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Analysis of an Electron Mirror by Using 
the Matrix Notation

A method for analysing an electron mirror of given electro-optical parameters is discussed. The mirror is divided into the elec­
tric lens region and proper mirror. Electron paths in the matrix notation are presented. Discussion on the usefulness of the pre­
sented formulae discribing the mirror surface is based on examples.

1. Introduction

Tn many devices of electronic optics, e.g. in instal­
lations for micro-machining with the use of electron 
beams, one of the most important problems concerns 
the reduction of the electro-optical aberration, espe­
cially the spherical aberration. Adequate correction of 
this aberration can not be achieved by using electron 
lenses only, because of the constancy of the sign of 
the spherical aberration coefficient. The correction is, 
hower, possible after including an electron mirror to 
the system. However, it is difficult to analyse the 
properties of an electron mirror. Some authors pro­
pose to divide the mirror into an area at the entrance, 
witch is of electron lens character, and the proper mir­
ror, that is the zeroth equipotential surface the cross- 
section of which is described approximately by 
a polynominal of the fourth order. An analysis of 
the electron beam path in the area of the lens and 
the proper mirror has been carried out by using

a matrix notation. Relations determining the shape 
of the mirror surface which insures correction of 
given spherical aberration are presented. The useful­
ness of the presented method of analysis has been 
discussed on examples.

2. Electro-optical scheme of an electron 
mirror

The electro-optical mirror is an electro-optical 
element which by reversing the direction of an ele­
ctron beam offers the possibility of obtaining an 
image. In the formalism of light optics it does not 
correspond to direct reflection but to bending of 
a light beam in a non-uniform transparent medium, 
linked with a total internal reflection. Making use of 
this analogy one should distinguish — in the real m 
of the mirror — a region functioning as a lens in 
which the bending of electron beams occurs and

Fig. 1. Potential distribution in a two-tube mirror
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a surface at which the change of the direction of 
electron movement (electron beam) occurs, i.e. the 
mirror surface. This scheme can be illustrated by an 
example of a two-tuble electron mirror [1] presented 
in figs 1 and 2.

As follows from the electron path shape, the lens 
region of the mirror constitutes an immersion diver­
ging lens, whereas the mirror surface is approximately 
in line with the equipotential surface OV. Basic 
properties of an electron mirror can be determined 
in accordance with principles of geometrical optics 
by specifying the positions of the foci and principal 
planes. Basic optical paramétrés of two-tube electron 
mirror are shown in fig. 3.

3. Matrix notation for the lens region

Describing the basic optical properties of the lens 
region by indicating the positions of foci and princi­
pal planes facilitates the geometrical construction of 
the image by using principal rays but is inconvenient 
for analytical calculations. As a more convenient form 
of describing these properties the matrix notation 
may be proposed.

If, for example, an area of field is given, its length 
being m, (fig. 3) and it acts on passing electrons 
according to the gaussian optics (i.e. aberrations 
omitted), then it suffices to know entrance and exit 
parameters (the radius and path inclination) of two 
linearly independent paths in order to determine the 
elements of matrix [A] which describes the properties 
of this area, i.e. allows the transition from the entra-

Fig. 3. Arrangement of principal planes and foci in a two-tube 
mirror

nee to exit parameters. In such a case, denoting the 
entrance radii by rpl and rp2 and the entrance incli­
nation by rp =  (dr/dz)p for this two paths, and 
similarly the exit radii and inclinations rk i, rk2, rkl, 
rk2, one may obtain a set of equations:

CM '-I ft] 
CM 3 ft]

( 1)

Solution of the above set leads to expressions for 
the matrix elements:

rkirp2 rk2rp2
r r — r rPi P2 P2 Pi
rn rk p 2 *1~ W pi
Y Y —  Y Y
P \ P 2 PiP\

'V / ’2 rk2rPi
r r — Y~p 1 P2 p2 P1

M l - M l
r r — Y Y~PI P2 PÏPi

( 2)

The matrix of the lens region thus determined 
enables to calculate — in accordance with eqs. (1) — 
the coordinates of the path at the exit for any entra­
nce coordinates.

The description of the lens region in matrix form 
or indication of the foci and principal planes differ 
in form only but contain the same information. It is 
possible, therefore, to determine the mutual rela­
tionships between the two forms of description.

Fig. 4. Arrangement of principal points and paths of principal 
rays in a thick lens

In fig. 4 the lens region of a length m is shown. 
Its properties are characterized by marked positions 
of the principal planes H2 and H2 and foci Fi and F2. 
The paths of the principal rays (1) and (2) are also 
shown in the figure. If one accepts the path coordina­
tes at the entrance and exit of the region according 
to fig. 4, the set of eqs. (1) assumes the form:
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The solution of these equations enables us to deter­
mine the relations between the matrix elements and 
the position of the lens principal points as follows:

a =
zF2- m

Í2
b =  / ,  !

ZF l ( ZF 2 ~ m )

/2

-1
= /2  ’

Or in the reversed form : 

ad
/1  = 6 ------- >

¿F 1
/2

/2  — ’

(4)

(5)

=  »!-----
c c

The matrix form of the notation may be illustrated 
by an example of a two-tube mirror from fig. 1. For 
a relative voltage of the retarding electrode t/r/t/fl =  
=  —0.17 the entrance and exit coordinates of two 
paths, which were calculated numerically [2, 3] in the 
mirror lens region of length m =  30 meshes of the 
calculation network, enable us to compose the follo­
wing equations:

[0.1365 ] \a 6 ] P
[o.009463j : 4  L·

[1.467 ] - \ a h i [0 1 ] (6)
[0 .1 5 3 3 d\ [ 0 05]

The solution of these equations is the matrix of
the lens region

'1.365 26.61'
(7)H 0.09463 2.876

Making use of expressions (5) one may obtain the 
positions of the principal points.

/ 1  =  -14.89, / 2 =  -10.7,
zFl = 30.4, zFl = 15.6.

Analogous calculations carried out for the lens 
region of the same mirror with UJUa = —0.25 same 
the following results:

[1.438 28.10] f ,  = -13.4, f 2 =  -10.18
L J [0.09835 2.836] ZFy =  29.2, zFl =  15.8

whereas the resultant focal length of the mirror 
/ , =  -2 5 .

The fact should be noted here that with relatively 
great changes in the voltage between mirror electrodes, 
the properties of the lens region remained almost 
unchanged; whereas the resulting parameters of the 
mirror changed radically. One may, therefore, con­
clude that the shape of the mirror surface has a de­
cisive influence on the parameters of the mirror, and 
that the properties of the lens region and the mirror 
surface can, to a certain extent, be treated separately.

4. Determination of the shape of the 
mirror surface

In an electron mirror the electron beam — after 
crossing the lens region — encounters the mirror sur­
face at which it is reflected changing its direction 
and inclination. In order to find the relation between 
the shape of the mirror surface and the slope of the 
reflected ray, one may use the diagram shown in fig. 5.

Denoting the radius and the path slope of incident 
electron at the reflection point by rk, r'k, and the 
reflected electron by r2, r'z, one obtains:

rk =  rf ,
rk =  tany, r'z =  tarn). (10)

The slope of tangent to the mirror surface at this 
point may be denoted as:

s = tana, (11)

and the normal slope:

The resulting focal length of the mirror was in 
this case equal to f z =  136.8. n = ----- =  tan /3.

s
(12)
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As follows from fig. 5, the angles marked there 
comply with the equations:

=  2 ß - y .

Hence

tan ô
tan 2/?—tan y=  tan(2ß - y )  = —  - -

1 +tan 2ß tan y

In turn

tan2/3 =
2 tan ß 

1—tan2/?

(13)

(14)

(15)

taná r, =
-2 s - r ks2+rk 
s2—2sr'k—l

The paths of electrons entering the mirror region 
intersect each other at point F which lies at the bor­
der of the lens region, the paths of outgoing electrons 
being parallel to the axis. The parameters of electron 
ray incident upon the mirror surface are determined 
by the relation:

Since r = 0, we obtain

[ - ]  P J - f ê ]

(17)

( 18)

The process of electron reflection at a mirror sur­
face may be interpreted as the action of an “operator” 
Zs which conserves the radius r, =  rk at the reflec­
tion but changes the inclination rk for rz in accordance 
with relation (16).

The action of the “operator" Zs may, therefore, be 
written down in the following form:

(19)
~brr \ br'p

= ZS = s2drp+2s—drp

/ k . drp 1+2 sdrp—s2

By inserting relations (10), (12), and (15) into for­
mula (14) and rearranging them, one can obtain:

( 16)

Now we may consider the problem of determining 
the mirror surface shape that would allow to obtain 
specified values of the electron path parameters 
rw, rw at the exit of the mirror with assumed proper­
ties of the lens region written in the form of matrix 
[A], The electron mirror represented by the lens region 
of length m described by matrix [A] and mirror 
surface pz is shown in fig. 6.

Since the entrance electron path — following its 
reflection — constitutes the beginning of the exit path 
of parameters rw, rw =  0, one may also write:

(20)

K a b rw arw

s2drp~\-2s—drp 
1 +2 sdrp—s 2 c d o crw

It follows from the above equation that:

be , 
~a r”

s2drpJr2s—drp
1+2 sdrp—s2

=  crw = (21)

Expression (21) can be transformed to a second order 
equation :

„ a —bedr2
s2+2s - —----— - 1 = 0 ,

'pV
where

V = ad-rbe.

Solution of this equation has the form:

’ 1,2 dz
bcdrp —a V

a—be dr2 ' 2

(22)

(23)

(24)

Inserting r = rk = brp and rearranging the solution 
with a physical sens, results in:

dr
dz

cdr2—ab 
~ r V ~ [,+l/(c t H ·  <25)

Now, if we assume

r V
< 1, ab—cdr2, 

and apply the approximate formula:

VT
X1 j —  
2 M <  1,

then eq. (25) assumes the following form:

dr
dz

= 2
cdr2~ab 

rV ~
1 +
2 ab—cdr2

(26)

(27)

(28)
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Relation (28) is a differential equation for a mirror 
surface. Its solution may the following approximate 
form:

z =  Ar2+Br4. (29)

Hence

The properties of both regions jointly are descri­
bed by matrix [C] which is a product of the lens 
region matrix [j9] and that of the drift space

[a* b*4 [a ¿1 H /1 
“  [c* d*J “  [c d \ [o l j ' (35)

dz .—  =  2/fr+4£r3. 
dr

(30)

Comparison of (28) and (30) leads to the relation:

1
=  2-

cdr2 — ab 1 rV
(31)2Ar+4Br3 rV  2 ab—cdr2

from which the constants A and B can be found:

1 V
A = ----------, B =

4 ab
11 Vcd

8 a2b2 32 a3b3
(32)

The second term in the expression for B follows 
from not allowing for the influence of the mirror 
surface size on the radius rk (the mirror surface was 
assumed as almost flat) and should, in the end, be

omitted. Thus in the first two expension terms appro­
ximation the equation for the mirror surface assumes 
the form:

It now suffices to insert the elements of matrix 
[C] instead of [A] into eq. (33) in order to obtain 
an equation for the mirror surface for an arbitrary 
focus location.

The electron mirror is not an imaging element in 
the full sens of the word, as it allows only to obtain 
images of point objects and this merely for a speci­
fied location of the image and object. Any change 
of the location requires a correction of the shape 
of the mirror surface in order to avoid image errors.

The applicability range of formula (33) should, for 
this reason, be extended to the case when the object 
and the image are at a finite distance from the mir­
ror, as shown in fig. 8. In this case point object P 
lies on the mirror axis at lens region boundary, 
whereas the point image 0 at the distance /* from 
this region. The parameters of the entrance path at 
the mirror surface are determined, as before, by eq. 
(18) and as before, eq. (19) determines the action of 
the mirror Zs “operator” on the parameters by re­
flection. The parameters of the exit paths at the 
mirror surface and at the mirror exit are linked the 
equation:

cü-m-œii
where:

Ua+bE)rw-1 
[ (c rd E )rJ

(36)

(37)

In accordance with the condition of coincidence of 
the entrance path after reflection formula (19) should 
be compared with (36) at the beginning of the exit 
path. This results in:

1 ad-Ybc 1 {ad-\-bc)cd
J  ab r 8_ a2̂ 2'

(33)

The above given equation of the mirror surface 
applies only to a special case of mirror — its focus F 
lies on the boundary of the lens region. The applica­
bility range of this equation may be extended to 
cases of the mirror focus being at the distance / 
from the lens region boundary. In accordance with 
fig. 7 the region of length / is a drift space with 
properties described by matrix [S]:

[B] =
3

(34) Fig. 8. Ray paths in an electron mirror with a finite image 
distance
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K (a +  bE)rw

s2dr'p +  2 J — drp 
1+2 sdrp - s 2

(c +  dE)rw
(38)

The above equation may be transformed to a se­
cond order equation:

s 2
b(c+dE) 

a+bE~ r”
2 - 2

b(c+dE)d
a-\-bE

b(c+dE) ,1 
a+bE rp\

=  0 (39)

from which, by the some procedure as the previous 
one, an equation for the mirror surface may be 
obtained:

1 (a+bE)dJrb(c+dE) 2 
4 (a+dE)b

1 [(a+bE)d+b(c+dE)]{c+dE)d ^
(a+bE)2b2 r ' ’

When object P is located not at the lens region 
boundary but at an arbitraty distance / from the 
region, then according to (35) the elements of matrix 
[C] should be substituted for those of matrix [A] into 
the given equation of the mirror surface.

5. Allowance for spherical aberration of an 
electron mirror

Electron mirrors may be characterized by a great 
spherical aberration. As regards the two-tube mirror 
shown in fig. 1 numerical calculations indicate that 
sperical aberration of the lens region is not great. 
Hence it may be infered that the shape of the mirror 
surface decides the spherical aberration error. Assu­
ming a specified spherical aberration error of the 
mirror and neglecting the errors of the lens region, 
the shape of the surface may be calculated as fol­
lows:

Referring the spherical aberration error to the object 
we may, according to fig. 9, assume that it displaces 
the object from the lens region by a distance A l 
dependent on the slope of the slope of the entrance 
path. Treating the region of length A l as a drift space 
described by matrix [B], we may describe that region 
together with the lens region, according to (35), by 
matrix [C].

Fig. 9. Ray paths in a electron mirror with a spherical aber­
ration error

The magnitude of the spherical aberration error 
may be defined by the relation:

Al =  C /p , (42)

where Cs is the coefficient of the spherical aberration. 
The slope of the entrance path rp is connected with 
the radius r =  rk of the reflection on the mirror 
surface by the equation:

a aAl+bl TO 1 
c cAl+d\ Yr'p\

(43)

Hence:
r =  (aAl+b)rp, (44)

whereas relation (42) assumes the form of a third 
order equation:

Al =
(aAl+bV ’

(45)

Utilizing (16) and (41) together with an equation 
analogous to (20) for entrance paths and proceeding 
as before we obtain the following equation for the 
mirror surface:

1 (ad~\~bc)+2acAl 2 
4 ab-\~a2Al

1 [(ad+bc)+2ac Al](cd+c2 Al)
------------------------- ----- ------------r . (46)

8 (ab-\~a2 Al)2

This equation may be solved numerically by inserting 
relation (45) into it.

Within the range where the spherical aberration is 
small enough to fulfil the inequality

\aAl\ <  \b\ (47)

the relation (45) may be written as:

[C] = a ¿ i n  A ll Ya aAl+bl
c 4 o  l j  |_c czl/+i/J

(41) (48)
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Then, by making some simplifications, the mirror 
surface equation can be rearranged to:

1 ad+bc 1 (ad~bc)cd
~4 ab K ~  IT a2b2 ~

Cs(ad—bc)
------------------ r*

4 b2
(49)

It should be that the first two terms of the equation 
are identical with equation (33) and describe a mirror 
surface free of aberration. The third term is a cor­
rection term that increases or decreases the mirror 
surface curvature depending on the sing of the coeffi­
cient of spherical aberration.

6. Conclusions and examples of the matrix 
analysis of an electron mirror

The discussion presented here may be useful for 
determining the shape of mirror electrodes in order 
to achieve specified electrooptical parameters. For 
this purpose, the field intensity distribution should be 
determined in its region, next the parameters of the 
lens region should be established by using numerical 
methods. These parameters written down in a matrix 
form, and assumed to be constant for small field 
changes, enable us to determine the shape of the 
mirror surface for arbitrary exit parameters of the 
mirror.

For example, the lens region matrix of the two-tube 
mirror mentioned in section 2 has, for the relative 
voltage of the retarding electrode UrIUa =  —0.17, and 
in accordance with earlier performed calculations, the 
form:

[ A ]
1.365
0.09463

26.61 I  
2.876J ‘

(50)

When denoting by /* the distance between the 
image and the lens region, and also by / the distance 
between the region and the object, the case of con­
verging a divergent beam send forth by a point on 
the lens region boundary into a parallel beam shown 
in fig. 6, corresponds to distances /* =  oo and 1 = 0. 
The equation of the mirror surface obtained by inser­
ting the elements of matrix [A] into eq. (33) has the 
form:

z =  —4.54 · 10“2r2—1.74 · 10_4r4. (51)

The shape of the mirror surface described by the 
equation corresponds to curve a which is shown in 
fig. 10 in linear-logarithmic coordinates. If we assume 
as shown in fig. 7, the focusing of the parallel beam 
at a certain distance from the lens region, e.g. / =  100,

the matrix [C] which determines the properties of the 
lens and the drift space will, according to (35), be 
equal to:

ri.365 163.1 I
1 J |0.09463 12.339J * v ’

On inserting the elements of matrix [C] into eq. (33) 
we obtain in this case the following equation for 
the mirror surface:

z =  -3 .6  · 10_2r2—9.45 · 10~5r4, (53)

which corresponds to curve b in fig. 10.

Fig. 10. Shape of the mirror surface,
— curve a — / =  0, l* =  oo, Cs =  0
—curve b — l =  100, /* =  00, Cs =  0
—curve c — / =  0, /* =  00, Cs — 103

When the image is formed at a finite distance from 
the mirror fig. 8 i.e. / =  0, /* =  100, the mirror sur­
face equation may be obtained from relations (37) 
and (40) in the form:

z =  —4.59 · 10_2r2—1.87 · 10~4r4. (54)

The obtained equation is very much like eq. (51) 
and the corresponding shape of the mirror surface 
is similar to that presented by curve a in fig. 10. 
Curve c shown in the same figure corresponds to 
a mirror surface calculated from eq. (49) with the 
assumption of a constant spherical aberration of the 
mirror Cs =  103 and constant object and image posi­
tions / =  0, /* =  00 . This is described by the equation:
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z =  —4.54T0~2r2 —1.74-10“4/-4+7.02 · 10~*r*. (55)

The mirror surface that introduces spherical aber­
ration for small radii r almost coincides with the 
non-aberration surface.

Since the mirror surface corresponds approxima­
tely to the equipotential surface 0V, its shape is 
determined by the field distribution required to reach 
specified electro-optical parameters of the mirror. The 
knowledge of the mirror surface shape enables us to 
carry out a correction of the electrode shape in pre­
liminary designs of an electron mirror necessary for 
reaching specified electro-optical parameters (e.g. by 
modeling on a resistance network). It should howe­
ver, be noted, that in the considered two-tube mirror, 
-cf. presented examples even small changes in the 
mirror surface shape cause a radical change in final 
parameters. To obtain accurate results the correction 
procedure must, therefore, be carried out with great 
precission.

Анализ электронного зеркала при употреблении 
матричной записи

Обсуждается метод анализа электронного зеркала 
с заданными электронно-оптическими параметрами. Зер­
кало разделили на область электрической линзы и основное 
зеркало, представляя пробег электронов в матричной за­
писи. Пригодность представленных формул, описывающих 
зеркальную поверхность, обсуждалась на примерах.
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