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INTRODUCING PROBABILISTIC MODELS 

FOR REDUNDANT SYSTEM RELIABILITY 

Probabilistic models have been developed to evaluate the relationship between reliability measures 

and the performance of a repairable network with built in redundancy. Networks with built in redun-

dancy have been considered and explicit expressions have been derived for three characteristics related 

to such systems including steady-state availability, period of repair, and a profit function. Various 

graphs have been plotted to discover the impact of availability and mean time to system failure on net 

profit, as well as the impact of the failure and service rate on the steady-state availability, net profit and 

mean time to system failure. The system was analysed using first order linear differential equations. 
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1. Introduction 

The reliability of connections within networks can usually be increased by adding 

a number of redundant paths/units. Examples of such systems include water distribution, 

oil and gas supply networks, power generation and transmission networks, road and rail 

transport networks and telecommunication networks. Communication networks operat-

ing under normal conditions may experience random failures and abruptly cease func-

tioning. The reliability and availability of such communication systems can be enhanced 

by using highly redundant structures in the design of units or subsystems. High system 

reliability and availability play a vital role in increasing production volume and thus 

contribute towards the profitability of industry.  
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Since network flow systems are prevalent in power plants, as well as manufacturing 

and industrial systems, many researchers have studied their reliability characteristics 

and have introduced a great number of models to describe their behaviour and perfor-

mance. The reliability of network flows with stochastic capacity and cost constraints 

was studied by Fathabadi et al. [3]. Markov models for analyzing the reliability of faults 

in wireless sensor networks was proposed by Vasar et al. [9]. Hassan [5] performed an 

evaluation of the reliability of a network with respect to the simplest system satisfying 

the capacity constraints. Ali [1] investigated the reliability of wireless body area net-

works which are used for monitoring the movement and health of individuals. A study 

of the system reliability of a multi-commodity limited-flow network was presented by 

Lin [6]. Rocco and Zio [7] presented cellular automata and the Monte Carlo sampling 

method adapted to solving problems involving the reliability of advanced networks. An 

approach based on cellular automata for the assessment of network reliability was stud-

ied by Rocco et al. [7, 8]. 

This paper presents a study of the reliability of a repairable network with built in redun-

dancy. The study is used to develop a mathematical model. The objectives of this analysis 

are twofold: First, to capture the effect of the failure of individual units and repair rates on 

the mean time to system failure (MTSF), steady-state availability and profit. Secondly, to 

capture the impact of steady-state availability on the mean time to system failure and profit 

given the numerical values assigned to the system parameters. 

The organization of the paper is as follows. Section 2 contains a description of the 

network flow system under study. Section 3 presents formulations of the models. The 

results of our numerical simulations are presented in section 4. Finally, we make some 

concluding remarks in Section 5. 

2. Description of the network 

The system is composed of three subsystems A, B and C, in series connected by 

two paths P1 and P2 (Fig. 1). Subsystem B consists of two identical units, B1 and B2, in 

cold standby. When the primary path P1 fails, which occurs with the failure rate 1,  it is 

sent for repair with the service rate equal to 1  and the standby path P2 then carries out 

the function of the failed P1. The system works whenever the subsystems A, C and either 

of unit B1 or B2 are working. It is assumed that switching from standby to operation is 

perfect and instantaneous. Signals from the subsystem A are received by units B1 or B2 

through the path P1 or P2 and conveyed to the subsystem C. When one of the primary 

units, B1 or B2, in subsystem B fails, which occurs with the failure rate2 it is sent for 

repair with the service rate equal to 2  and the standby unit is switched on to assume 

the role of the failed primary unit. System failure results from the failure of any of the 
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subsystems A, B or C, or either of the paths P1 and P2. The subsystems A and C fail with 

failure rates 3  and 4  and are returned from repair at service rates 3  and 4 , respec-

tively (Fig. 3). 

 

Fig. 1. Reliability block diagram of the network 

 

Fig. 2. Transition diagram for the network considered 

S0. Initial state. Path P1, subsystems A and C, and unit B1 in subsystem B are work-

ing; path P2 and unit B2 in subsystem B are on standby. The system is working. 

S1. Path P1 has failed and is under repair; Path P2, subsystems A and C, and unit B1 in 

subsystem B are working; unit B2 in subsystem B is on standby. The system is working. 

S2. Unit B1 has failed and is under repair. Path P1, subsystems A and C and unit B2 

in subsystem B are working; path P2 is on standby. The system is working. 

S3. Path P1, unit B1 in subsystem B and subsystem C are idle, path P2 and unit B2 in 

subsystem B are on standby; subsystem A is down. The system is inoperative. 

S4. Path P1, unit B1 in subsystem B and subsystem A are idle; path P2 and unit B2 in 

subsystem B are on standby; subsystem C is down. The system is inoperative. 
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S5. Path P1 has failed and is waiting for repair; subsystems A and C, and unit B1 in 

subsystem B are idle; unit B2 in subsystem B is on standby; path P2 is down and is under 

repair. The system is inoperative. 

S6. Path P1 has failed and is under repair; path P2, subsystem C and unit B1 in sub-

system B are idle; unit B2 in subsystem B is on standby; subsystem A is down. The 

system is inoperative. 

S7. Path P1 has failed and is under repair; path P2, subsystem A and unit B1 in sub-

system B are idle; unit B2 in subsystem B is on standby; subsystem C is down. The 

system is inoperative. 

S8. Unit B1 has failed and is waiting for repair; path P1, subsystem A and C are idle; 

path P2 is on standby; unit B2 in subsystem B is down. The system is inoperative. 

S9. Unit B1 has failed and is waiting for repair; path P1, unit B2 in subsystem B and 

subsystems C are idle; path P2 is on standby; subsystem A is down. The system is inop-

erative. 

S10. Unit B1 has failed and is waiting for repair; path P1, unit B2 in subsystems B and A 

are idle; path P2 is on standby, subsystem C is down. The system is inoperative. 

3. Formulation of the model 

3.1. Availability, busy period and profit of the network 

In order to analyze the system availability of the network, we define ( )iP t to be the 

probability that the system at 0t   is in state .iS  Also let ( )P t  be the row vector of 

these probabilities at time t.  

The initial condition for this problem is:  

       0 1 2 10(0) [ 0 , 0 , 0 , ..., (0)] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0P P P P P   

We obtain the following differential equations: 

           0 1 2 3 4 0 1 1 2 2 3 3 4 4P P t P t P t P t P t                  
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 

 

 

 
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 (1) 

This can be written in the matrix form as 

 P MP  (2)  

where Eq. (2) is expressed explicitly in the form 

0 1 1 2 3 4
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and  
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A1 = 1 2 3 4( )        

A2 = 1 1 3 4( )         

A3 = 2 2 3 4( )        

The above substitutions(A1–A3) adopted for the editorial reasons apply also to the 

matrices in (5a) and (7). 
The steady-state availability (the proportion of time the system is in a functioning 

condition or equivalently, the sum of the probabilities of operational states) and busy 

period (the sum of the probabilities of states involving repair) are given by  

 0 1 2( ) ( ) ( ) ( )VA P P P        (3) 

 1 2 3 10( ) ( ) ( ) ( ) ... ( )PB P P P P           (4) 

In the steady state, the derivatives of the state probabilities become zero and there-

fore Eq. (2) become 

 0MP   (5)  

which is in a matrix form 

01 1 2 3 4
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0 0 0 0 0 0
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 (5a) 

Subject to following normalizing conditions:
 

 0 1 2 10( ) ( ) ( ) ... ( ) 1P P P P          (6) 
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Following [10] and [11], we substitute (6) in the last row of (5) to compute the 

steady-state probabilities. 

 

01 1 2 3 4
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 (7) 

Solving (7),we obtain the steady-state probabilities 

P 0 1 2 3 10( ), ( ), ( ), ( ), ..., ( )P P P P P      

The expressions for the steady-state availability and busy period given in (3) and 

(4) above are  

 1 2 3 4 1 1 2

0

( )
( )VA

D

       
   (8) 

 0

0

( )P

N
B

D
   (9) 

where 

2 2 2 2 2 2 2 2

0 1 2 3 4 1 3 2 4 1 1 2 3 4 2 1 3 4 2 1 2 4 3

2 2 2 2 2 2

1 2 4 1 3 1 2 4 2 3 1 2 3 4 1 2 3 1 4 1 2 3 2 4

N                      

                       

    

    
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2 2 2 2 2 2

0 1 3 4 2 1 2 3 4 2 1 2 3 2 4 1 2 3 4

2 2 2 2 2 2

1 2 3 4 1 2 4 2 3 1 2 4 3 1 2 3 4 1

2 2 2 2
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             

   

   

  

 

Let 0C  and 1C  be the revenue generated when the system is in a working state, 

equivalently loss of income when in an inoperative state and the cost of each repair 

respectively. The expected total profit per unit time generated by the system in the 

steady-state is 

Total maintenance
Profit = Total revenue generated – 

Repair cost
  

 0 1( ) ( )V PPF C A C B     (10) 

where PF is the net profit generated by the system. 

3.2. Mean time to system failure of the network 

Since it is difficult to evaluate the transient solutions, therefore the concept from 

[2], [4], [10] and [11] have been used to derive an explicit solution for evaluating the 

mean time to system failure (MTSF). These procedures require the deletion of rows and 

columns corresponding to the absorbing states (an absorbing state is a state from which 

there is a zero probability of exiting) of matrix M and take the transpose to produce 

a new matrix, say Q. The expected time to reach an absorbing state is obtained from the 

relation: 

  1 1

1

1

MTSF (0) 1

1

N
P Q

D



 
 

  
 
  

 (11) 

where 

1 1 1 3 4 2 2 3 4

1 2 2 3 4 2 1 1 3 4

( )( )

( ) ( )

N        

         

      

       
 



Probabilistic models for redundant system reliability 

 

13 

 
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   
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    
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( )

( ) 0

0 ( )

Q

     

    

    

    
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 
       

4. Graphical analysis of the network 

Numerical examples are presented to demonstrate the impact of service and failure 

rates on steady-state availability, net profit and mean time to system failure and the 

overall performance of the system based on given values of the parameters. For the 

purpose of numerical example, the following set of parameter values are used: 1 0.3, 

2 0.4,  3 0.6,  4 0.5,   1 0.3,  2 0.2,  3 0.3,  4 0.01,   0 200 000,C 

1 80 000.C   The MATLAB package was used to program the simulations in this study.  
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 Fig. 4. Availability as function of 
1   

 

Fig. 5. Profit as function of 
1  

Figures 3, 5 and 7 show the behavior of availability, net profit and mean time to 

system failure as function of service rate 1.  It is observed that the system availability, 

net profit and mean time to system failure increase in the service rate. This means that 

they can be improved by increasing the service rate, reducing the failure rate or by pre-

ventive maintenance action. Thus, this sensitivity analysis suggests one way of maxim-

izing production output, system availability, mean time to system failure and net profit 

while minimizing cost.  

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0 0.2 0.4 0.6 0.8 1

A
va

ila
b

ili
ty

β1

-8

-6

-4

-2

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00

P
ro

fi
t 

(x
 1

0
4
)

α1



Probabilistic models for redundant system reliability 

 

15 

 

Fig. 6. Profit as function of 1 
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Figures 4, 6 and 8 present the impact of the failure rate 1  on availability, net profit 

and mean time to system failure. It is evident from these figures that they decrease in 

the failure rate 1. From these figures, it is clear that increasing the failure rate mini-

mizes the production output, net profit and overall system performance. 

 

Fig. 9. Profit in function of the availability 

 

Fig. 10. Profit in function of the MTSF 
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5. Conclusion 

Explicit expressions for the mean time to system failure, steady-state availability and 

profit of such system are derived. The numerical simulations presented in Figs. 3–8 pro-

vide a description of the effect of the failure rate 1 and service rate 1on steady-state 

availability, profit and mean time to system failure (MTSF). From these simulations, 

the availability, profit and life span of the system is increased by improving the repair 

rate and is diminished by failures. It is evident from Figs. 9 and 10 that the associated 

net profit and mean time to system failure are increasing in availability. On the basis of 

the numerical and graphical results obtained for a particular case, it is suggested that the 

system availability, mean time to system failure and net profit of the system can be 

improved significantly by: 

 Adding more paths and units in cold standby. Various redundant units/paths will 

lead to different results for the steady-state availability, profit and mean time to system 

failure. From the graphical study illustrated above, the steady-state availability, profit 

and mean time to system failure are sensitive to the failure and service rate. The steady- 

-state availability, profit and mean time to system failure will be increasing in the num-

ber of redundant units/paths. 

 Increasing the service rate. 

 reducing the failure rate of the system by hot duplication. 
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