
A lo r o / № ¿ 3 7 0 / *

On Interpretation of the Plasma Beam 
Holographic Interferograms

A  method of finding an analytic function for a proper description of a set experimental data obtained by  
measuring the phase shift occurring in a phase object with an interefometer is presented. The proposed method of 
hologram interpretation is next applied to determine the temperature distribution in the plasma jet.

The holographic interferometry is becoming 
more and more frequently used in interfero­
metric examination of plasma. The introduction 
of lasers allowed to increase considerably the 
accuracy of interferometric metrology. More­
over, this enabled a development of some new 
examination methods, e.g. holographic interfero­
metry in real time and by double exposure. The 
holographic interferometry in real time is parti­
cularly useful for investigation of phase objects, 
as it allows to observe the interference image in 
a continuous way. The optical scheme of the 
systems registering the interferograms in real 
time is shown in Fig. 1.

Fig. 1. A  scheme of Mach-Zehnder interferometer 
A — totally reflecting mirrors, A ,,, ,  A,,2 — half-trans- 
parent mirrors, .S' — lens, Z f — source of light, O F — 

phase object
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The interference image produced in such an 
interferometer is based on a principle similar to 
that of Mach-Zehnder interferometer presented 
in Fig. 2.

Z

Fig. 2. Optical system of the holographic interferometer 
A — totally reflecting mirror, Ap — half-transparent 
mirror, -S' — lenses, O F  — phase object, 7 / — hologram, 

A F  — photographic camera

It may be noticed that there exists a corres­
pondence between the Mach-Zehnder and the 
holographic interferometers. The wave travel­
ling along the arm of the Mach-Zehnder inter­
ferometer, without the phase object, corresponds 
to the wave reconstructed from the hologram
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in a, holographic interferometer, while the wave 
travelling along the arm with the phase object 
in the Mach-Zehnder interferometer, corres­
ponds to the wave passing through the object 
under test and the hologram in the holographic 
interferometer. An interferometric image of 
the plasma jet and that of the stabillized 
glow, both obtained by the holographic inter­
ferometry in the real time, are presented in 
Figs. 3 and 4. The plasma jet was produced 
in a plasmatron for the 250 A current and 250 
1/h argon flow. At room temperature the

Fig. 3. Plasma jet interferogram

refractive indices of argon, nitrogen and oxygen 
are close to each other, provided that their 
pressures are the same [5]. Consequently, a 
replacement of oxygen-nitrogen mixture by 
argon does not change practically the optical 
path of the light passing through such a region. 
The interference image appears first after intro­
ducing the argon plasma into this region. This 
means that it is the argon plasma that influences 
strongly the optical path difference of the inter­

fering waves as the results of the respective 
changes which occur in the refractive index of 
the medium, due to both temperature and ioni­
zation-induced variation in gas density. Hence, 
it follows that the interferograms of the jet 
contain information on its temperature. If the 
plasma exhibits a cylindrical symmetry around 
the 2-axis of the coordinate system, then the 
plasma column cross-section in the a?, y-plane 
has the property that the points equidistant 
from the origin of the coordinate system are 
of the same temperature T(r), density p(y) and 
refraction (;?(?*) —1) (see Fig. 5). The laser light 
passing parallelly to the y-axis through the 
medium of the refractive index m(r), determined 
with respect to the surroundings, is subjected 
to optical path change. The respective phase 
shift /(a;) is given by the formula

f/AlA
№ ) = 2  { " . - 7 ? ( r ) ) < b / .  (1 )

Fig . 5.

Its value may be read out of the interferogram. 
Much more important, however, is the distri­
bution of the refractive index. In order 
to determine the latter it is necessary to solve 
the equation (1). This may be done by using 
the reverse Abel transformation [3]. Then the 
solution is of the form

#(%)

and is, as easily seen, determined by the deriva­

tive . Consequently, it becomes necessary

to find the analytic form of/(a?), to the measure­
ment data /(a?,) given by the experiment. The
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values of/(^,) read from the interferogram suffer 
from measurement errors. Consequently, the 
sought matching function /(a?) should satisfy two 
opposite requirements. It should well approxi­
mate the experimental values at the measuring 
points, hut at the same time it need not repro­
duce them too precisely, as the latters are 
charged with errors. Thus, the matching function 
should smoothen the experimental data. This 
condition is particularly important if in further 
calculation not the function hut its derivative 
is used. If the matched function was led through 
the experimental points (charged with errors) 
then considerable oscillations in the value of 
the tangent of the slope angle may occur, 
resulting in unexpected maxima and minima 
of the derivative. Thus, the derivative may 
differ considerably at some places from that of 
the true experimental curve, of which it is 
known, for instance, that it should be regular.

The problem stated in this way is a typical 
example of approximation of the /(%) function 
by a combination (mostly linear) of the function 
<7%.(%) belonging to a class {$q,(%)} 7c =  1, 2 , . . . ,  wr. 
In this case the function/(a?) can be put into 
the form

/(a?) — a.y.(a>) +  MiPi(a;)+... + ^ ,^ (a r ), (3)
where ... ,  are constant coefficients. Some 
rational approximations of the form

, a.if.(F) +  a i y i ( ^ ) + ... j(%) = ------------------------------------------------ (4)
a .y.(^ )+7hyi(a ;)+ ... +a„,y„,(%)

may also be applied. These, however, are much 
more difficult to realize than the linear ones.

The approximations may be divided into 
some categories; depending on the way the con­
stants , . .. ,  a,„ are chosen:

i) The interpolation approximations, in which 
the coefficients are chosen so that the approxi­
mating and approximated functions have the 
same derivatives and the same values at certain 
points (7 =  1, . . . ,  JV) called nodes;

ii) the r.m.s. approximations in which the 
minimum of the sum of squared differences 
between the values of the approximated and 
approximating functions are sought for a cer­
tain set of (measurement) point;

iii) the uniform approximation, which allows 
to find the least value of the maximum discre­
pancy between the approximating and approxi­
mated functions.

The interpolation approximation is used 
when the nodal point values of the function

approximated are known exactly and the inter­
mediate point values are required.

The uniform approximation is used when 
the error of approximate value of the function 
is requested to be not greater than the allowed 
one within the whole interval (%,

In the case of a discrete set of values of the 
function /(¿r,), 7 =  1, . .., jV, which are known 
up to certain errors, the r.m.s. approximation 
appears to be the most convenient method.

1. The r.m .s. approximation

For a linear approximation a class of function 
{<7,. (%)}, (j =  0, . .. ,  w) should be chosen accor­
ding to the formula (3). In order to solve the 
integral equation (2) it is necessary to know the 
derivative of the function. Therefore, the ana­
lytic form of the approximating function is 
desired. This allows to calculate the derivative 
as well as to perform simple integration. The 
class of functions satisfying the above condi­
tions are polynomials. Their integration and 
differentiation being simple they assure also a 
satisfactory accuracy of approximation. This 
follows from the Weierstrass theorem which 
states:

I /  Me /Mweimn /(¡r) 7s eoHb'wMOMs w7M7u Me 
/7%7M 7)derra7 Mew, /or car// e > 0  Mere
e.r7.d. 7wMycr % =  %(e) und a polywowdul d'„ 
o/ Me order n SMcd Med [/(a;) — !/,(%)] <  r /or u77 
.re (a, 7<)>.

Let /(%) denote the function, which is to 
be approximated and let {.r,}, (7 =  1 ,...,1Y ) 
be a set of those points at which the values of 
the function /(%,) = / ,  have been measured 
with some error. The measurement error is 
7/ = /(;r,:)—/;,  where the true and measured 
values of the function at the measurement point

are denoted by / (^ )  and /,-, respectively.
Let { ĵ (¡r)}, (j  =  0, . .. ,  w) be a finite sequen­

ce of functions determined for each The 
approximation to the function with the values 
/ .,  performed by the linear combination of 
functions belonging to the class <7, (a?) may be 
written in the form

/ (3 )
7="
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The index (w) at the coefficients under­
lines their dependence on 777.

The r.m.s. approximation consists in such 
a choice of the coefficients 4"'* that the value 
of the expression

F (4"",%;", . . . , 4 :4

=  (6)
— 1 7 = 0

cients 4"*- H its determinant is different from 
zero then by solution of (8) the coefficients 
4T' may be determined.

If =  3̂  and w(a?,.) =  1, then the system 
(8) will take the form

JV m
(9)

t=I 7 = 0
& =  0, 1 ,  . . . ,  777.

be the smallest; w(a?) denotes the weighting 
function. This function determines the contri­
bution of the separate experimental values to 
the expression (6), and may depend on the error 
made while measuring

If, e.g. %(%) =  (I =  0, . . . ,  ??*); then the 
approximation takes the form

By a suitable rearrangement we get
7M TV TV

-  ^ / , 4 ,  (10)
7 = 0 1 7=1

A; =  0 , 1 , . . . , m.

Denoting

№ ) =  y„7^) =  ^  4 ^ ^ -  (7)
7=0

The right-hand side of this equation is a 
polynomial of ?/;.-th order. Having jV experimen­
tal data and applying the polynomial of a sui­
tably high order (77?. + 1  +  JV) it is possible to 
carry the function i/„,(a;) through all the experi­
mental points. Such an approximation, however, 
reproduces exactly the experimental values of 
the function, which are burdened with errors. 
This approximation does not "smoothen" the 
experimental data. When, moreover, the poly­
nomials of higher order are employed, the values 
between separate measurement points, taken 
by the approximating function, may sometimes 
be considerably different from the expected ones. 
Hence, to approximate the experimental data 
it is recommended to use the polynomials of 
the order 771 + 1  <  W  This means a worse fitting 
of the function to the experimental data, but 
the course of approximating function is closer to 
the real one.

The value H (4 ,"4 --- ,4 "4  determined by 
the formula (6) depends upon the coefficients 
4"'* - Let 4'"* be variables of the function # . 
Then at the minimum of this function its partial 
derivatives with respect to the 4"'* wii) be 
equal to zero

=  - 3 2 j " V , ) x

=  " .  (8 )
7=0

This is a system of 777 +1 equations called 
the normal system with 777 + 1  unknown coeffi­

V V
^  (11)

7 = 1 7=1

the normal system may be written in the form

y \ , , 4 ' ' " = Z , ,  A = 0 , l , . . . , m .  (12)
7 = 0

Let, for instance, JV experimental points be 
uniformly distributed within the interval (0 , 1). 
Hence, it may be assumed that

.v
"'7* 2 ,1=1

! 77 J*  ̂''dr = 
0

j ,  & =  0, 1,

77
j  +  A +  1 

.., 777. (13)

The matrix f  =  of the normal system 
(12) takes the form

1
777 +  1 
1

777 +  1 277i +  1

(14)

This is an example of an ill-conditioned matrix; 
i.e. the inverse matrix of the matrix normed so 
that its greatest element be of order of unity, 
contains very great elements. This yields consi­
derable errors, due to the fact, that while sol­
ving the normal system of equations, the number 
in the computer were rounded. For 777 =  9 the 
matrix inverse to (14) includes the elements of 
the order 3-10+

Because of the above limitations for the 
polynomial approximation of the form (7) 
numerical calculations may be applied for 777 

not greater that 5 or 6.
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2. Approximation by orthogonal 
polynomials

The troubles due to ill-conditioning of the 
normal system matrix may be avoided by using 
another class of functions {%(%)}, j  =  0, . . . ,  w. 
To this end the orthogonal polynomials may be 
applied. Let Pj (%) denote a polynomial of j-th 
order. The approximation, whose coefficients 
are to be determined, has the form similar to 
that of e.g. (7):

(1 3 )
j'-o

By following the rules of r.m.s. approxima­
tion (formulae (7) to (12)) the normal system 
may be presented in the form

a =  o , i , . . . , ?M,  (16)
)'=0

where
v

!=1
A'

C*=J^W(%i)/;_p^(;Xj). (17)
! = 1

For arbitrary polynomials p,,(.r) the difficulties 
with ill-conditioning of the matrix {d^} may be 
similar to those occuring in the case of ordinary 
polynomials discussed above. However, if the 
set of polynomials {p^(y)} is defined and ortho­
gonal in the set. {.r,}, (A — 1, . . . ,  Æ), i.e.

A

^rc(ir,.)p j(^ )^ .(æ ,.)=0  (18)
Ï = 1

then djA. =  0 for j  ^  A. Thus the system of 
equations (16) is reduced to

= C „ (19)
A* =  1, . . . ,  w.

and has a simple solution

A =  0, 1, . . . ,  w.

Thus, the solution of the ill-conditioned 
normal system is avoided. It is also easy to find 
the coefficients ' for a sequence of w +  1 
orthogonal polynomials, namely

= Æ ,  A = 0 , l , . . . , m .

Hence, it is clear that 
(A = 0 , 1 , . . . ,  w), and this means that ¿q. does 
not depend on w. Consequently, to find 
it suffices to calculate c„,,, and „̂,+i,m+i- 

If the polynomials constructed are to be 
orthogonal in the set the recurence formulae 
of the form [1] can be used:

+ =(a>-ay+,)p;(%)-/?,.p,._,(%), (20)
where p„(a;) =  1, and p_,(a?) =  0,  ̂ are
constants, which may be determined from the 
following relations

v
JE* w(^,.)p^(^)

R t = i__________MA; *  jv ?

? = 1

î* w(æ,.)a;,.^(^.)
t =  l

^+1 — jv

t'=I

These relations may be programmed, and the 
coefficients as well as the form of the orthogo­
nal polynomials may be easily calculated on an 
electronic computer. Finally, by determining 
the coefficients d%,, ^  and and grouping them 
according to the powers of %, the approximation 
(15) may be written in the form of an ordinary 
polynomial

(22 )
J = 1

3. Selection of the order of polynomials

The last problem concerns the selection of 
the power of the approximation polynomial. 
Let the approximation of the function /(a?) by 
a linear combination of the orthogonal poly­
nomials (a?) be exact for w =  ilf; i.e.

№) = 
t̂' =  0

This means also that the fitting is not im­
proved by an increase in the number of poly­
nomials approximating and that for the appro­
ximation

.M + l
№) = JE*

; - o
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^Af+i =  0- Hence, it. follows that, for exact 
fitting (-/u =  77) the value of

_D2 =  (23)
i = 1 j = 0

should not depend on w. for w >  .17.
This intuitive remark may be proved.
In selection of the degree of the approxi­

mating polynomial the so-called zero hypothesis 
may be used [1]. According to this hypothesis

-B „ =
7 F

A  — w — 1 (24)

does not depend of ???., starting with ??? =  11 
for which the approximation is optimal. In 
practice, the value of 77/, for the given 71 is 
not equal to zero, because of the errors in the 
experimental values J/. The zero hypothesis 
allows, however, to determine the —- 77 for
which the fitting in good enough and "smooth" 
enough, simultaneously. This may be done in 
the following way: the value of the term 71;„ - m 
should be calculated for the particular This 
value of wq for which /7;„ decreases negligibly 
will be the sought optimal order of the poly­
nomial 71.

4. Experimental results

The above method may be employed to 
determine the temperature distribution in the 
plasma jet. The argon plasma stream was produ­
ced in a plasmatron for 250 1/h argon flow rate 
and 250 A current. An interferogram of such 
a laminar plasma flow is shown in Figs. 3 and 4. 
The optical system, settled according to schema 
shown in Fig. 2, allows to observe the interfer­
ence image in the real time and to record it at 
an arbitrary moment. The time of interferogram 
registration was 1/500 s. Photometric analysis 
of the photographic plate with interferogram 
enabled to determine the position of fringes 
with an accuracy not less than 0.2 mm. The 
experimental data of the phase shift were 
approximated by orthogonal polynomials by the 
method presented in this work. For the poly­
nomials of the order ranging from 1 to 16 the 
value of was calculated according to the for­
mula (24). From the results presented in Table 1, 
it follows, that starting with w =  10, the value

of 7i';„ changes considerably slower than it does 
for <  10.

T a b i c  1

1 « - ' ???

1 40140.0 9 15.43
2 584.4 10 4.006
3 595.4 11 4.094
4 262.5 12 4.000
5 267.7 13 4.093
6 25.63 14 4.069
7 26.15 15 4.169
8 15.11 16 4.124

In accordance with former remarks the tenth 
power polynomial has been accepted as the 
optimum. Fig. 8 presents the graph of the 
accepted approximating polynomial with the 
marked experimental points. The photometric 
analysis allows to determine the position of 
fringes with a small error. Consequently, the 
values of the phase shift at certain positions 
are burdened with errors. In this case the diffe­
rence between the phase shift determined ex­
perimentally and that calculated from the appro­
ximating function has been assumed as a measure 
of the approximation quality. These differences 
should be smaller than the error committed 
while determining the experimental data. This 
was the case in our experiment. The differences 
between experimental and calculated values 
determining the change in optical path were 
smaller than 0.02 (in the wavelength units). 
The value of the coefficient u, at a? (formula 
(22)) was of the order of 10 Hence, according 
to the expectations it may be assumed that the 
first derivative of the approximating function 
is equal to zero, for j' =  0. The coefficient at 
a-- was greater than zero. To choose optimally 
the order of the approximating polynomial it 
may be useful to check the analytic properties 
of the approximating function. From the view­
point of physical conditions of experiment it 
is obvious that the true function describing the 
phase shift takes a minimum value for % =  0. 
This means that the first derivative should be 
equal to zero, while the second one should be 
positive. Consequently, if the approximating 
function is a polynomial then the coefficient a, 
in (22) must be equal to zero, while %2 must be 
positive. Moreover, the function describing the 
true course of the phase change should not take 
the unexpected minima and maxima. By satis-
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fying ail these requirements we obtain an addi­
tional cryterion for the choice of the order of 
the approximating polynomial.

The condition that the first derivative should 
be equal to zero for a? =  0 is, here, of a parti­
cular importance. Misfitting of this condition 
by the approximating function causes great error 
when calculating the integral (2). This, in turn, 
results in serious errors in the distribution of 
refraction determined for small % close to the 
axis, thus in the region of interest.

If =  0 the integral (2) may be readily 
calculated analytically

(?') =  " j —

to 0 10 .
1  V  f  - J 1  v *  -7 . j-1

3- 2 3 = 2

Thus, the refraction of the middle point in the 
plasma column may be determined.

For a chosen function, approximating the 
phase shift, the value of the integral (2) was 
calculated numerically by the method of (lauss- 
-Tschebyshev [1]. The refraction estimated in 
this way made it possible to calculate the tempe­
rature, according to the relation

T(-r) "o - 1
1 To,

where (a ,—1) — denotes the refraction of the 
plasma surrounding and (a(r) —1) — is the 
refraction at a distance r from the middle point 
of the plasma column.

Numerical values of the refraction and tem­
perature are presented in Table 2. The values of 
refraction and temperature have been estimated 
by taking account of the effect of free electrons 
on the total refraction of plasma, under assum­
ption of local theromodynanric equilibrium. The 
refraction and temperature distribution shown 
in Figs. 6 and 7 have been obtained under 
certain conditions, which should be specified, 
while discussing numerical values given in 
Table 2. These values are affected by a number 
of factors, e.g. temperature of the surrounding, 
humidity, pressure, the accuracy the of determi­
ned position of interference fringes and the shape 
of wavefront used in the holographic inter­
ferometer etc.

T a b le  2

r [cm ]
____

(;<-l)'10-s T 103[K]

0.0 0.5086 14.785
0.04 0.5139 14.630
0.08 0.5297 14.200
0.12 0.5589 13.460
0.16 0.6088 12.350
0.2 0.7100 10.590
0.24 1.055 7.131
0.28 1.532 4.907
0.32 2.089 3.600
0.36 3.064 2.455
0.4 4.868 1.545
0.44 7.839 0.9593
0.48 12.05 0.6242
0.52 17.07 0.4404
0.56 21.87 0.3439
0.6 24.90 0.302
0.621 25.6 0.2966

Fig. 6. A  distribution of the plasma jet reflection cal­
culated front the interferogram shown in Fig. 3

The influence of the particular factors on 
the results of holographic diagnosis of plasma, 
as well as the comparison of the latter with the 
spectroscopic diagnosis will be discussed in the 
next paper.

The purpose of this publication was to pro­
pose a method of digital processing of interfero-
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/CV777
Fig. 7. The temperature distribution in the plasma jet 

corresponding to the refraction shown in Fig. 6

Fig. 8. The phase shift (change in optical path difference) 
determined from the hologram (Fig. 3). The continuous 
curve corresponds to the accepted approximating 
function (a tenth order polynomial in this case). The 

experimental data are marked with the dots

grams. Obviously, the method may be applied 
also to many other cases different from those 
described above.

L  interprétation des hologram m es interférom é- 
triques du plasm a

On a présenté la méthode de détormination de la 
fonction analytique qui décrit l'ensemble des données 
expérimentales obtenues par la mesure interférométri- 
que du déphasage s'effectuant dans l'objet étudié. 
L a méthode d'interprétation proposée a ensuite servi 
à déterminer la répartition des températures dans un 
flux de plasma.

О б интерпретации интерферометрических голограмм

В работе изложен метод определения аналитической 
функции, описывающей множество экспериментальных 
данных, полученных путем интерферометрического изме­
рения сдвига по фазе, совершающегося в фазовом объекте. 
Предложенный метод интерпретации применен затем для 
расчета распределения температуры в плазменном потоке.
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