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Modified Smith’s Method for an Automatic 
Correction of Optical Systems

A modification of the non-linear Smith’s method used for optimization procedures of optical systems has been developed. This 
modification deals with optimization directions. The choise of weighting factors of merit function has been selected so as to increase 
the effectivity of the minimizing procedure used.

1. Introduction

Several papers have been published in recent years 
on automatic lens design [1-3]. From the mathema­
tical point of view the problem consists in solving 
the following system of equations:

/l (*1................. .................= / i s
/2  Ou................. .......... x„) = f u

/mO'l................. .................Xn) =  f is
with simultaneous satisfying the following constrains

f n + 1 ( * i ................. .................Xn) >  0
/m + lO U ................. .................*„) >  0

/ / ( *  1 ................. .................xn) > 0
The following designations have been introduced 

in relations (1) and (la).
x t ............ xn — parameters of the system,
f y.................f n — aberration functions of the system.
As the analytic form of the functions f  is, in 

general, unknown it is impossible to give any solu­
tion of system (1) in an analytic form. Obviously, 
a parameter group x1; ... ,xn is adopted as a solution 
of system (1) for which the merit function

m
<f W i ( / - f is) 2 ( 2)

1 = 1

has a minimum, where w, — weighting factors.
The oldest mathematical method of finding a mi­

nimum of a function of many variables is the steepest 
descent method given by Cauchy [4]. According to 
this method it is possible to find the minimum of the
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function of many parameters in the direction oposite 
to the gradient. However, convergence of this method 
is in general very slow especially for illconditioned 
functions.

In order to improve the convergance of Cauchy’s 
method the following modifications have been in­
troduced: change of metric in the parameters space 
proposed by H. B. Curry [5] and W. C. Davidon
[6] or application of the conjugate gradient method
[7] .

Linearization methods from another group of 
methods, which may be exploited for solving the equa­
tion system (1). These methods work under the assump­
tion that functions/] are linear with respect to independ­
ent parameters x t. However, the most frequently used 
methods are the damped least squared methods given 
by Levenberg [8] as well as various modifications of 
the Newton-Raphson method proposed (among others 
by D. P. Feder [1] and A. P. Grammatin [9]. Unfor­
tunately, these methods require a time-consuming pro-

cedure of A matrix estimation and

a suitable choice of the damping factors.
For several reasons it seems to be profitable to 

use certain non-linearization methods. The most im­
portant reason is that the non-linearization method 
does not require either calculation of the matrix A 
or any choice of damping factors. In recent years 
scientists have discovered some non-linearization meth­
ods [10, 11, 12] of finding a minimum value of 
function of many parameters. The best known methods 
are those supplied by Davies, Svann, Campay, Powell 
and Smith. The differences among these methods are 
in choosing the directions p,, along which attempts
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are made to determine the minimum of the function. 
The Powell methods were tested [13] on some functions 
of given analytic form and its convergence was com­
pared with certain linearization methods [13].

However, the methods referred to above were not 
used so far in automatic lens designs. The first results 
of applying these methods to this purpose were pre­
sented during the SIMP Conference in Warsaw [14]. 
The present paper is a development of these ideas.

2. Modification of the Smith’s Method

The starting point in our methods is Smith’s 
method of optimization [11]. Pursuant to our sugges­

tion each iteration is devided into optimization cycles. 
The individual cycles are realized in subspaces

{*l}, {*1,*2}, ■··, {*1, (3)

where {x,, x 2, ..., xkj denotes subspace stretched on 
Xi, x2, ■■■, xk axes. In the r-th cycle the starting point 
is distant from the minimum (obtained in the pre­
vious cycle) by trial step qi in the direction of the x, 
axis. The flow diagram of the optimization method 
is shown in schemes in Figs. 1 and 2 while the run of 
minimization procedure in two parameter space is 
depicted by a graph in Fig. 3. Where the following 
designations are introduced 

P0 — the initial point,
Pi — the point obtained after the first cycle,

Fig. 1. A general flow diagram of the optimization method
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v>(o) <  v>(4) (6)

Fig. 2. Flow diagram of minimization procedure

P2 — the starting point in the second cycle,
P3 — the minimum obtained from starting point 

P2 lying on direction x 3,
P4 — the minimum in P j P3 direction.
During one iteration the minimum value obtained 

after each cycle is not greater than that determined 
in the course of the previous cycle. Let the point 
be a starting point and vector Pi represents a direction. 
If we try to find the minimum along this direction 
the next better approximation to the solution is a 
point x,(xn ,x ,2, ■■■, xin)

=  x ,_1+ h p l. (4)

The point x; is obtained from x t_ x point in optimi­
zation procedure of a function

ip (h) =  <p (*,_ 1 +  ftp!) (5)

along the direction p,  passing through the point xt_ i . 
The corresponding scheme is shown in Fig. 2. In order 
to find a minimum value of the function ip the para­
bolic approximation is used. Practically, the values 
of the function have to be computed at three points 
lying on a straight line p. If the condition

is satisfied where q — trial step, the choice of points 
a, b, c, approximating the parabola is as follows

a =  —q,b =  0 ,c =  q, (7)

because condition (6) suggests that the solution is to 
be sought along a vector, which has an opposite turn. 
The following transformation is, therefore, necessary

P  =  ' - P  (8)

In the case, when the condition (6) is not satisfied, 
which results in diminishing of the function value in 
the p  direction, the points on a straight line are chosen 
in the following way

a = b, b — q, c =  2q (9)

and the p  vector remains unchanged in this case. 
A vertex point of the parabola given by the three 
points a, b, c lies at the point, whose coordinate is 
determined by the following value of the parameters /;

 ̂ 1 {b2— c2)ip(a)-\-(c2— a2)ip(b)-\-(a2— b2)ip{c)
2 (b— c)ip(a) +  (c— a)ip(b) +  (a—b)ip(c)

( 10)

Obviously, the parabola has a minimum at this vertex 
point, if the inequality

( b -  c)ip(a) +  ( c -  a)ip(b) + (b-c)ip (c)
(6— c)(c— a){a—b)

is satisfied. This choice of points according to (8) or 
(9) guarantees a positive value of the denominator 
in (11) so that the condition (11) may be replaced by 
the following inequality

*2

*1

Fig. 3. A graphical presentation of the minimization procedure 
in two-dimensional space
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Fig. 4. Aberration curves of initial system 
a) spherochromatic aberrations, b) sine condition, c) field cur­
vature and astigmatism, d) meridian coma, e) distortion, 

f) chromatic difference of magnification

{b— c)rp(a) + {c— a)y>(b) + (a— b)y(c) <  0. (12)

If the condition is not fulfilled the following trans­
formation is to be carried out

a =  b, b — c, c =  c-\-q (13)

and computations are continued.
A condition sufficient to finish the minimization 

procedure pursuant to a given direction p  requires 
the parameter changes not to be smaller than the 
manufacturing tolerances.

3. Construction of the Merit Function

The merit function must be defined in such a way 
that the smaller value of the function the better quality 
of the optical system. As regards this procedure it 
is essential to properly choose both the aberration 
functions/· and the weighting factors, which influence 
the computing procedure.

The proper choice of functions /  is not difficult 
for an experienced lens designer but the optimum 
adjustment of weighting factors remains unsolved. An 
intuitive adjustment is difficult, time-consuming and 
in most cases not adequate at all.

In a further part of this paper we introduce an 
automatized method of choosing the weighting factors 
wr  We propose to classify all the defects of optical 
systems like aberrations, deviations of focal lenght and 
magnification, technological tolerances etc. into three 
groups:

1. Defects, which have to be diminished to satisfy 
the following conditions

abs ( / - / , ) <  Af„ (14)

where abs — absolute value, A f  — admissible toleran­
ce on i-th defect.

This group is represented by the defects, which 
have to be led to and then kept within required to­
lerances. The group will be represented by such defects 
as, for instance, focus defect, magnification deviation 
and these aberrations, which have to be compensated 
if the system to be optimized is predicted to cooperate 
with the other optical systems of definite aberrations, 
e.g. the chromatic d'flerence of magnification in the 
microscopic objectives have to be compensated by the 
eye-piece.

2. Aberrations, which should satisfy the conditions

abs/„. >  a b s /. (15)

It is clear from 115) that the majority of geometric­
al aberrations belong to this group.

3. Aberrations which always satisfy conditions (15) 
including the beginning stage of calculations of aber­
rations consist of all boundary conditions and other 
aberrations of the optical system, the values of which 
are not greater than those allowed. Weighting factors 
Wj should be chosen in such a way that a proportional 
contribution of each individual component to the merit 
function is ensured.

The proper weighting was realized by the following 
choice of the weighting factors (the treatment here­
after is concerned with aberrations of the first and 
the second group only).

The initial weighting factors wi0

w, = :wi0 =  : ll(fi0- f i S)2, (16)

where / 0 — the initial value of i-th aberration of ini­
tial system are selected in this way.

By assuming the weighting factors in the form 
determined by (16) each component of function cp is 
normalized to unity at the beginning of the procedure. 
But the different degree of non-linearity of functions
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Fig. 5. Aberration curves as in Fig. 4 but for the system parameters from Table II

f  and mutual relations between individual aberrations 
cause that the initial weighting factors wi0 may not 
assure a proper weighting of aberrations in further 
cycles of the correction process. In this instance, the 
weighting factors should be accordingly adjusted. The 
following correction has been proposed in this paper

W: =  : w. f - f i (17)

where the earlier decomposition into aberration groups 
is still valid. For aberrations with indices j  >  k the 
weighting factors were originally chosen as follows:

wj =  : wj0 =  : llabs(fj0- f js) (19)

and then corrected by relations

Wj =  : (20)

Table I. Parameters of an initial system

Surface No. 1 2 3 4 5 6 7

Distances 2 1 1 1 1 1 0
Curvatures .1428 0 0 0 0 0 0
Glasses PSK 1 SF 8 AIR LAK 9 AIR LAF 3 AIR

which is valid for aberrations of the first and the 
second group not yet satisfying the corresponding con­
ditions ((14), (15)).

However, these corrections are not supposed to 
be done oftener than after each cycle. It appears that 
the correction (17) does not guarantee a uniform di­
minution of all the aberrations even, if it is carried 
out after each cycle. In order to improve this dispro­
portion and to have a better adjustment of the merit 
function to the non-linearization method used, the 
following form of the merit function is proposed

k m

¥  =  £ wi(fi ~ f s )2+  w v a b s (18)
1=1 J = k + 1

The form of the merit function described by the 
relations (18) and proper choice of the weighting factors 
done on the basis of (16), (17), (19) and (20) ensured 
a more uniform convergence of aberrations to the 
desired values.

4. Computation Results

This method of optimization has been programmed 
for the “Odra-1204” computer (105 operations per 
second) and the results obtained are presented below. 
For the sake of illustration the method has been ap­
plied to design a flat field microscope objective (mag-
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Fig. 6. Aberration curves as in Fig. 4 for a system with parameters from Table III

Table II. Parameters of a system obtained on the base of the merit function (2)

Surface No. 1 2 3 4 5 6 7

Distances 1.5 12.187 2.988 2.59 0.22 8.001 0

Curvatures 0.0722 -0.1001 -0.0044 0.0813 0.0145 0.1255 0.2181

Glasses PSK 1 SF 8 AIR LAK 9 AIR LAF 3 AIR

Table III. Parameters of a system obtained after correction with the help of the merit function (18) for k =  0

Surface No. 1 2 3 4 5 6 7

Distances 3.1 1.812 15.041 1.626 .221 8.102 0

Curvatures .0558 -.0584 -.0008 .0828 .0214 .125 .2188

Glasses PSK 1 SF 8 AIR LAK 9 AIR LAF 3 AIR

gnification 5*). To show the rate of convergence of 
the employed method the system consisted of one lens 
with a finite focal length and three glass plates (of 
selected glasses) were chosen as an initial system. 
Parameters of the initial system are shown in Table I, 
and corresponding aberrations in Fig. 4:

a) longitual spherochromatic aberrations,
b) sine condition,
c) astigmatism and field curvature,
d) meridian coma,
e) distortion,
f) chromatic difference of magnification.

These aberrations have been corrected at the ini­
tial stage of the automatic correction process. Para­
meters of the system, which have been obtained after 
two iterations, are presented in Table II. In this case 
the optical system was corrected on the base of 
a merit function of the form (15) with the weighting 
factors determined by (16) and (17). The aberration 
curves in Fig. 5 characterize this optical system. Table 
III contains aberrations of a system, which has been 
obtained from the merit function (18) for k  =  0 (all 
components of merit function were weighted with the 
help of relations (19) and (20). The aberrations of
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Fig. 7. Aberration curves as in Fig. 4 for a system with parameters from Table IV

Table IV. Parameters of a system obtained after correction on the base of the merit function (18) for 0 <  k <  m

Surface No. 1 2 3 4 5 6 7

Distances 14.153 9.687 3.04 0.223 2.649 7.02 0

Curvatures .0586 -.1036 0.0011 0.0809 0.0146 0.125 0.1542

Glasses PSK 1 SF 8 AIR LAK 9 AIR LAF 3 AIR

the system are illustrated in Fig. 6. Parameters of the 
system, which has been obtained with the help of the 
function (18) (for 0 <  k  <  m) are shown in Table IV. 
In this case the function was composed of weighted 
squared deviations and weighted absolute deviations 
of aberrations (the corresponding aberration curves 
are in Fig. 7).

A “shifting” of any aberration from the “modulus” 
group to the “squared” group or vice versa has been 
executed only if the improvement of this aberration 
during the correction process was not satisfactory, 
though the change of the weighting factors connected 
with this aberration was great. Pursuant to presented 
aberration curves it is obvious that the best results 
are obtained, when the minimization method is based 
on the merit function (18). It is also obvious that 
the convergence of the optimization method referred 
to depends on the accepted permutation of the para­
meters x h i =  1,2, ..., n.

As regards a system consisting of a great number 
of surfaces it is profitable to initiate the design with

a permutation, in which low indices are assigned to 
the parameters from the last part of the system. It 
enables to retain a great deal of current data in the 
computer memory, which may next be used repeatedly 
in further computations.

Thus, the necessity to trace rays over the whole 
optical system (from the object space to the image 
plane) is removed. Observing a design process one 
may eventually change permutation of parameters 
when results are not up to requirements.

This paper contains a part of investigations on 
this subject. It will be possible to do improvements 
upon these processes only after computer of greater 
capacity and higher speedes will be available.
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