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Use of Distributions in Some Transforms in Optics

The applications of the mathematical theory of distributions for the solution of selected problems of wave optics are discussed 
in this paper. The generalized solution of the propagation of the mutual coherence is given.

1. Introduction

The theory of distributions is a mathematical tool 
for the solution of a variety of important problems 
in wave optics. It facilitates the exact formulation as 
well as the solution of many problems in e.g. optical 
imaging, holography (particularly in Fourier optics), 
diffraction etc., which is not possible within the range 
of a classical mathematical analysis. The results obtain­
ed by means of the distribution theory are more gen­
eral in comparison with those gained by the clas­
sical analysis.

Possibilities of the use of the theory of distribu­
tions for the solution of certain problems in optical 
imaging are discussed in this article. The advantages 
of this theory are indicated. The concluding part of 
the article includes the formulae for the propagation 
of the mutual coherence function by means of distri­
butions, which is a very important factor in the theory 
of imaging.

2. Differential Equations of Wave Optics

Optical phenomena of the wave nature can be 
mathematically expressed in the form of partial dif­
ferential equations. Problems formulated on the ba­
sis of Maxwell equations of the electromagnetic field 
lead to the solution of the wave equation of the Helm- 
holz equation for a monochromatic wave appropriate 
initial or boundary conditions.

By means of these equation more complex equations 
or their sets are set up, as e.g. the equations for the 
propagation of the mutual coherence function in iso­
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tropic or anisotropic media. The existence of the so­
lution of these equations in the sense of a classical 
mathematical analysis imposes requirements on the 
derivatives of the functions, on the absolute term and 
on the initial and boundary conditions as regards 
their smoothness, which are fulfilled in practice only 
for a narrow range of problems. Strong smoothness 
requirements make a deeper analysis of the problem 
and a formation of precise conception about the be­
haviour of the system often impossible. On the other 
hand, if the required conditions are not respected, 
there is a risk of a faulty result.

The Kovalevskaya lemma concerning the solution 
of the Cauchy problem for the wave equation requires 
the functions mentioned above to be analytical, and 
guarantees the existence of the solution in a certain 
vicinity of the analytical point only [1].

The solution of the wave equation with constant 
coefficients at the second derivatives, having continuous 
derivatives up to the second order exists in a certain 
domain under the assumptions that the function of 
initial values has continuous derivatives up to the 
third order and that the time derivative has the deri­
vatives up to the second order. The generalized solu­
tion of the wave equation not requiring this strong 
smoothness will be considered later.

3. Generalized Solutions

Generalized solutions may be defined in several 
ways. We shall consider generalized solution accord­
ing to Sobolev [2] and the generalized solution 
expressed by distributions only.

3.1. Sobolev’s Generalized Solution

Following [2], the generalized solution of a given 
differential equation in a certain domain is a function
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which is the limit of a sequence of ordinary solutions 
in the sense of considered typology. The generalized 
solution introduced in this way can even be a disconti­
nuous function. It is sometimes, advantageous to seek 
generalized solutions in the space L2(G), which is a set 
of complex-valued functions of a real variable, for 
which the integral f  \f\ converges. It is a linear normal-

G

ized space. One can define in it both: scalar product 
and the orthogonality of functions. L2(G) is a Hilbert 
space. It is convenient to use the Fourier series in 
this space.

It may be shown f 1] that if the required smoothness 
of initial conditions is relinquished and if we suppose 
that the function of the initial value has continuous 
partial derivatives of the first order and continuous 
time derivative only, the solution of the wave equation 
with constant coefficients is a generalized solution of 
the Cauchy problem.

3.2. Distributions
The distribution is a linear continuous functional 

on a basic space. The basic space is the linear topo­
logical space of real-valued or complex-valued func­
tions defined on a set of a real or complex «-dimen­
sional point space. The topology of the basic space 
is generally supposed to be the countable normalized 
space.

The properties of distributions depend on the choice 
of the basic space. We shall, therefore, refer at first 
to several basic spaces.

3.2.1. Basic Spaces

K(a) -space is a set of real-valued functions cp of 
« variables that have partial derivatives of all orders 
and equal zero outside the interval

[|*i.I < « i ,  ···, l*J <«„]·

The topology is defined by a countable system of 
norms

Ml* =  sup|£>V(*)l, p =  0,1, . . . ,
¡9! < P

The convergence corresponding to all norms is the 
uniform covergence of a sequence of functions and 
of all sequences of their derivatives.

K„-space is a set of real-valued functions of n vari­
ables with continuous derivatives of all orders. Every 
function is equal to zero outside the bounded interval. 
The convergence is defined by the uniform convergence 
of 9oveKn and of all their derivatives on a bounded 
interval common for all <pv; outside this interval all 
these functions equal zero.

Sn-space is a set of functions with continuous 
derivatives of all orders for which the relation \xk\

\Dqcp(x)\ <  Ckq k =  {klt ..., kn), q =  (<7,, ...,qn) 
applies. The sequence <p„<r Sn converges to <7 then, and 
only then, if the derivatives of arbitrary order of the 
sequence cpp in a bounded interval converge uniformly 
to the corresponding derivatives of the function.

Z-space is a set of integer functions cp (z) of a com­
plex variable for which the relation

\z\9\(p{z)\ <  C9expa[T|,

a =  const., z =  t-\-h, q =  0,1 ... applies.
Dm-space is a set of functions of one independent 

variable having continuous derivatives up to the m-th 
order. The function cp eDm equals zero outside a bound­
ed interval. The sequence cpv converges in Dm to the 
function cp then, and only then, if cpv equal zero outside 
the common interval and all sequences of derivatives 
up to the /u-th order converge uniformly to the cor­
responding derivative of the function cp.

Basic spaces may be used for the solution of prac­
tical problems in wave optica. Distributions defined 
on basic spaces have some common properties, others 
are different. For example, the <5-distiibution can be 
defined on all above mentioned spaces. deZ' is an 
analytical distribution and the relation

OO

6(z + h) = 2& s\z)h lq \
9=0

is valid, where z, h are complex numbers. On the 
contrary, <5 is in general not an analytical distribution 
if deK'n, and b("!+1) is not defined even for deD'm.

3.3. Solutions by Distributions

The solution of the differential equation, P(D)f  =  
0, where

P(D) =  ^ a q{x)D\
Q

dl*iryi — _____________
d x f ,  ...,

(*7i > · · · s Qn) >

X =  (Xj, ...,x„),

in the sense of distributions, is a distribution f  for 
which the relation

(.f  P*(D)<P) =  0 ,

where

P*(D) =  y } ( ~  1)li|
dlgl (aqg) __ 

dxl1, . . . ,dxqn“
Q

is valid, cp is a function from one of the basic spaces. 
It is well known that the most advantageous method
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for finding the solution of differential equations in 
the form of distributions is the Fourier transform 
method. We often choose, therefore, the S space as 
a basic one in practice, for if f t  S', the relation 
F{f }eS 'is valid. The relations F{S} =  S, F{S'} =  S' 
hold very often there [4]. This is not generally 
the case for other spaces, e.g. for feK', F{f}eK'is  
not always valid, but K  cz S and S' e  K' are.

d2E 1
dx2 2

Because of f  =  E*u0

d2 a 2 \
dt2 dx2J J

4.1.1. Dirichlet Problem

4. Formulation of the Problem in the Sense 
of Distributions

4.1. Solution with the Continuous Dependence 
of the Variable Taken as a Parameter

The solution of the d ifferential equation P(D)f  =  0 
as a distribution in K' exists always. The solution of 
this equation is /  =  E* u, where E is a fundamental 
function of the operator P and u is an absolute mem­
ber or the distribution of the initial values. The so­
lution of the equation can also be defined in the sense 
of distributions (generalized solution) with continuous 
dependence on the parameter which is one on the vari­
ables, the time variable t in our case.

For t >  0 we have

— [£■(?, x)*w(x)] +  P l (D)[E(t, x)u(x)] =

{ [ ^ +Pl(Z))] £ ( ' ’ =  0 *uix) =  0 ·

The generalized solution of the Cauchy problem for 
the wave equation is often defined in such a way. As 
an example we can give

d2f  d2f  
—  — —  =  0 
dt2 dx2

with initial conditions / ( 0, x) =  0,

/ ,( 0, x) =  uQ(x).

As E(t, x) =  2 f°r 1*1 <  t, E(t, x) =  0 for |x |> f, 

for t >  0 we have

dE 1
Yt = y[<5(*+0+<K*-0L

d2E 1
■ 5̂- =  2  [«'(*+0 -* '(*-*)].

dE 1
-x- =  -[< K *+ 0 - < K * - 0 ].ox 2

It is possible to define a problem similar to the 
Dirichlet problem of the classical analysis [3] even in 
the case of generalized solutions. Let E be the funda­
mental solution of the equation P(D)u =  0, U is the 
vicinity of the origin, a(x) is the function having all 
derivatives, a =  0 outside U, a =  1 on the set lying 
in U, IF is a domain such that W— U <= V c. G, V 
is an internal domain in G where we seek the solution 
of the equation. P(D) [(1 —a)£]*w(x) =  u(x) applies 
then.

4.2. Solution by Distributions

In the sense of distributions, the solution of the 
differential equation P(D)fi =  f 2 with boundary con­
ditions Ebm {x)fi (x) given on a certain hypersurface 
T (the non-zero solution on one side of the hyper­
surface is mostly sought for) goes over to a task to 
find a distribution satisfying, in the sense of the 
generalized solution, the equation P(D)gt =  g2+ g 3, 
where g 1 or g2 are distributions that equal or f 2 
on one side of the hypersurface and equal zero on 
the other side of hypersurface. g3 equals the contri­
bution of the derivatives g! on T.

For the differential equation

where
n =  1

= / 2,

d"l dnn
"dx^1 ’ ’ dxmnm

with initial conditions for t >  0

with

we get

d"'f,

m =  0,1 ... M - 1

g lit, x) — f i  (x)H(t), 

g lit, *) = f 2ix)H{t),
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6 \ 1
^M #l +  &2~\~83i

n= 1
where

M  1

#3 =  ¿ 7 lm'5(M“m- 1)(0.
m = 0

If we know the fundamental solution E of the 
operator P(D), the solution of P(D)g — h is g =  E*h. 

Now we shall state some fundamental solutions.

4.2.1. Fundamental Solutions

The fundamental solution of the Helmholz equa­
tion in the «-dimensional space is

2 1

The fundamental solution of the wave equation is

E?  =  \H(t)-H(x2- t 2), n =

//( /2 -*2)
2tt1/ (?’iti·. - A )

X  = \l2izH{t)d(t2- x \ - x l - x \ ) ,

n =  2,

11 =  3.

4.2.2. Generalized Solutions

We now state the solution of the wave equation 
in free space. We make use of this solution for finding 
the propagation of the mutual coherence function, 
generally, in the non-stationary case.

The generalized solution of the wave equation in 
free space in the sense of distributions is

Ci =  i  f f i  dS + / ,  (x +?) + /1 (x-  ?), for n =  1,
s

—/1 U2( x -  u)>dS, for n =  2,
™ J«1=o

/ d2 d2 d2 d2 \
\d?2 dx2 dx\ dx\ /

c 3 = -------------^ ------------------ H{t) X

X [ |'/2 1/, dO,] for « =  3,
s ft

where and / 2 are functions of initial values and 
its derivative, respectively, S' is the cone section 
{t— t)2 >  (^1—¡/i)2+  ... (x„—w„)2, r  <  ? formed by 
the hyperplane t =  0, Q is the boundary of this sec­
tion.

Using the preceding formula we obtain the so­
lution of the equations for the propagation of the 
mutual coherence E  in the non-stationary case for
n =  1

0 2 , ,  Q „  > .,/,)  =  * f f

'\X xi~u\)2

x r ( P i ,P 2, 0 ,0 ) d S ldS2 +  ir J  [ J - X

t2>(x i -« i )2
d 1

X r ( P , , Vl -  t2,0 , 0) +  —  r ( P { , y,  +  ?2, 0, 0) dS+

r  r  d d
+  i  J  [dT2 {Xl~ t l ,P 2 ,0 ’ 0 ) + dT2 x

i2Mj'1-»i)2

X U(xi +? 1, P2 ,0 , 0)] r/S +  -  t i , y 1 — t2, 0, 0) +

-\~rix 1 — ?! , J i  +  ?2,0, 0 ) + l  (Xj +  ?! ,
y  1 — t2 ,0,  0 ) + 7  (-X-! +  ?! , Ji +  ?2,0,  0).

5. Conclusion
The conditions of the existence of the solution of 

partial differential equations which are the mathe­
matical formulation of a certain physical problem, are 
often quite limited in practice and make an exact ana­
lysis of the problem impossible. Generalized solutions 
are, therefore, introduced in which these limiting con­
ditions do not occur.

Generalized solutions may be defined in several 
ways. The definition of the generalized solution as 
a distribution is particularly advantageous in optics 
because it makes an objective geometrical interpreta­
tion of the propagation of the light disturbances.

As an example, the solution of the Helmholz equa­
tion in the form of distributions, where the right-hand 
side is the distribution <5, is the distribution [exp (-/At )]/ 
/r; in the case of the wave equation it is the distribu­
tion [<5(r— (?— ?0))]/r. In the first case, we obtain 
a quasi-monochromatic wave, in the second — the pro­
pagation of a point disturbance from the source at 
/- =  0 at the time ? =  ?0. This geometrical interpreta­
tion seems to be very advantageous in the theory of 
imaging, holography and diffiaction phenomena.
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