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A COLLABORATIVE STRATEGY FOR  
A THREE ECHELON SUPPLY CHAIN WITH RAMP TYPE  

DEMAND, DETERIORATION AND INFLATION 

A supply chain system has been investigated in which a single manufacturer procures raw mate-
rials from a single supplier, processes them to produce finished products, and then delivers the prod-
ucts to a single retailer. The customer’s demand rate is assumed to be time-sensitive in nature (ramp 
type) that allows two-phase variation in the demand and production rate. Our adoption of ramp type 
demand reflects a real market demand for a newly launched product. Shortages are allowed with par-
tial backlogging of demand (only for the retailer), i.e. the rest represent lost sales. The effects of infla-
tion of the cost parameters and deterioration are also considered separately. We show that the total 
cost function is convex. Using this convexity, a simple algorithm is presented to determine the opti-
mal order quantity and optimal cycle time for the total cost function. The results are discussed with 
numerical examples and particular cases of the model discussed briefly. A sensitivity analysis of the 
optimal solution with respect to the parameters of the system is carried out. 
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1. Introduction 

There has been a growing interest in supply chain management in recent years. 
The supply chain which is also referred to as the logistic network, consists of supplier 
distribution centres and retailer outlets, raw materials, work in process inventory, as 
well as finished goods that flow between the facilities. Quite a lot of researchers have 
shown interest in this field of study and many companies have also invested a lot capi-
tal in improving their supply chain management system. 
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Historically, the three key members of the supply chain: the supplier, distributor 
and retailer have been managed independently buffered by large inventories. Increas-
ing competitive pressure and decreasing marginal profitability are forcing firms to 
develop supply chains that can quickly respond to customer needs and furthermore 
reduce the cost of holding inventory. Through co-ordination between these members, 
the number of deliveries is derived in co-operation with each other to achieve the min-
imum overall integrated cost. Clark and Scarf [3] were the first authors to consider 
a multi-echelon supply chain in inventory research and the assumption of a constant 
demand rate is usually valid in the mature stage of a product life cycle. In the growth 
and end stage of the life cycle, the demand rate may be approximated by a linear func-
tion well. Resh et al. [21] and Donaldson [8] were the first who studied a model with 
linearly time varying demand. In most papers, two types of time varying demand rate 
have been considered in the supply chain of an inventory model: (i) Linear positive/ 
negative trend in demand rate (ii) Exponentially increasing/decreasing demand rate. 
However, demand cannot increase (or decresse) continuously over time. Hill [13] pro-
posed an inventory model with increasing demand followed by a constant demand. 
After that, several authors discussed time dependent demand in EOQ/EPQ (economic 
order quantity/economic production quantity) inventory models, as well as in models 
of a multi-echelon supply chain inventory, e.g. Goyal and Gunasekaran [12] consid-
ered an integrated production–inventory marketing model to determine the economic 
production quantity and economic order quantity for raw materials in a multi-echelon 
production system.  

Research into deterioration and shortage of inventory are becoming more im-
portant. This is because in real life, decay and deterioration occur in almost all prod-
ucts, such as medicines, fruits and vegetables. Models of deteriorating inventory have 
been widely studied by several authors in recent years. Ghare and Schrader [10] were 
the first researchers to consider exponentially decaying inventory when the demand is 
constant. Covert and Philip [4] extended the model to consider deterioration with the 
Weibull distribution. Wee [29] derived model that takes into account integration be-
tween the vendor and buyer and the deterioration of items. Wu [30] investigated an 
inventory model with a ramp type demand rate, Weibull distributed deterioration rate 
and partial backlogging. Iida [15] considered a dynamic multi-echelon inventory mod-
el with non-stationary demands. Yang and Wee [31] analyzed a single vendor, multi-
ple-buyers production inventory policy for deteriorating items with a constant produc-
tion and demand rate. Khanra and Chaudhuri [16] proposed a quadratic time 
dependent pattern to diminish the extraordinarily high rate of change in demand for 
exponential time dependent demand. Manna and Chaudhari [18] have developed 
a production inventory with a ramp type, two time periods classified demand pattern, 
where the finite production rate depends on the demand. Zhou et al. [32] addressed 
a model of co-ordination in a two echelon supply chain with one manufacturer and one 
retailer, where the demand for the product by the retailer is dependent on the on-hand 
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inventory. Skouri et al. [22] developed an inventory model with a general ramp type 
demand rate, the Weibull deterioration rate and partial backlogging of unsatisfied de-
mand. They discussed two cases in their models: according to the first there is initially 
no shortage and according to the second there is initially a shortage. Singh and Singh 
[23] discussed a supply chain model with a stochastic lead time under imprecise par-
tial backlogging and fuzzy ramp-type demand for expiring items. He et al. [14] devel-
oped a model for a two echelon supply chain inventory of deteriorating items where 
goods are sold to multiple markets with different selling seasons. Singh et al. [23, 24] 
discussed time sensitive demand, a Pareto distribution for deterioration and backlog-
ging under a trade credit policy. Recently, Taleizadeh et al. [28] investigated an inven-
tory model for a multi-product, multi-chance constraint, multi-buyer and single-
vendor system, considering a uniformly distributed, lot size dependent demand with 
a lead time and partial backlogging. Singh et al. [25] discussed shortage in an econom-
ic production lot-size model with reworking and flexibility. Galanc et al. [11] analyzed 
a quantitative management support model of a certain production-supply system in-
cluding boundary conditions. Sarkar [26] extended an EOQ model with time-varying 
demand and deterioration by including discounts on purchasing costs under the envi-
ronment of delay-in-payments. Sinha [27] have solved some deterministic inventory 
models considering a finite horizon. Goyal et al. [12] discussed a production policy for 
amelioration/deteriorating items with ramp type demand. Chung and Cardenas-Barron [7] 
simplified the solution procedure for a model with deteriorating items under stock 
dependent demand and two level trade credits in supply chain management. 

Moreover, the effects of inflation and the changing value of money as time pro-
cesses are vital in any practical environment, especially in developing countries with 
high inflation. Therefore, the effect of inflation and the changing value of money can-
not be ignored in real situations. To relax the assumption of no inflationary effects on 
costs, Buzacott [1] and Mishra [19] simultaneously developed an EOQ model with 
a constant inflation rate for all associated costs. Bierman and Thomas (1977) then 
proposed an EOQ model under inflation that also incorporated the discount rate.  
Mishra [20] then extended the EOQ model to take into account different inflation rates 
for various associated costs. Lo et al. [17] developed a three echelon supply chain 
model with an imperfect production process and the Weibull distributed deterioration 
under inflation with partial backlogging for the retailer. Chern et al. [5] proposed par-
tial backlogging inventory lot-size models for deteriorating items with fluctuating 
demand under inflation. Chung et al. [7] developed an inventory model with non-
instantaneous receipt and exponentially deteriorating items for an integrated three 
layer supply chain system with two levels of trade credit. 

The model proposed by the author is concerned with the integration between the 
supplier, manufacturer and retailer, and takes into consideration different rates of dete-
rioration in three stages of supply chain. We consider ramp type demand and produc-
tion rates in a three echelon supply chain with partial backlogging and inflation. 
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2. Assumptions and symbols used 

The following assumptions and notations are considered to develop the model. 

2.1. Assumptions 

 A single supplier, single manufacturer and single retailer are considered. 
 The production rate P(t) is demand dependent and the demand rate d(t) is a ramp 

type function of time given by 
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where f (t) is a positive, continuous function of t, t  (0, T] and defined by 

   e and , , 0, 1btf t a P kd t a b k     

 The deterioration rate is constant and deteriorated items are not repaired or re-
placed during a given cycle. 

 Partial backlogging is allowed only for the retailer. The partial backlog is replen-
ished by the next delivery. 

 The model considers the effect of inflation. 
 Multiple deliveries per order are considered. The planning horizon is finite and 

cycles during the planning horizon are continuous. Since one cycle is considered, the 
items included in the first delivery are made in the previous cycle. 

 Supply is instantaneous and a single good is considered. 

2.2. Symbols 

B – fraction of retailer’s demand backordered 
r – inflation rate 
Qw – quantity raw materials ordered per order 
Qm – quantity of finished goods produced by manufacturer per production cycle 
Qr – quantity received by the retailer from the manufacturer per delivery 
1 – deterioration rate for the raw material 
2 – deterioration rate for finished goods stored by the manufacture 
3 – deterioration rate for goods stored by the retailer 
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n – the number of deliveries per order 
Iw(ti) – inventory level of raw materials at any time ti, where 0  ti  Ti 

( )
im iI t  – manufacturer’s inventory of finished goods level at time ti, 0  ti  Ti, i = 1, 2 

( )
ir iI t  – retailer’s inventory level of finished goods at time ti 0  ti  Ti, i = 3, 4 

C1w – supplier’s ordering cost per order cycle 
C1m – manufacturer’s ordering and set-up cost per order cycle 
C1r – retailer’s ordering cost per order cycle 
C2w – holding cost for a unit of raw material per unit time 
C2m – manufacturer’s holding cost for a unit of finished goods per unit time 
C2r – retailer’s holding cost for a unit of finished goods per unit time 
C3 – retailer’s backlog cost for a unit of finished goods per unit time 
C4 – retailer’s cost for lost sales of finished goods per unit time 
Cw – cost of raw materials per unit 
Cm – cost to manufacturer of finished goods per unit 
Cr – cost to retailer of finished goods per unit 
MIm – manufacturer’s maximum inventory level of finished goods 
MIr – retailer’s maximum inventory level of finished goods 
TCw – present value of supplier’s total cost per unit time 
TCm – present value of manufacturer’s total cost per unit time 
TCr – present value of retailer’s total cost per unit time 
TC – present value of total cost per unit time 

3. Derivation of the model 

The integrated flow of materials is shown in Fig. 1. Because we focus on co-
operation between the supplier, manufacturer and retailer, there are two stages in our 
model. The first stage is the manufacturer’s production system. The manufacturer 
purchases raw materials from outside suppliers and delivers fixed quantities of fin-
ished goods with multiple deliveries to the retailer over a fixed time interval. 

 

Fig. 1. Integrated flow of materials 
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3.1. The manufacturer’s raw material inventory 

A supplier procures the raw material and delivers fixed quantities Qw to the manu-
facturer’s warehouse at fixed time intervals. The manufacturer withdraws raw materi-
als from the warehouse. During the time period T1, the inventory level decreases due 
to both the manufacturer’s demand and deterioration. 

  

Fig. 2. Manufacturer’s raw material inventory: a) 0 ≤  ≤ T1,  b) > T1 

The manufacturer’s raw materials inventory from Fig. 2a, b at any time t1 can be 
represented by the following differential equation 

 
   1

1 1 1 1
1

(t) , 0wi
wi

dI t
P I t t T

dt
      (1) 

with the boundary condition Iwi(Ti) = 0. 
There are two possible relations between the parameters T1 and : (i) 0 ≤  ≤ T1 

(ii)  > T1. Each case implies a different ordering cost, holding cost and deterioration 
cost. Let us discuss them separately. 

Case I (0 ≤  ≤ T1) 

In this case, Eq. (1) becomes 
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   2 1
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with the boundary conditions,  2 1 0wI T  and    1 2 .w wI I    

The solutions of Eqs. (2) and (3) are 
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The maximum inventory level of raw materials is Qw1, where Qw1 = Iw1(0)   
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There is an initial ordering cost at the start of the cycle. The present value of the 
ordering cost is given by 

  ORw = c1w  (7) 

Inventory is held during the time period T1. The present value of holding cost is 
given by 
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The costs include losses due to deterioration, as well as the cost of the items sold. 
Because the order is carried out at t1 = 0, the present value of item cost is given by 

     1 1 1 1 1w w w wIT c Q c ka T b T          (9) 
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The present value of the total cost during the cycle is the sum of the ordering cost 
(ORw), the holding cost (HDw) and the item cost (ITw). Hence, for the raw material, the 
present value of total cost per unit time is given by 

  1 1 1

1
w w w wTC OR HD IT

T
    (10) 

Case II (T1 ≤  ≤ T) 

In this case, Eq. (1) reduces to the form; 
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with the boundary condition  1 1 0.wI T   The solution of Eq. (11) is 
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Since  1 20 ,w wI Q  then 
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For the raw material, the present value of total cost per unit time is 

  2 2 2

1
w w w wTC OR HD IT

T
     (16) 

3.2. Manufacturer’s system for storing finished goods 

The manufacture’s inventory system depicted in Fig. 3a, b can be divided into two 
independent time intervals denoted by T1 and T2 (which also denote the length of these 
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intervals). This method reduces the complexity of our problem, together with the deri-
vation and analysis of the solution. Each phase has its own time ti, i = 1, 2, which 
starts from the beginning of the phase Ti. During time period T1, inventory builds up 
and hence deterioration occurs. At time t1 = T1, production stops and the inventory 
level increases to its maximum, MIm. There is no production during time period T2, 
and the inventory level decreases due to demand and deterioration and becomes zero 
at t2 = T2. 

 

Fig. 3. Manufacturer’s inventory system:  a)  0 ≤  ≤ T1, b) T1≤  ≤T 

The manufacturer’s system for storing finished goods at any time t can be repre-
sented by the following differential equation (Fig. 3) 
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with the boundary conditions Im1(0) = 0 and Im3(T2) = 0. 
There are two possible relations between the parameters T1 and ; 0 ≤  ≤ T1 

(Fig. 3a), T1 ≤  ≤ T (Fig. 3b). Each case implies a different ordering cost, holding cost 
and deterioration cost. Let us discuss them separately below. 

Case III (0 ≤  ≤ T1) 

In this case, Eqs. (17) and (18) become 
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with the boundary conditions Im1(0) = 0, Im1(–) = Im2(+), and Im3(T2) = 0. 
The solutions of Eqs. (19)–(21) are 
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Based on Fig. 3a, the maximum inventory level of finished goods is 
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The quantity produced in a cycle is 

 

     
1 1

1

0 0

2 2 2 2 3
1 1 1 1

1 1 1

2 2 2

T T

m

m

Q P t dt P t dt P t dt

Q ka T bT b b T b





   

  

      
 

  
  (26) 

At the start of the cycle, the cycle has an initial production set-up cost, c1m. The 
present value of the set-up cost is 
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  SE = c1m  (27) 

Inventory is held during the time period T1 and T2. If this system does not consider 
the retailer, all of the holding costs belong to the manufacture. They are given by the 
first two terms in Eq. (28) and Eq. (29). If this system considers the retailers, the hold-
ing cost for the items that are delivered to the retailer belong to the retailer. They 
should be subtracted from the manufacturer’s costs. They are given by the last term in 
Eq. (28) and Eq. (29). The present value of holding cost is (when 0 ≤ 1 ≤ T3) 
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 From Sect. 3.3, Case V, and Eq. (56). 
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When T5 ≥ 1 ≥ T3 
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From Sect. 3.3, Case VI, and Eq. (72). 
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The item cost includes the loss due to deterioration, as well as the costs of the 
items sold. Because set up is done at t1 = 0, the present value of the item cost is 

  2
1 1 1 1m m m mIT c Q c ka T b T b       (30) 

Therefore the present value of total cost during the cycle is the sum of the set-up 
cost (SE), the holding cost (HDm) and the item cost (ITm). The present value of total 
cost per unit time over the cycle is given by 
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Case IV (T1 ≤  ≤ T) 

In this case, Eqs. (17) and (18) become 
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with the boundary conditions Im1(0) = 0, Im2(–) = Im3(+), and Im3(T) = 0. 
The solutions of Eqs. (33)–(35) are 
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Based on Fig. 3b, the maximum inventory level of finished goods is 
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The quantity produced in a cycle is given by 
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when 0 ≤ 1 ≤ T3. 
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From Sect. 3.3, Case V, and Eq. (56). 
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when T3 ≤ 1 ≤ T5. 
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 From Sect. 33, Case VI, and Eq. (72) 

  2
2 2 1 1

1

2m m m mIT c Q c ka T bT    
 

 (43) 

The present value of total cost per unit time over a cycle is 
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3.3. Retailer’s system for storing finished goods (when 0 ≤ 1 ≤ T3) 

The change in the retailer’s inventory level is depicted in Fig. 4a, b. Since P > d, 
we assumed that the initial delivery to the retailer’s inventory system is made at t3 = 0. 
Part of the stock delivered is used to satisfy previous order, leaving a balance of MIr 
units in the initial inventory. 

During time period T3, the inventory level decreases due to demand and deteriora-
tion. At t3 = T3, the inventory level is zero. During the time period T4, part of the short-
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age is backlogged and part of it results in lost sales. Only the backlogged items are 
replaced by the next delivery. There are n deliveries in the T = T1 + T2 time period. 

 

Fig. 4. Retailer’s inventory system: a) 0 ≤ 1 ≤ T3, b) T3 ≤ 1 ≤ T5 

 
The retailer’s inventory system (Fig. 4) at any time t can be represented by the fol-

lowing differential equation; 
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with the boundary condition Iri(T3) = 0. 
There are two possible relations between the parameters T3, T5 and : 0 ≤ 1 ≤ T3 

(Fig. 4a), T3 ≤ 1 ≤ T5 (Fig. 4b). Each case implies a different ordering cost, holding 
cost and deterioration cost. Let us discuss them separately below. 

Case V (0 ≤ 1 ≤ T3) 

In this case, Eq. (46) becomes 
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with the boundary conditions Ir2(T3) = 0 and Ir3(0) = 0. 
The solutions of Eqs. (47)–(49) are 
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Based on Fig. 4 (a), the retailer’s maximum inventory level is  1 1 0r rMI I  
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The quantity supplied to the retailer per delivery is 

  1
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r rQ MI Ba T    (54) 

Delivery has an initial order cost (c1r) incurred at the start of the delivery. The pre-
sent value of ordering cost is 

  OR = c1r  (55) 

Inventory is held during the time period T3. The present value of the holding cost is 
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Shortage occurs during the time period T4. The present value of backlog cost is 
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Lost sales occur during the time period T4. During this time period, the complete 

shortage is  
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d t dt  and the partial backlogging is  
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them equals the amount of lost sales. The present value of the cost of lost sales is 
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The item cost includes loss due to deterioration, as well as the costs of the items 
sold. Because the order is carried out at t = 0 and t = T3 + T4, the present value of the 
item cost is 
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The present value of the total cost of a delivery is the sum of the ordering cost (OR), 
the holding cost (HDr), the backlog cost (BA), the lost sale cost (LS) and the item cost 

(ITr). The present value of the total cost per unit time for a single delivery is !
rTC  
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There are n deliveries per cycle. The fixed time interval between the deliveries is 
T5 = T/n. The present value of the total cost per unit time over the cycle at t = 0 is 
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Case VI (T3 ≤ 1 ≤ T5) 

In this case, Eq. (46) becomes 
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with the boundary conditions Ir1(T3) 0, Ir2(0) = 0, and Ir2(1) = Ir3(1). 
The solutions of Eqs. (62)–(64) are 
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Based on Fig. 4b, the retailer’s maximum inventory level is  2 1 0r rMI I  
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The quantity supplied to the retailer per delivery is 
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The present value of the total cost incurred by a single delivery is the sum of the 
ordering cost (OR), the holding cost (HDr), the backlog cost (BA), lost sale cost (LS) 
and the item cost (ITr). The present value of the total cost incurred per unit time by 
a single delivery is 
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There are n deliveries per cycle. The fixed time interval between the deliveries T5 is 
T/n. Thus, the present value of the total cost per unit time over a cycle at t = 0 is 
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It is obvious that the results of Section 3 are not enough to derive the total system 
cost for this case. Thus the determination of the total cost, system cost requires the 
further examination of the ordering relations between the time parameters T1, T2, T3, 
T4, T5, T, 1 and . Now we have all the quantities needed to formulate the total sys-
tem cost and proceed with its optimization. 

4. The optimal replenishment policy 

The results in the previous sub-section lead to the following total system cost over 
the time interval [0, T]; 

Case A, 0 ≤ 1 ≤ T3 
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 (76) 
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Case B, T3 ≤ 1 ≤ T5 
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  (77) 

and the problem is  *
1min .TC T  

We have used a second degree polynomial to approximate an exponential function. 
The resulting model with a single supplier, a single retailer and a single manufacturer is 
developed to derive the optimal production policy and lot size. Since T = T1 + T2, 
T5 = T/n, and it is assumed that T4 = T3, where 0 <  << 1, its solution requires separate-
ly studying each of the branches and then combining the results to obtain the optimal 
policy. It is easy to check that TC(T1) is continuous at the point . The first order con-
dition for a minimum of TC1(T1) is 
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Suppose the derivative 
 1 1

1

dTC T

dT
 = 0 at T1.1 with 0 ≤ T1.1 ≤ T. For this we have 
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which shows the convexity of the function TC. 

Solution procedure 

The problem is to determine the value of n and T1 that minimize the TC. Since the 
number of deliveries per order, n, is a discrete variable, the following procedure is 
proposed to determine the optimal production policy: 



Collaborative strategy for a three echelon supply chain 97

Step 1. Since the number of deliveries, n, is an integer value, we start by choosing 
an integer value of n ≥ 1. 

Step 2. Determine the first derivatives of TCi (i = 1, 2, 3, 4) with respect to T1 and 
equate them to zero. 

Step 3. Find the optimal value of T1 for given n, which is denoted by T1
*(n) or 

simply T1
* when there is no ambiguity regarding the value of n. The total cost in this 

case is given by TC(n, T1
*). 

Step 4. Repeat steps 1–3 for all the possible values of n until the minimum TC is 
found such that * * *

1 1)( –1, ( , )TC n T TC n T  and * * *
1 1, )( ( 1, ).TC n T TC n T   

5. Numerical examples and sensitivity analysis 

In this section, we provide some numerical examples to illustrate the theoretical 
results obtained in the previous sections. In addition, we also carry out a sensitivity 
analysis for the effect of the values of the most important parameters on the optimal 
order quantity and total system cost. 

Example 1 

The input parameters are: c1w = $ 100 per order, c1m = $ 90 per order, c1r = $ 50 per 
order, c2w = $ 1per unit per week, c2m = $ 5 per unit per week, c2r = $ 6 per unit per 
week, cw = $ 10 per unit, cm = $ 15 per unit, cr = $ 20 per unit, 1 = 0.05, 2 = 0.06, 
3 = 0.09, B = 0.8, r = 0.06, c3 = $ 15 per unit, c4 = $ 35 per unit, k =3, a =1, b = 2,  
T = 20 weeks,  = 1 week,  = 0.2. 

Using Eq. (76a), we find the optimal values of T1 = 5.10 weeks, and T2 = 14.90 
weeks for n =5 , 1 = 0.2, T3 = 3.33 weeks, T4 = 0.67 weeks and the optimal value of 
the total system cost is TC1 = $ 244.10. We can see that the results we have found 
from this analysis satisfy the condition of convexity and the conditions of Eq. (76a) 
such as 0 ≤ 1 ≤ T3, 0 ≤  ≤ T1. 

Using Eq. (76b), we found the optimal values of T1 = 3.52 weeks, and T2 = 16.48 
weeks for n = 4, 1 = 2, T3 = 4.16 weeks, T4 = 0.83, and the optimal value of the total 
system cost TC1 = $ 31,17. Here, 0 ≤ 1 ≤ T3, T1 ≤  ≤ T. 

Example 2 

In this, example,  T3 ≤ 1 ≤ T5, the input parameters are the same as in Example 1. 
Using Eq. (77a), we found the optimal values of T1 = 4.11 weeks, and T2 = 15.89 weeks 
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for n =5,  = 2, 1 = 0.4, T3 = 3.33 weeks, T4 = 0.67 weeks and the optimal value of 
the total system cost is TC1 = $ 477.67. This means that there is no feasible solution in 
this case that satisfies both of the conditions T3 ≤ 1 ≤ T5 and 0 ≤  ≤ T1. 

Using the data from Example 1, the sensitivity analysis is performed to explore the 
effect of changes in some of the model parameters (a, b, , T) on the optimal policy 
(i.e. on the optimal order quantity and optimal total system cost). The results are pre-
sented in Table 1 and some interesting findings are summarized as follows: 

 Increases in the first demand parameter (a) have no impact on the optimal pro-
duction time, while the total system cost also increases. But increases in the second 
demand parameter (b) lead to a decrease in the production time and an increase in the 
total system cost. 

 Increases in the time parameter () lead to a decrease in T1 and an increase in the 
total system cost. Increases in the parameter T lead to increases in both T1 and the total 
system cost. 

 The changes in the optimal total system cost indicate that the model is highly 
sensitive to the changes on a, b,  and T1. 

Table 1. Sensivity analysis 

Parameter
change Percentage T1 TC1 

Parameter
change Percentage T1 TC1 

 

–50 8.03 –29.91

a 

–50 0.00 –48.77 
–25 4.11 –15.16 –25 0.00 –24.59 
25 –4.31 14.75 25 0.00 24.18 
50 –8.62 29.09 50 0.00 48.36 

T 

–50 –73.72 –29.91

b 

–50 8.23 –31.14 
–25 –36.47 –13.11 –25 4.41 –15.98 
25 36.07 9.42 25 –4.31 16.93 
 50 71.76 15.98 50 –8.62 32.78 

6. Concluding remarks 

A model for a three echelon inventory with deteriorating items and a ramp type 
demand rate and ramp type production rate under inflation is studied. In this model, 
the retailer is allowed to have shortages which are partially backlogged. The model 
assumes an individual deterioration rate for each party. The possible ordering relations 
between the time parameters lead to four different situations. The optimal production 
policy was derived for one of them. Convexity was also proved for one case. An easy 
to use algorithm to find the optimal production policy and optimal production time is 
presented. Some numerical examples are studied to illustrate the proposed model. The 
sensitivity of the solution to changes in the value of different parameters has also been 
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discussed. Here the retailer’s shipment time is completely independent of the production 
time, it is dependent on the cycle time T, number of shipments n and the factor . this 
means that we can choose the value of n. The proposed model can be used to determine 
the total system cost when all the parties work together, together with the optimal produc-
tion time. This paper may be extended by using a two-parameter Weibull distribution to 
model the deterioration rate. A very interesting extension would be to permit delays. 
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