
O P E R A T I O N S  R E S E A R C H  A N D  D E C I S I O N S 

No. 3 2016 

DOI: 10.5277/ord160304 

Dennis RIDLEY1 

ADVANCES IN ANTITHETIC TIME SERIES ANALYSIS. 

SEPARATING FACT FROM ARTIFACT 

The problem of biased time series mathematical model parameter estimates is well known to be 

insurmountable. When used to predict future values by extrapolation, even a de minimis bias will even-

tually grow into a large bias, with misleading results. This paper elucidates how combining antithetic 

time series’ solves this baffling problem of bias in the fitted and forecast values by dynamic bias can-

cellation. Instead of growing to infinity, the average error can converge to a constant. 
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1. Introduction 

Time series mathematical models are subject to bias in parameter estimates. The 

bias is an artifact of the model. It is an obstacle to accurate extrapolation. This is partic-

ularly true in the case of economic science where long range extrapolation is required 

and even more so in climate science time series analysis of global warming. Both effects 

are global and occur over a very long time period. Therefore, the elimination of bias is 

paramount. 

A time series is the name given to a sequence of numbers that occur over time. If 

the sequence is correlated, that is, if current values are related to past values, then future 

values can be predicted by extrapolation from a record of historical values. A time series 

model is a mathematical model for fitting historical time series data. The model is com-

prised of a variable that represents the value of the time series at any point in time and 

one or more lagged variables and corresponding coefficients. The coefficients are called 

parameters. The fitting process is the estimation of the values of the parameters. The 
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model can then be used to predict future values by extrapolation. This feature can be 

exploited for the purpose of prediction in engineering, economics, medicine and social, 

chemical and physical sciences. However, there is a well-known insurmountable obsta-

cle to realizing the true value of time series models. Time series mathematical models 

are subject to bias in the estimates of the parameters. The bias is an artifact of the model. 

It is an obstacle to accurate extrapolation. This is particularly true in the case of econo-

metrics where long range extrapolation is required and even more so in climate science 

analysis of global warming. Combining antithetic time series (not to be confused with 

antithetic variates [9, 12]) is a recent discovery that permits unbiased model fitting and 

extrapolation in the presence of bias in parameter estimates. Combining antithetic time 

series’ yields unbiased fitted and forecast values even when the estimates of the model 

parameters are biased. 

2. Methodology 

2.1. Deterministic versus probabilistic models 

Mathematical models have a long history of service to mathematics, engineering, 

econometrics, medicine and social, chemical and physical science. There are two types 

of models, deterministic models and probabilistic ones. Probabilistic models are also 

referred to as stochastic. Deterministic models assume that model variables can be de-

termined exactly with no uncertainty. Therefore, they are simply specified. They are 

relatively easy to interpret and appear to work well when their use is limited to their 

intended purpose and the model formulation does in fact represent the true relationships 

between the variables represented. 

Probabilistic models include random variables, the values of which cannot be de-

termined exactly. The outcomes of probabilistic models are understood to be uncertain. 

Random variables are not entirely arbitrary. They can follow a pattern, resulting in 

a well-defined probability distribution, with constant parameters such as mean and var-

iance. The objective of probabilistic models is to estimate means and variances from 

which statements of probability can be made. An example of such a model is the well- 

-known cross sectional regression model. In that model, a dependent variable (regres-

sand) such as volume is regressed on independent variables (regressors) such as tem-

perature and pressure. The objective is to estimate two parameters that relate tempera-

ture and pressure to volume. Any values of the regressand that are not reproducible by 

the model are the model errors. For the estimates of the parameters to be unbiased, inter 

alia, the observed values of the dependent variable must be independent of each other 

and the errors must be independent of the regressors. Physical phenomena of this type 

are described well by mathematical models. 
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Described as an enigma [6], despite themselves not being physical, mathematical 

models may be used to make close and accurate numerical connections between the 

elements of complex physical systems. However, the smallest deviation from the pre-

scribed assumptions can lead to insurmountable problems. Some such problems are not 

curable by simply employing more data. For, example, it is well known [8] that when 

the above mentioned independence requirement (of the Gauss–Markov theorem) is vi-

olated, the parameter estimates of the model will be biased. This is unavoidable in the 

case of longitudinal time series models. The reason is because in time series models, the 

dependent variable is regressed on past values of the same variable. That is, they are 

autoregressive. In order to have any predictive value, the values of the dependent vari-

able must depend on past values. That is, the observations are not independent. The 

model errors can become correlated with past values of the time series variable. 

The biases in the model parameter estimates are aptly described as artifacts of the 

model. They are not real and they do not exist anywhere in the real world or in the physical 

system under study. Of course, fitted values and predicted values obtained by extrapola-

tion from such a biased model will also be biased. In multiperiod forecasting by extrapo-

lation, the bias will accumulate and the forecast and actual values will diverge. In the case 

of climate science, where a time series model is used to predict future temperatures by 

extrapolation, positive and negative biases will over predict warming and cooling, respec-

tively. These scenarios are unrelated to the real world physical system. 

Of course, bias in the time series model can be avoided by selecting a time series 

whose values are independent. Unfortunately, such a model could not possibly have any 

predictive value. In that case, mathematics has greatly diminished value or no value at 

all. Worse still, biased estimation can be misleading, so much so that analysis may be 

better off without it. So, we see that while mathematics can model complex connections 

of cross sectional relationships, when called on to model longitudinal connections, the 

rules of mathematics continue to work, but with respect to bias, mathematics exhibits 

some complexities of its own. 

2.2. Physical science versus time series models 

In a repeatable physical science experiment where each outcome yields a sample, 

each sample may be designed such that there is an equal opportunity of including any 

data point. In time series, the researcher gets one shot at a sample. Unless the sample 

size is infinite, there is little chance that it is perfectly representative of the population. 

There is no repetition that would conceptually average out bias. There is no meaning in 

talking about an unbiased sample from a time series. The real problem, of course, is bias 

in parameter estimates. 
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2.3. The sources, mechanism and impact of bias 

Let us consider the simplest time series model. A practical model may be more 

complicated, but the issue of bias will apply similarly. Suppose a discrete stationary 

stochastic autoregressive time series model 
1 , 2, 3, ..., ,t t tX X t n     where ϕ is 

a parameter of unknown value and t is an unobservable random error, is fitted to a sta-

tionary time series of n observations: Xt, t = 1, 2, 3, …, n, where t represents time. When 

Xt  are obtained by measurement, randomness is defined as an ensemble of possibilities, 

each of which is assigned a probability. When Xt are obtained by simulation, the series 

of numbers is random if the smallest algorithm capable of specifying it to a computer 

has about the same number of bits of information as the series itself (the complexity of 

the series of digits is approximately equal to its size in bits [1, 13]. 

If future values Xn(),   = 1, 2, 3, …, N, are to be predicted by extrapolation at time  

t = n, then the past values Xt, t ≤ n, must be serially correlated. The estimation of the param-

eter  in the model requires that the data be stationary. If a normal distribution is assumed, 

stationarity requires that the data be defined completely by a constant mean and variance. 

There are various ways in which this assumption may not apply. One way is if the popula-

tion is not normally distributed to begin with. Many data assumed to be normally distributed 

are better described by a lognormal distribution. For example, in the case of economic data 

such as the production or sales of a product, while the minimum value is zero, the upper 

limit can be very large. Another way is if the population is normally distributed but sampling 

truncates the data such that the sample does not appear to the model fitting process as being 

normally distributed. Yet another way is if other relevant variables exist but are missing 

because they are not measurable or are otherwise unavailable. Any one of these departures 

from the model requirement will create a sequential pattern in the errors t. That is, the errors 

are serially correlated. Another way of stating this is that the correlation between the current 

and past errors is not zero (Corr(t, t–j) ≠ 0 for some j ≠ 0). From the above model, Xt and t 

are correlated. Likewise, so are Xt–1 and t–1. That is, Corr(Xt–1, t–1) ≠ 0. Therefore, if t is 

correlated with t–1, then t is correlated with Xt–1. That is, Corr(Xt–1, t) = 0. This is a clear 

violation of the requirements of any regression model. 

Unfortunately, there is no way to fit an unbiased AR(p) model to serially correlated 

data wherein Corr(Xt–1, t) ≠ 0 and p ≥ 1. The Gauss–Markov theorem that requires 

independence will be violated. This was demonstrated by Griliches [8] and discussed 

by other researchers [4, 11, 16]. The conventional wisdom is that this and many other 

problems are easily overcome by simply obtaining more data. Of course, as a practical 

matter, the size of the data sample may be limited. Notwithstanding the possibilities of 

additional sampling, it turns out that more data will not solve the problem. As n → ∞, 

the variance of the estimator of  decreases but the bias does not decrease to zero. It 

decreases to a finite value greater than zero so that the estimate is more precise. That is, 

the estimate becomes more and more precisely wrong. This idiopathic bias is an artifact 
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that is introduced by the mathematical model. Such a biased model will generate biased 

predictions that are obtained by extrapolation. Obviously, if the past values are inde-

pendent, no future values can be predicted by extrapolation. The future cannot be con-

nected to the past. This is a hopeless paradox. 

2.4. Consequences for forecasting 

The persistent occurrence of bias has led to the conventional wisdom that the farther in 

time that a model is used to predict by extrapolation, the greater the error will be [14]. The 

forecasts and actual values will diverge over time. An etiology of the forecast error gives 

the appearance of an emergent property that cannot be reduced to the elements of the model. 

While this may be intuitive, it is only true if there is bias. If the bias can be eliminated, then 

at least in theory, the forecast mean square error (MSE) will be constant into the future. 

A similar problem would exist in a cross sectional model if the observations were 

not serially independent. However, in a cross sectional model, there is no attempt at 

finding longitudinal connections between the future and the past. The connections 

sought are between a dependent variable and one or more independent variables. Excel-

lent connections between independent observations are possible.  

There are negative implications for biased extrapolations in engineering, science, 

medicine and economics. Manufacturing quality control data are correlated, economic 

data are more correlated and biomedical data are highly correlated. The computer pro-

gram MyPulse [17] was developed expressly for the purpose of separating systematic 

internal biological effects from random external environmental effects in biomedical 

data. Bias poses special problems for long range extrapolation. For example, the inves-

tigation of global warming requires long range forecasts. Even a small bias will eventu-

ally grow into a large bias, with misleading results. Missing data are also a source of 

bias [15]. So, better climate models, more data and better data are important. However, 

such efforts are futile if there is inherent bias in the mathematical model [14].  

It is reasonable to consider man made time series (outcomes from engineering, sci-

entific, and computer simulation experiments, etc.) as comprising deterministic and ran-

dom components. Koutsoyiannis [14] suggested that naturally occurring time series are 

purely non-deterministic. For all practical purposes, he threw the towel in and gave up 

on the practice of extrapolation. Despite that, the antithetic time model postulates that 

natural time series also comprise deterministic and random components. Antithetic time 

series analysis assumes that the fitted values from a mathematical model are determin-

istic and that the errors comprise random and systematic bias components. Perceived on 

both ontological and epistemological grounds, all three components can exist together, 

and can be separated into corresponding individual mathematical components. As long 

as the effects of the error randomness and error bias are confounded, it is impossible to 

arrive at the correct mathematical model. 
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As a time series evolves over time, future values are created by the mechanism in-

volved. So long as the time series is not observed, the evolution continues unaffected 

and is as it should be. However, once the time series is observed, that is, once a meas-

urement is taken via a mathematical model, the time series as seen through the instru-

ment of the model is automatically biased, and a change in the time series appears to be 

effected. This is an event horizon. This has a physical parallel in the concept of quantum 

mechanics where observation also affects the observed. Even if the parameter bias is de 

minimis, the forecast bias will accumulate and become very large. The bias must be 

corrected in the forecast value and it must be corrected dynamically. Forecast bias cor-

rection must be performed dynamically. 

The purpose of this article is to inform on a major directional change, a paradigm 

that solves this problem. It is recognized that mathematics can model complex real 

world systems. Furthermore, it is recognized that mathematics can have complexities of 

its own. So, it appears that we need a mathematical concept to model the complexity of 

the mathematics of the autoregressive time series model. It turns out that the solution, 

involving the bifurcation of error into random and systematic bias components, while 

entirely counterintuitive, illusive, novel, and accompanied by non-trivial proof, is rela-

tively simple to implement. 

2.5. Reversing the correlation 

The key to the portal between serial data and unbiased extrapolation is the reversal 

of correlation. This is made possible by the Ridley [20] antithetic time series theorem 

 

 

Fig. 1. The sample correlation r between Xt and its pth power p

tX  as p approaches 0– for the sample data. 

When p is positive, the correlation must be positive, and when p = 1, the correlation must be exactly  

plus one (not shown). When p is negative, the correlation is negative. When p = 0, the correlation  

must be zero. However, as p approached zero from the left (p inside an infinitesimal neighborhood  

of zero but not zero), the correlation does not approach zero, instead, it approaches –1.  

The nature of this correlation is counterintuitive 
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which states that if Xt > 0, t = 1, 2, 3, … is a discrete realization of a lognormal stochastic 

process, such that lnXt ~ N(, ), then if the correlation between Xt and p

tX is ,pXX
  

then
0 ,
lim 1.pXXp 


 

   

The requirement that the standard deviation  → 0 is easily met in practice because 

it applies to the logarithm of Xt  and the logarithm is always relatively de minimis. Intu-

ition might suggest to us that the limit as p → 0– of the correlation between Xt and p

tX

is zero since 0

tX  is the constant 1. However, we are interested in an infinitesimal neigh-

borhood of zero for p, not zero. The limiting value of the correlation turns out to be –1. 

The reversal of correlation is illustrated in Fig. 1. 

2.6. The distribution matters 

It is important to recognize that the probability distribution of the time series does 

matter. The foregoing analysis of correlation was based on the positive valued lognormal 

distribution. The normal distribution is chosen quite often by researchers. One reason is 

because it occurs quite often in nature. The other reason is because of the availability of 

normal probability theory for analysing data. If a random variable has a lognormal 

distribution, then its natural logarithm has a normal distribution. If a random variable 

has a normal distribution, then after exponentiation it has a lognormal distribution. This 

fact may come in handy since technicaly speaking, the normal distribution supports 

negative numbers, and negative numbers cannot be raised to the negative and fractional 

values of p. One way of handling normally distributed data is to add a constant to each 

number in the data sample prior to constructing the antithetic time series model, then 

subtracting it later. It can be proven that this has no adverse impact on the correlation [20]. 

In passing, purely out of curiousity, it is noted that when the distribution is uniform, the 

limiting value of the correlation is not –1, it is –(3/2)1/2. Since uniformly distributed time 

series are either very rare or non-existent in nature, one need not be concerned with 

them in practice.  

2.7. Antithetic combining 

Finally, we can now combine the two antithetic time series. The antithetic combin-

ing model [20] is  ˆ ˆ ˆ1 , 1, 2, 3, ..., ,ct t tX X X t n       where ˆ
tX  are fitted values 

obtained from the above time series model 1 , 2, 3, ..., .t t tX X t n     The param-

eter –∞ <  < ∞ is a combining weight. The fitted values ˆ
tX  and ˆ

tX   are antithetic in 

the sense that they contain components of error ˆ ˆ and ,t t    respectively, that are biased and 
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when weighted, ˆ ˆ and (1t t     are perfectly negatively correlated. The antithetic com-

ponent ˆ
tX  is estimated from ˆˆ ˆ ˆ

ˆ ˆ ˆ( / )( ),p p

p p

t tXXX X
X X r s s X X    t = 1, 2, 3, …, n, where 

the exponent of the power transformation is set to the small negative value p = –0.001, r de-

notes sample correlation coefficient and s denotes sample standard deviation. The weight  

is chosen so as to minimize the combined model fitted MSE in ,
ˆ .c tX  How the equation for 

ˆ
tX works is as follows. The units of ˆ p

tX  are unknown and must be converted back to the 

original units of ˆ
tX  by rescaling. This is accomplished by multiplying the variation of ˆ p

tX

about its own mean ˆ p

tX  by the ratio of the standard deviations of ˆ
tX  and ˆ p

tX  respectively, 

and by the coefficient of correlation between them. Since ˆ
tX  and ˆ p

tX  are perfectly corre-

lated, albeit negatively, this rescaling by inverse transformation will not introduce any new 

errors. As discussed earlier, when reversed, the correlation is approximately –1. 

If the original model is biased, then the combined MSE will be smaller than the MSE 

of the original model. Also, the combined model error will be completely random and 

contain no systemic component. If the original model is unbiased, then  will simply be 

equal to 1, and the combined fitted values will just be the original fitted values.  

Notice that antithetic combining involves only one time series. Other researchers [3] 

considered combining several independent time series. If each component model con-

tributes something that the others do not, then such an approach may produce an im-

proved combined model. However, it does not give any consideration to the presence 

of bias that is inherent in all models. Combining antithetic time series focuses on iden-

tifying the best single method and model, then eliminating the bias. 

 

Fig. 2. Dynamic reversal of correlation and combining of antithetic forecasts 

By extension, the  period forecasts at time n are given by ,
ˆ ˆ( (c n nX X      

ˆ(1 ) ( ,nX    where ˆˆ ˆ ˆ
ˆ ˆ ˆ( ( / )( ( ),p p

p p

n nXXX X
X X r s s X X         = 1, 2, 3, … (Fig. 2). 
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3. Empirical demonstration 

To demonstrate the effect of bias and how to correct it, consider the well-known 

CompanyX data that was published by Chatfield and Prothero [2]. The series of rec-

orded sales of electric heaters is a surrogate for what is charted in Fig. 3 as demand. 

 

Fig. 3. Original and reverse correlated antithetic time series. The original time series is upward trending 

while the reverse correlated time series is downward trending. The cyclical and other seasonal patterns 

 in the two time series are also reversed. The value p = –0.001 is used to approximate p → 0– 

There are other data that are more current, but the reason that the CompanyX time 

series is selected for this demonstration is because of the several expert attempts that 

were made to forecast it and that resulted in failure. The failures occurred in the face of 

what is a seeming regular and predictable time series. Furthermore, this series contains 

all the elements of growth in mean and variance, and seasonal and other cyclical ele-

ments that are typical of naturally occurring time series. The apparent correspondence 

between the growth in mean and the variance is a source of what is known as multipli-

cative errors. The reversal of correlation applied to this time series is demonstrated in 

Fig. 3. 

The forecasts shown in Fig. 4 are the best of the expert forecasts reported and dis-

cussed extensively [2, 21]. The data were described only as the sales of electric heaters 

in England. The forecasts were performed by the best autoregressive integrated moving 

average (ARIMA) model. Despite the seeming regularity and predictability of the time 

series, the forecasts diverge from the actual values. The combined antithetic forecasts 
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converge. Their average forecast errors remain constant over the forecast horizon. The 

combined antithetic forecast calculations were performed by the computer program 

Fourcast [7]. 

 

Fig. 4. Based on actual data Xt from January 1965 to April 1968, an autoregressive moving average 

(ARIMA) model is used to make forecasts for May 1968 to May 1971. The traditional ARIMA model 

forecasts  ˆ
nX   diverge over time. The combined antithetic forecasts  ,

ˆ
c nX    

eliminate the bias, follow the pattern of the data, and converge to a constant average error 

4. Discussion 

The well-known principle of statistics that the smaller the bias of an estimate, the 

larger its variance is and vice versa applies to estimates of the parameters of the time 

series model for a specified MSE = Variance + Bias2. Antithetic time series theory is 

intended to eliminate the bias and reduce the MSE for a specified variance of the fitted 

values that are obtained from the mathematical model. The specified variance is associ-

ated with the purely random error component. The bias, while idiopathic, is associated 

with a systematic error component. There is a resemblance of this statistical principle 

to the physical concept that the more that is known about the position of a particle, the 

less is known about its momentum and vice versa [19, 10, 5]. The resemblance is even 

greater when it is restated as: the smaller the variance of the estimate of the position of 

a particle, the larger its bias is and vice versa. Antithetic time series theory as applied 

here is used to separate the complexity of mathematical statistics from the complexity 

of a system to be analyzed by mathematical statistics. In this article we see the efficacy 

of antithetic combining that was demonstrated on a seemingly regular economic time 

series. The series is typical of what is observed in nature. While the theoretical and 

measurement construction for demand is manmade, the fundamental provenance of de-
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mand is natural. Although it appears to be regular, the series is known to pose insur-

mountable forecast bias [2]. Other methods combine predicted values that are extrapo-

lated from different independent models. Antithetic combining is applied to the best 

single model. The original series of values from the model are obtained. A new anti-

thetic series is created so as to be perfectly negatively correlated with the original series. 

Both the original and antithetic series contain systematic error components. The original 

and antithetic series are combined, such that the systematic error components dynami-

cally cancel. All the features of the original series are retained while the bias, which is 

an artifact of the mathematical model, is removed. There is no need to know the amount 

or source of the bias. Since the bias is unknown and is not measurable prior to its can-

cellation, the conceptualization of bias cancellation can be regarded as a mind experi-

ment. A range of possible distribtions and variances are investigated and discussed 

further [18, 21]. 
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