, memory
space, battery power) image sensor network is proposed. Binary DCT is used for image
transform [7, 8] and the proposed fusion rule is very simple and considerably reduces
the computational complexity without compromising image quality. Since the pro-
posed fusion scheme is performed in DCT domain, it is time-saving and simple when
the fused image needs to be saved or transmitted in JPEG format. Simulations are
performed using Atmel ATmega128 processor of Mica 2 mote to measure the resultant
energy savings. 

2. Image fusion
Figure 1 illustrates the general framework of our proposed image fusion scheme.
The algorithm can be extended for more than two source images with the assumption
that all the source images are aligned with some registration methods.

In the proposed scheme, the key step is to fuse the DCT representations of
multifocus images into a single fused image [4, 5]. The input images are divided into
blocks of size 8×8 and the DCT coefficients of each block are computed. Then
the fusion rule is applied wherein the transformed block with bigger number of higher
valued AC coefficients is absorbed into the fused image.

2.1. Fusion criteria (MaxAC)
In [4] variance is used as the activity level for fusion criteria because in multifocus
images, the focused region is more informative and the information details of that
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Fig. 1. General structure of the proposed fusion scheme.
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region correspond to high variance. It is inferred that the variance of an N×N  block of
pixels can be exactly calculated from its DCT coefficients by computing the sum of
the squared normalized AC coefficients of the DCT block [4]. Two dimensional
DCT transform of an N×N  image block f (x, y) is given as

(1)

where u, v = 0, 1, …, N – 1 and

(2)

The inverse transform is defined as 

(3)

where x, y = 0, 1, …, N – 1.
Here F(0,0) is the DC coefficient and it represents the mean value of that image

block. Remaining coefficients are AC coefficients and the normalized transform co-
efficients are defined as

(4)

Variance σ 2 of the image block can be inferred from the transformed coefficients
as follows 

(5)

where  is the normalized DC coefficient and other  are the normalized
63 AC coefficients (A1, A2, …, A63). Equation (5) implies that the variance of a block
is given by the sum of the squares of the normalized AC coefficients.

(6)

The advantage of  DCT is that the energy of the original data is concentrated in
only a few low frequency components of DCT depending on the correlation in the data.
Also the low-frequency components usually contain the most of the image information.
Higher value of AC coefficients implies finer image information. Because of the en-
ergy compaction property of AC coefficients, only few coefficients towards the top
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left submatrix of the DCT transformed matrix have larger values and the contribution
of these coefficients to variance is more compared to other AC coefficients. Hence, if
the AC coefficient value is high, then the variance value is also high. Our proposed
fusion criterion (MaxAC) is based on this fact. Here instead of computing variance
using all the transformed AC coefficients, which involves floating point multiplica-
tion and additions, the proposed algorithm checks only the number of higher valued
AC coefficients that contributes to larger variance. 

Hence, in our proposed method we absorb the block with a bigger number of higher
valued AC coefficients for two reasons. First is that a higher AC component value
implies more fine details of the image. Secondly, from Eq. (6) it is inferred that a higher
AC component value results in higher variance. Thus the energy needed for compu-
tation is drastically reduced. The quality of the fused image is significantly high
because only the blocks where more image details are stored (bigger number of high
valued AC coefficients) are selected for fusion. Here, instead of computing variance
using all the transformed AC coefficients which involves floating point multiplication
and additions, the proposed algorithm checks only the number of higher valued
AC coefficients that contributes to larger variance. Thus the energy needed for
computation is drastically reduced. 

2.2 MaxAC fusion method

Let Y = { yi, j} (i = 0, ..., N – 1 and j = 0, ..., M – 1) be an image and it is divided into
Q number of 8×8 blocks. Let Xn = {xn, k, l} (k = 0, ..., 7; l = 0, ..., 7; n = 0, ...,Q – 1)
be the n-th 8×8 block and the corresponding DCT output of the block Xn = {xn, k, l} be
Dn = {dn, k, l}. Then the set D = {D0, D1, D2, ..., DQ – 1} denotes the DCT represen-
tation of image Y = {yi, j}. Let  be the DCT representa-
tion of the t-th input image and let B be the number of input source images to be fused.
Then the fused image is represented by . The fusion
criterion is that the block with the majority of maximum valued DCT AC coefficients
is absorbed into the fused image since it contributes more significant signal information
to the fused image. 

Hence in our fusion method, the n-th block of the fused image  is obtained by: 

(7)

t = 1, ..., B (8)

where  specifies the number of maximum valued transformed AC coefficients found
in the n-th block of t-th image when compared with the respective blocks in other
source images. For example, the fused block  of two source images Y t where
t = 1, 2 is obtained as follows: 

1. Initialize {C1n = 0; C
2
n = 0;}

2. For all the AC coefficients repeat step 3
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3. If (D1n(i, j) > D
2
n(i, j)+ threshhold) then

Increment C1n by 1;
Else If (D2n(i, j) > D

1
n(i, j)+ threshhold) then

Increment C2n by 1;
4. If (C1n > C

2
n) then  

DFn = Y
1
n and Prev = 1

Else If (C2n > C
1
n)

DFn = Y
2
n and Prev = 2

Else
DFn = Y

Prev
n

EndIf
This is repeated for all Q blocks to fuse the DCT representations of multi-images into
a fused image. The threshold value is set between 0 and 10. Figure 2 depicts the fusion
result of the proposed method on multifocused traffic and battlefield images. 

3. Simulation results
The proposed fusion algorithm is applied on a set of non-referenced and a set of
referenced images and the results are evaluated. The first experiment is conducted
using an extensive set of artificially generated images with different focus levels.
Standard test images like traffic, Lena, battlefield, Barbara, bird, etc. are taken as
ground truth images [9, 10]. Two blurred artificial images are generated for each test
image by convolving the test image with a 9×9 averaging filter centered at the left and
right part, respectively [3]. The second experiment is conducted on sets of standard
non-referenced multifocus test images [11]. The fusion result of Lena, Pepsi and clock
standard test images by applying various fusion algorithms in DCT domain [4, 12]
(DCT + average, and DCT + variance), DWT domain (DWT [13] and SIDWT [14])

Original image

a

b

Focussed on right Focussed on left Fused image

Fig. 2. Fusion results of multifocus images: battlefield (a), and traffic (b).
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Referenced image DCT + average result

SIDWT result

Focussed on right Focussed on left DCT + variance result

DCT + variance DWT result Proposed method
+ CV result

Source image 1 DCT + variance result

Proposed methodDCT + variance DWT result SIDWT result
+ CV result

Source image 2 DCT + average result

Source image 1 DCT + variance result

Proposed methodDCT + variance DWT result SIDWT result
+ CV result

Source image 2 DCT + average result

Fig. 3. Fusion results of Lena (a), Pepsi (b), and clock (c) images.
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and our proposed method is shown in Figs. 3a, 3b and 3c, respectively. For the wavelet
based methods (the DWT with DBSS (2,2) and the SIDWT with Haar basis),
the simulation was carried out with the Image Fusion Toolbox, kindly provided by
Rockinger [15]. Here the comparison of fusion methods is done similar to [4, 13]. 

4. Performance metrics
Extensive experiments are performed to demonstrate the superior performance of
the proposed algorithm using six performance metrics. The structural similarity mea-
sure (SSIM) [4, 16], mean-square error (MSE) and peak signal-to-noise ratio (PSNR)
are used as quality measures for objective evaluation of results of referenced images.
If MSE equals zero, it implies that the fused image is exactly the same as that of
the original referenced image. If MSE = 0, then the PSNR becomes infinity which
implies ideal fusion, where the fused image and the referenced image are exactly
identical. The higher the values of PSNR and SSIM, the better is the quality of
the fused image. To evaluate our proposed algorithm on non-referenced multifocus
images, the spatial frequency (SF) metric [2, 17], the state-of-the-art fusion perfor-
mance metric Petrovic [4, 18, 19], the metric QAB/F, the mutual information (MI) [20],
the mean gradient (MG) [17] and the feature mutual information (FMI) [21] are used. 

4.1. Structural similarity index (SSIM)

The structural similarity measure (SSIM) [4, 16], as a quality criterion, is used for
objective evaluation of a fused image. The general form of the metric that is used
to measure the structural similarity between two signal vectors x and y is given by
the following equation:

(9)

where μx and μy are the sample means of x and y, respectively,  and  are
the sample variances of x and y, respectively, and σxy is the sample cross-covariance
between x and y. The default values for C1 and C2 are 0.01 and 0.03. The average of
the SSIM values across the image (mean SSIM or MSSIM) gives the final quality
measure. The MSE, PSNR and SSIM performance comparison of various fusion
methods is presented in Tab. 1, where one can see that the proposed approach performs
better than the other conventional approaches by producing the best metric values.

4.2. Petrovic metric QAB/F 

This measure was proposed by XYDEAS and PETRVIC [18, 19]. This metric is based on
the assumption that the fusion algorithm that transfers input gradient information into
a resultant image more accurately performs better. In this case, a pixel wise measure
of information preservation is obtained between each input image (A and B) and
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the fused image (F ) of size M×N to compute QAB/F using simple local perceptual
importance factors. It is calculated by: 

(10)

where QAF and QBF are computed using edge information preservation values [2, 18];
wA(n, m) and wB(n, m) are the weighted importance factors for QAF and QBF,
respectively; QAB/F is in the range [0, 1] where 0 means complete loss of information
and 1 means ideal fusion. 

4.3. Spatial frequency (SF)

The row and column frequencies of the fused image F of size M×N are computed
[2, 17] as: 

T a b l e 1. The MSE, PSNR and mean SSIM comparison of various image fusion approaches on
reference images. 

Lena 
Fusion method MSE PSNR [dB] SSIM
DCT + average 39.11 32.20 0.9383
DCT + variance 8.70 38.73 0.9854
DCT + variance + CV 0.01 68.07 0.9999
DWT with DBSS(2,2) 5.62 40.63 0.9906
SIDWT with Haar 5.48 40.74 0.9899
Proposed (DCT + MaxAC) 0 ∞ 1

Traffic
Fusion method MSE PSNR [dB] SSIM
DCT + average 112.6 27.62 0.8997
DCT + variance 4.2 41.89 0.9920
DCT + variance + CV 0.03 63.78 0.9998
DWT with DBSS(2,2) 12.81 37.05 0.9901
SIDWT with Haar 10.33 37.99 0.9905
Proposed (DCT + MaxAC) 0 ∞ 1

Bridge
Fusion method MSE PSNR [dB] SSIM
DCT + average 28.83 33.53 0.9465
DCT + variance 6.69 39.87 0.9870
DCT + variance + CV 0.32 53.11 0.9990
DWT with DBSS(2,2) 4.49 41.61 0.9895
SIDWT with Haar 4.54 41.55 0.9893
Proposed (DCT + MaxAC) 0.03 62.91 0.9998
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(11)

(12)

Then the total spatial frequency of the fused image which is based on edge
information is computed as follows:

(13)

Higher the spatial frequency, higher is the clarity of the image.

4.4. Mutual information (MI)

This metric gives the amount of information that the fused image F has from input
source images (A and B) [20]. The mutual information between the source image A
and the fused image F is computed as: 

(14)

where pAF, pA and pB are computed by normalisation of the joint and marginal his-
tograms of A and F. Similarly mutual information IBF is computed between the source
image B and the fused image. Then the mutual information between the source
images (A, B) and the fused image (F) is given as follows:

MI = IAF + IBF (15)

4.5. Mean gradient (MG)

Mean gradient is used to measure the edge details contained in the gradient image [17].
MG of the fused image F of size M×N will be high if the edges are well preserved in
the fused image. MG of the fused image F is calculated as:

(16)

4.6. Feature mutual information (FMI)

The feature mutual information (FMI) metric calculates the amount of image feature
information transferred from the source images to the fused image by means of MI.
Since the gradient map contains information about the pixel neighbourhoods, edge
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strength and directions and texture and contrast, the normalized values of the gradient
magnitude feature images are used as marginal distributions [21]. The FMI metric is
given by

FMI = IFA + IFB (17)

where IFA and IFB are the amount of feature information [21], which the fused im-
age F contains about the source images A and B. They are individually measured by
means of MI using a gradient map.

The performance metric comparison is given in Tabs. 1 and 2 for referenced and
non-referenced images. From Table 1, it is clear that the proposed method reproduces
a very high quality fused image and in most cases, the fused image is exactly identical
to the referenced image (MSE = 0). It performs better than all the other compared
approaches.

T a b l e 2. The QAB/F, spatial frequency (SF), mutual information (MI), mean gradient (MG) and feature
mutual information (FMI) of various image fusion approaches on non-referenced images.

Clock
Fusion method QAB/F SF MI FMI MG
DCT + average 0.65 11.56 7.13 0.7970 5.02
DCT + variance 0.73 18.39 9.02 0.8660 7.45
DCT + variance + CV 0.74 18.40 9.08 0.8750 7.32
DWT with DBSS(2,2) 0.67 18.78 6.50 0.8139 7.37
SIDWT with Haar 0.71 17.24 6.75 0.8567 7.35
Proposed (DCT + MaxAC) 0.73 18.46 9.03 0.8690 7.43

Pepsi
Fusion method QAB/F SF MI FMI MG
DCT + average 0.63 10.57 6.84 0.7314 3.6
DCT + variance 0.76 13.90 8.31 0.8599 5.38
DCT + variance + CV 0.78 13.91 8.67 0.8675 5.49
DWT with DBSS(2,2) 0.73 14.18 6.35 0.8207 5.45
SIDWT with Haar 0.74 13.39 6.60 0.8431 5.40
Proposed (DCT + MaxAC) 0.77 13.96 8.39 0.8633 5.46

Lab
Fusion method QAB/F SF MI FMI MG
DCT + average 0.55 7.72 7.08 0.6912 2.72
DCT + variance 0.73 13.17 8.49 0.8336 4.38
DCT + variance + CV 0.74 13.11 8.82 0.8452 4.52
DWT with DBSS(2,2) 0.66 13.10 6.52 0.7716 4.37
SIDWT with Haar 0.68 12.38 6.93 0.8146 4.36
Proposed (DCT + MaxAC) 0.74 13.41 8.65 0.8385 4.52
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The performance metric comparison for fusion of non-referenced images is given
in Table 2 and from the table it is inferred that the proposed approach performs slightly
lower than that of the DCT + variance + CV method but better than the other four ap-
proaches by producing a good objective performance. The performance of the pro-
posed method can be further enhanced by performing the consistency verification (CV)
check as proposed in [13]. But since the focus is mainly on low complexity image
fusion explicitly designed for low power resource constrained sensor nodes, CV is not
performed in the proposed method.

5. Energy consumption analysis

In the proposed scheme, the key step is to fuse the DCT representations of multifocus
images into a single fused image based on the AC coefficients values. The computation
cost includes the discrete cosine transform and the fusion rule. Since the fusion rule
does not involve any complex arithmetic floating point operations like mean or
variance calculations, it is extremely simple, fast and efficient and hence is suitable
for real-time applications. Also the transform using binary DCT (BinDCT) [8] can be
used instead of floating point standard DCT which will further reduce the computation
complexity and make it more appropriate for resource constrained image sensor nodes
and low powered devices for energy efficient fusion and subsequent compression. 

Hence the input images are divided into blocks of size 8×8, and the lifting
scheme-based multiplierless approximation of BinDCT based on Chen’s factoriza-
tion [7] is applied for each block instead of the floating point DCT. BinDCT is fast
multiplierless approximation of the DCT with the lifting scheme. The BinDCT has
a fast, elegant implementation of the forward and inverse transforms utilizing only
shift-and-add operations. The multiplierless property of the BinDCT allows efficient
VLSI implementations in terms of both chip area and power consumption. The BinDCT
has reasonably high coding performances. For fusion the MaxAC rule is applied on
the BinDCT AC coefficients. The fusion results of applying the Bin.DCT + MaxAC
rule are compared with those of the floating point DCT + MaxAC rule in Table 3. 

From Table 3 it is understood that BinDCT + MaxAC fusion results are slightly
different from that of DCT + MaxAC. But when the computational energy is con-
cerned, the BinDCT consumes significantly very less energy when compared to that
of conventional DCT. 

For energy consumption analysis, the ATmega128 processor of Mica 2 mote
at 8 MHz with an active power consumption of 22 mW is used as the target plat-
form [22]. Compilation is performed via WinAVR with “-O3” optimization setting.
The computation cycles and energy consumption for DCT, DWT and BinDCT on
an 8×8 image block are given in Tab. 4. The computation cycles and the energy needed
for fusing two 8×8 image blocks using the fusion schemes in DCT domain are given
in Tab. 5. From Tab. 5 it is evident that the proposed method is extremely fast, highly
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energy efficient and consumes only around 1% of energy needed by other DCT based
fusion methods.

6. Conclusions 
In this paper, a very simple, fast and efficient DCT based multifocus image fusion
scheme is proposed which outperforms other DCT based fusion methods as verified
in our extensive experiments. Since the fusion rule does not involve any complex
arithmetic floating point operations like mean or variance calculations, it is extremely
simple and energy efficient, making it more suitable for real time applications and
resource constrained battery powered sensors for energy efficient fusion and subse-
quent compression.

In future it is planned to validate our approach on a sensor network tested.
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