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Summary: Item response theory (IRT) is a model-based theory in which the responses to test 
items depend on some person and item characteristics, according to specific probabilistic rela-
tions. The simplest and most popular are dichotomous IRT models that specify a single (i.e. 
unidimensional) latent trait under the assumption of normal distribution. This article reviews 
the latent class ordinal polytomous item response models (LC-IRT) and presents the compari-
son with the well-known traditional IRT models (based on the assumption of a normally dis-
tributed latent trait). The main goal of the article is to compare the estimation results of differ-
ent kinds of ordinal polytomous IRT models with continuous and discrete latent variable in 
measuring job satisfaction in Poland. We analyzed data collected as part of the International 
Social Survey Programme using the ltm and MultiLCIRT packages of R. 

Keywords: IRT theory, polytomous IRT models, latent trait, latent class models. 

Streszczenie: Modele IRT oparte są na probabilistycznej teorii testu  i wyrażają prawdopo-
dobieństwo określonej reakcji na pozycję skali jako funkcję zdolności respondenta oraz 
trudności danej pozycji. W różnego rodzaju analizach najczęściej stosowane są dychoto-
miczne modele IRT, w których zakłada się, że zmienne obserwowane są dyskretne, a zdol-
ność respondenta (tzw. zmienna ukryta) jest zmienną ciągłą. Celem pracy będzie zestawie-
nie klasycznych politomicznych (o kategoriach uporządkowanych) modeli IRT, tj. o zmien-
nej ukrytej pochodzącej z rozkładu normalnego, z zyskującymi na popularności modelami 
IRT o dyskretnej cesze ukrytej (LC-IRT) w badaniu satysfakcji z pracy polskich pracowni-
ków. Badania przeprowadzone będą z zastosowaniem pakietów ltm oraz MultiLCIRT 
programu R dla danych pochodzących z Międzynarodowego Programu Sondaży Społecz-
nych ISSP 2015. 

Słowa kluczowe: teoria IRT, politomiczne modele IRT, zmienna ukryta, modele klas  
ukrytych. 
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1. Introduction 

Item response theory (IRT) is widely used in educational and psychological research 
to model how participants respond to test items in isolation and in bundles [Thissen 
and Wainer 2001]. The simplest and most popular in the analysis of questionnaires 
are dichotomous IRT models such as Rasch [1960] or a two-parameter logistic (2PL) 
[Birnbaum 1968] model. This article reviews the latent class ordinal polytomous item 
response (LC-IRT) models and presents the comparison with the well-known tradi-
tional IRT models (based on the assumption of a normally distributed latent trait). 

Polytomous responses include both nominal and ordinal responses. In the nomi-
nal responses, there is no natural ordering in the item response categories. In the or-
dinal responses (presented in the empirical part of this paper) each item has responses 
corresponding to a number of ordered categories. Examples of ordinal polytomous 
variables are social class indicator variables (low, middle, high), proficiency level 
variables (low, moderate, moderately high, high) and Likert scale variables that 
measure agreement with an item (strongly disagree, disagree, agree, and strongly 
agree). Ordinal polytomous items are widespread in several contexts such as educa-
tion, marketing and psychology (see [Wright and Masters 1982; Hambleton and 
Swaminathan 1985; Verhelst et al. 2005]). Depending on the complexity of the 
adopted item parametrization, different types of IRT models are defined, among the 
most well known models for polytomous responses are: the Graded Response Model 
(GRM) [Semejima 1969], the Partial Credit Model (PCM) [Masters 1982], the Rat-
ing Scale Model (RSM) [Andrich 1978] and the Generalized Partial Credit Model 
(GPCM) [Muraki 1992]. These models are based on the unidimensionality assump-
tion and, most of the time, the normality assumption of this latent trait is explicitly 
introduced.  

In the extended theory for items with ordinal polytomous responses, the random 
vector used to represent the latent traits (more than one) is assumed to have a discrete 
distribution with support points corresponding to different latent classes in the popu-
lation. This extension allows also for different parameterizations for the conditional 
distribution of the response variables given the latent traits1 – such as those adopted 
in the Graded Response Model, in the Partial Credit Model, and in the Rating Scale 
Model – depending on both the type of link function and the constraints imposed on 
the item parameters (see  [Bacci et al. 2014]). 

The main goal of the article is to compare the estimation results of different kinds 
of ordinal polytomous IRT and LC-IRT models (with continuous and discrete latent 
trait) in measuring job satisfaction in Poland. 

                      
1 Because the context of the empirical study (the comparison with IRT models under continuous 

approach of the (unidimensional) latent trait) and because the polytomous items considered in the 
empirical part of the study cannot be a priori divided between more than one dimension we will con-
sider the unidimensional latent trait for the LC approach as well compare [Bacci et al. 2014; Barto-
lucci et al. 2016b; Genge 2016]). 
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2. IRT models for ordinal polytomous responses  

To observe responses of n individuals to j ( mj ,,1= ) items of the questionnaire, 

jX  denote the response variable for the j-th item. This variable has jl  categories 

denoted by .1,,0 −= jlx 

 
The conditional probability that a subject with latent trait (or ability) level θ  re-

sponds by category x  to this item is denoted by:  

 )|()( θθ =Θ== xXpp jjx .  (1) 

Let also )(θjp denote the probability vector ))'(,),((
10 θθ
−jjlj pp 

 
that elements 

of which add up to 1. 
The general formulation of IRT models for polytomous responses may be ex-

pressed as: 

 
),())(( jxjjx θg ϑθα −=p ,,,1 mj = 1, , 1,jx l= −  (2) 

where xg  is a link function specific for category x  and jα  and jxϑ  are item pa-
rameters which are usually identified as discrimination indices and difficulty levels2 
and on which suitable constraints may be assumed.  

There are many different classification of IRT models for polytomous items i.e. 
based on the function assumed for )(θp jx  [Van der Linden and Hambleton 1997; 
Nering and Ostini 2010]. We will present the criterion of the polytomous IRT models 
classification based on the link function specification [Agresti 2002; Bartolucci  
2007]. 

On the basis of the specification of the link function in (2) and on the basis of the 
adopted constraints on the item parameters, different IRT models for polytomous 
responses’ results. The formulation of each of these models depends particularly on: 
• Type of link function: 

The link function based on global (3), local (4) or continuation ratio logits (5) can 
be considered. IRT models based on global logits are also known as graded response 
models, those based on local logits are known as partial credit models and models 
based on continuation ratio logits are also known as sequential models.  
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2 The item difficulty parameter (for ordinal response variable) is also called a threshold (difficul-

ty) parameter. 
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• Formulation of the item parameters: 
a) Constraints on the discrimination parameters: each item may discriminate 

differently from the others or all the items discriminate in the same way ( ,1=jα
mj ,,1= )3.  

b) Constraints of the item difficulty parameters jxϑ : the item difficulty parame-
ters may be unconstrained (there are as many difficulty parameters as the number of 
response categories jl  minus 1) or constrained (the distance between difficulty lev-

els from category to category is the same for each item ( xjx ττ = )4. These constraints 
may be expressed as: 

 xjjx τϑϑ += , ,,,1 mj = 0, , 1,jx l= −  )6(  

where jϑ  indicates the difficulty of item j and xτ  is the difficulty of response catego-
ry x  for all items. 

By combining the mentioned constraints, four different specifications of the item 
parameterization for each of the link functions are obtained. All the possible combi-
nations of the item parameters constraints for local and global as well as continuation 
logit link functions are given in Table 1. 

Table 1. Unidimensional IRT models for Ordinal Polytomous Responses 

 Link function 

jα  jxϑ  Parameters of the model Global Local Continuation 

free free )( jxj ϑθα −  GRM GPCM 2P-SM 

free constrained )]([ xjj τϑθα +−  RS-GRM RS-GPCM 2P-RS-SM 

constrained free jxϑθ −  1P-GRM PCM SRM 

constrained constrained )( xj τϑθ +−  1P-RS-GRM RSM SRSM 

Source: see [Bartolucci et al. 2016b, p. 127]. 

                      
3 In both cases it is assumed that all response categories share the same jα ( mj ,,1= ) instead 

of  a category-specific discrimination parameter. 
4 This formulation is known as rating scale parameterization and only makes sense when all 

items have the same number of response categories. jxτ  is known as the threshold or cut-off point 
between categories whose interpretation depends on the specific model. 
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The RS-GRM abbreviation indicates the rating scale version of the GRM intro-
duced by Muraki (1990), RS-GPCM and 2P-RS-SM are the rating scale versions of 
GPCM and 2P-SM5 respectively [Muraki 1997]; 1P-GRM and 1P-RS-GRM [Van 
der Ark 2001] are the equally discriminating versions of GRM and RS-GRM, respec-
tively. Finally, SRM and SRSM denote the Sequential Rasch Model and the Sequen-
tial Rating Scale Model of Tutz [1990]. 

As an illustration the selected models are considered below. The choice of the 
global logit link function based on the probability that an item response is observed 
in category x or higher and the least restrictive parameterization for the item parame-
ters the Semejima’s [1969] GRM model results as follows: 
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According to the generalization given by equation (2), GRM can be formulated 
as follows: 
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By combining the local logit link and the most restrictive parameterization for the 
item parameters the RSM [Andersen 1977; Andrich 1978] model6 is obtained: 
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The RSM model can be generally formulated as: 
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 ,,,1 mj = 0, , 1.jx l= −  (10) 

The PCM model [Masters 1982] for items with two or more ordered response 
categories is defined as: 

                      
5 The Two-Parameter Sequential Model [Hemker et al. 2001; Van der Ark 2001] obtained as a 

special case of the acceleration model of Semejima [1995]. 
6 The RSM model is suitable when .jl l=  



IRT and LC-IRT models for items with ordinal polytomous responses 67 
 

 

1 1

1 1

( )

1 1( )

0 1

( ) .

1

x
xjh

jhh h

r r
j jjh jh

h h

x

jx
l l r

r r

e ep θ

e e

θ ϑ θ ϑ

θ ϑ θ ϑ

= =

= =

−
−

− −− −

= =

∑ ∑
= =

∑ ∑
+∑ ∑

 

)11(

 
According to the generalization given by equation (2), this model can be formu-

lated as follows: 
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3. LC-IRT models for ordinal polytomous responses 

A crucial assumption characterizing the multidimensional LC- IRT models concerns 
the discreteness of the random variable Θ , with support points u1 ,ξ,ξ   and weights 

uππ ,,1  . Each weight sπ  ( us ,,1= ) represents the probability that a subject be-
longs to class s: 

 ),( ss ξp =Θ=p   (13) 

assuming that 1
1

=∑
=

u

s
sπ , ,0≥sπ .,,1 us =  

For each subject i, the manifest distribution of the response vector 
mXX ,,1 =X  is given by  
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=== xxXx  (14) 

According to the assumption of local independence [Hambleton and Swamina-
than 1985]: 
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The conditional probabilities depend on the nature of the response variable and 
each of the item parameterizations presented in Table 1 may be obtained in the latent 
class IRT approach. The most parsimonious model is obtained by constraining all the 
discriminating parameters to equal one other, that is 1=jα  for all .,,1 mj =  In 
this way a Rasch type model [Rasch 1960] is specified.  

As usual in the LC model, individuals do not differ within the latent classes, as 
the same ability level sξ  is assumed for all individuals in class s. Moreover, the item 
parameters are supposed to be constant across classes. 
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4. Estimation methods 

The most popular estimation methods for IRT models are: joint (unconditional) max-
imum likelihood (JML), conditional maximum likelihood (CML), and the marginal 
maximum likelihood (MML) method. In the empirical part of this article we use the 
ltm and MultiLCIRT packages of R based on marginal maximum likelihood 
estimation (MML). 

In the MML method the marginal likelihood corresponding to the manifest prob-
ability )(xp  is maximized. The distribution that is assumed on the latent trait may be 
continuous or discrete. Most often it is assumed that Θ  is normally distributed, and 
then the marginal likelihood is obtained by integrating the probability of the item 
response patterns over the ability distribution as in: 

  
,)()|()( θθθ dfpp ∫= xx  (16) 

(see [Bock and Lieberman 1970; Bock and Aitkin 1981]). Then the random ability 
parameters are removed and the item parameters estimates are obtained by maximiz-
ing the resulting marginal log-likelihood. 

The MML method based on the assumption that the latent trait has a discrete dis-
tribution with support points and weights which need to be estimated together with 
the item parameters, is denoted as MML-LC. In such an approach, the marginal like-
lihood is obtained by summing up the probability of the observed item response pat-
terns over the ability distribution, as in (14). 

The estimates of the item parameters obtained from the MML-LC method are 
equal to those obtained from the CML method and are then consistent (see [Formann 
1992; 2007]). Moreover, the maximization of the log-likelihood based on (4) is easier 
to perform than the maximization of that based on (2) as the problem of solving the 
integral involved in the MML approach is skipped. Typically, the MML-LC esti-
mates are obtained through the EM algorithm [Bartolucci 2007; Dempster et al. 
1977]. 

In the MML-LC method, a crucial point concerns the choice of the number of 
support points of the latent distribution or, equivalently, latent classes (s). This choice 
is very important in applications where s cannot be a priori defined. The most rele-
vant are the Bayesian Information Criterion (BIC) [Schwarz 1978] and the Akaike 
Information Criterion (AIC) [Akaike 1974]. In these criteria, a term to the likelihood 
penalizing the complexity of the model is added, so that it may be minimized for 
more parsimonious parameterizations and smaller numbers of groups than the log-
likelihood. Accordingly, the smaller value of the information criteria, the stronger 
evidence of the model. The BIC can be used to compare models with differing pa-
rameterizations, differing number of components, or both. 
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5. Empirical analysis 

In this section we provide a comparison of the estimation results for polytomous IRT 
and LC-IRT models (assuming  the continuousness and discreteness of the latent 
trait). 

The analyses presented below are based on 756=n currently working7 inter-
viewers8 who participated in the International Social Survey Programme (ISSP) in 
2015. The data collected on these interviewees included responses to questionnaire 
items about job satisfaction (the public data set, available at www.diagnoza.com, see 
also [Diagnoza społeczna… 2015]). 

 The International Social Survey Programme is a continuous annual programme 
of cross-national collaboration on surveys covering topics important for social sci-
ence research nationally representative. We have analyzed the section about the job 
characteristics and the social dimension of the survey conducted by the Institute for 
Social Studies (ISS), University of Warsaw. 

All computations and graphics in this paper have been done in ltm [Rizopolous 
2015] and MultiLCIRT [Bartoulucci et al. 2016a] packages of R9.  

We have considered the items concerning the different aspects of job satisfaction. 
The original questions concern the assessment of the primary job:  

1X  (HSW12_1) – My job is secure,  

2X  (HSW12_2) – My income is high,  

3X  (HSW12_3) – My opportunities for advancement are high, 

4X  (HSW12_4) – My job is interesting, 

5X  (HSW12_5) – I can work independently, 

6X  (HSW12_6) – In my job I can help other people, 

7X  (HSW12_7) – My job is useful to society,  

8X  (HSW12_8) – In my job I have personal contact with other people. 
In all of those questions respondents could choose one of the following response 

options: strongly agree (1), agree(2), neither agree nor disagree (3), disagree (4), 
strongly disagree (5). However, in order to have a clearer interpretation of the results, 
the response categories were arranged in increasing order (from absolutely unsatis-
fied to absolutely satisfied).  

The first part of our analysis concerns the models based on the GRM and PCM 
formulations under the assumption of the normality of the latent trait. The second 

                      
7 Currently working refers to both self-employed, employees, and  include persons on leave if 

they are in an employment relationship. 
8 We dropped records with at least one missing responses and “can’t choose” category.  
9 The first package is suitable to estimate IRT models under the assumption of normality of the 

latent trait, whereas the second package is used where this trait is represented by a latent trait with a 
discrete distribution. 
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part presents the results of the different polytomous LC-IRT models (under the dis-
creteness of the latent trait). 

 Initially we fitted the Graded Response Model (GRM) in the standard formula-
tion with free discrimination parameters. Then we constrained the discriminant indi-
ces to be equal across items (1P-GRM). In the next step the partial credit model 
(PCM) and the generalization of PCM, i.e. GPCM, with different discrimination 
parameters were compared.  

A final point in the classical approach (continuous latent trait) concerned the 
comparison between the graded response formulation and the partial credit formula-
tion for the data at issue. We compared the models on the basis on BIC and AIC 
values as well as the likelihood ratio  (LR) test to compare nested models. The results 
for information criteria are given in Table2 (see models 1-4). 

Table 2. Log-likelihood, AIC and BIC results for different polytomous IRT models in discrete 
and continuous approach 

Lp Model LL AIC BIC 

1 GRM –7497.186 15 074.37 15 259.49 

2 1P-GRM –7539.735 15 145.47 15 298.2 

3 GPCM –7539.727 15 159.45 15 344.58 

4 PCM –7584.5 15 235 15 387.73 

5 LC-GRM –7486.97 15 063.94 15 272.2 

6 LC-RS-GRM –7582.82 15 213.64 15 324.71 

7 LC-1P-GRM –7527.25 15 130.49 15 306.36 

8 LC-1P-RS-GRM –7612.77 15 259.54 15 338.22 

9 LC-GPCM –7526.36 15 142.71 15 350.97 

10 LC-RS-GPCM –7639.02 15 326.04 15 437.11 

11 LC-PCM –7570.83 15 217.65 15 393.52 

12 LC-RSM –7654.55 15 343.1 15 421.78 

Source: own calculations in R. 
 
In conclusion, we could state that GRM is the most suitable among the models 

considered for the data at issue, at least when the latent trait is assumed to be normal-
ly distributed. The estimates of the discriminant index ( jα ), for each item, together 
with the estimates of the four threshold parameters ( xτ ) under the selected model (in 
continuous approach) are given in the first part of Table 3.  

On the basis of the results presented in Table 3 we conclude that 4X  (inter-
esting job) and 8X (personal contact with other people) have 
the highest and the lowest discriminating power, respectively.  
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Table 3. The item parameter estimates for GRM and LC-GRM models 

 GRM model LC-GRM model 

Item 1τ  2τ  3τ  4τ  jα  
1τ  2τ  3τ  4τ  jα  

1 –3.159 –0.819 0.417 2.950 1.076 –3.368 –0.856 0.438 3.125 0.991 

2 –1.285 0.651 1.925 3.173 1.570 –1.294 0.675 1.972 3.376 1.468 

3 –1.410 0.650 1.995 3.428 1.421 –1.454 0.677 2.072 3.634 1.303 

4 –1.923 –0.932 0.204 1.989 2.133 –1.914 –0.912 0.209 1.953 2.042 

5 –2.307 –0.256 0.593 2.620 1.297 –2.363 –0.270 0.594 2.698 1.239 

6 –2.276 –0.667 0.278 2.569 1.404 –2.258 –0.654 0.277 2.566 1.409 

7 –3.750 –1.965 –0.430 2.525 1.024 –3.863 –2.018 –0.441 2.604 0.982 

8 –5.374 –3.062 –1.886 2.123 0.760 –5.410 –3.086 –1.902 2.124 0.755 

Source: own calculations in R. 

Regarding the threshold parameters, we noted that for almost all response catego-
ries, the estimate for the second and third items are the highest. This means that  items 

2X  (income) and 3X  (opportunities for advancement) are considered 
to have the highest difficulty level. In turn, the eighth item (personal contact 
with other people) is considered to have the lowest difficulty level (meaning 
that that this is the aspect of the highest satisfaction of the interviewees). 

This conclusion can be confirmed by the probability plot presented in Figure 1. 
In particular, we can compare the plot which refers to the eighth item with the one 
which refers to the second one. We observe that the probability of the fourth and fifth 
response categories (with the highest satisfaction level) are much higher for the 
eighth than for the second item (i.e. for respondents with the ability level of 1). 

As far as the discrete approach is concerned (analysis under discrete distribution 
for the ability), we followed the consecutive ordered steps [Bacci et al. 2014; Barto-
lucci et al. 2014; Genge 2016]. The optimal number of clusters was chosen using 
information criteria for the basic model. On the basis of the BIC and AIC values, we 
decided to choose four latent classes  as the most suitable number for this data. As 
regards the second step and the choice of the best logit link function, we compared 
the graded response type model and a partial credit type model10, assuming s = 4, 
free item discriminating and difficulties parameters and a general multidimensional 
structure for the data see [Bartolucci et al. 2014].  

 

                      
10 The continuation ratio logit link function is not suitable in the context of the empirical study because 

the item response process does not consist of the sequence of successive steps [Bacci et al. 2014]. 
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Fig. 1. Item response characteristic curves for the second and eighth items estimated under GRM. 

Source: own calculations in R. 

Table 4. Graded response and partial credit type models with 4=s  

Logit LL npar BIC AIC 
Global –7486.968 45 15 272.198 15 063.936 
Local –7526.356 45 15 350.974 15 142.712 

Source: own calculations in R. 

Because the global link has to be preferred to a local logit link function (the 
smaller BIC and AIC values, see Table 4) we fitted different types of the LC graded 
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response type models with a free and constraint discriminating index as well as free 
and constrained threshold difficulty parameters, for each item. This implies a com-
parison among four models in accordance with the classification adopted in Table 1 
(see LC-GRM, LC-RS-GRM, LC-1P-GRM, LC-1P-RS-GRM models in Table 2). 
For the sake of completeness the results for the local logit link function are also in-
cluded in Table 2 (models 9-12). 

The results presented in Table 2 show that the LC-GRM model has to be pre-
ferred among all of the LC-IRT models considered, that is the LC graded response 
model with free discriminant and difficulty parameters. Because the compared mod-
els are nested, the parametrization is selected on the basis of an LR test and BIC, AIC 
criteria as well (see models 5-12, Table 2). 

In the next step of the analysis it was in our interest to analyze the distribution of 
the latent variable based on four ordered latent classes (Table 5) as well as the esti-
mates of the item parameters (the second part of Table 3). The estimated support 
points and probabilities, under the selected model are shown in Table 5.  

Table 5. The estimated support points and prior probabilities for the LC-GRM model 

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4 

sξ  –2.711 –0.598 0.737 3.167 

sπ    0.040   0.502 0.428 0.029 

Source: own calculations in R. 
 
We observe that most of the subjects belong to class 2 (50.2%) and 3 (42.8%), 

which is characterized by an intermediate level of satisfaction;  4% of subjects are in 
class 1 and they tend to have the lowest level of satisfaction, whereas the remaining 
2.9% of individuals belong to class 4, which is characterized by the highest level of 
job satisfaction. 

Moreover for all of the items, the probabilities of answering with a high response 
category (denoting a high level of satisfaction) increase from class 1 to 4, whereas 
the probabilities of answering with a low response category (denoting a low level of 
satisfaction) decrease from class 1 to class 4 (see Figure 2). 

The estimates of the item difficulty levels and discrimination parameters for the 
LC-GRM model presented in the second part of Table3 confirmed that the most dif-
ficult is the second and third item, which concern income and opportunities for ad-
vancement, the easiest item is the eighth one (personal contact with oth-
er people). As far as the discrimination parameters are concerned (inter-
esting job) and (personal contact with other people) were 
considered to have the highest and the lowest discriminating power, respectively. 
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Fig. 2. The  conditional probabilities for the fourth-class LC-GRM model 

Source: own calculations in R. 

6. Conclusion 

We presented the analysis of multivariate polytomous data using latent variable 
models under the Item Response Theory assuming continuous and discreteness of the 
latent trait. 

We fitted and compared the results of the 12 different IRT and LC-IRT models 
e.g. the GRM, 1P-GRM, PCM, GPCM, LC-GRM, LC-PCM models assuming dis-
crete and continuous distribution of the latent trait. The analyzed item responses 
(concerning job satisfaction in Poland) can be explained by a graded response type 
model with items having the same discriminating power and different distances be-
tween consecutive response categories as well as in the continuous and discrete ap-
proach. 



IRT and LC-IRT models for items with ordinal polytomous responses 75 
 

The comparison showed a certain agreement between the two sets of parameter 
estimates obtained under the different assumptions about the latent distributions. We 
observed that the estimated parameters are rather smaller under the MML method 
based on the normal distribution for the ability. However, the comparison among the 
items in terms of difficulty and discriminating power generally led to the same results 
under both approaches. 

Finally, it should be noted that there is no dominating approach to the latent trait 
(as far as the IRT models for ordinal polytomous item responses are concerned). 
Some are good only in some specific simulations or examples. However it is worth 
noting that this extension of the traditional IRT (i.e. LC-IRT) models, by introducing 
assumptions of discreteness and also multidimensionality of latent trait (see [Barto-
lucci et al. 2014; Genge 2016]) may be especially useful in socio-economic data 
analyses where the normality and unidimensional assumptions of the latent trait (ex-
plicitly introduced) are very often restrictive to fulfill. 
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