Tuy/z/m/AsTi

i/pno*

Fourth Luneberg Apodization Problem in Partially
Coherent Light

A fourth Luneberg apodization problem of increasing the Sparrow resolution limit under the partially coherent
illumination is formulated for the slit aperture via the calculus of variations. The required pupil functions obtained by
solving a homogeneous Fredholm integral equation have been evaluated under various spatial coherence conditions

of illumination.

1. Introduction

Apodization is applied to determine the light
distribution over the exit pupil oi an optical
system in order to obtain a desired distribution
of light over a given plane in the image space.
Until now many papers involved in both the
theoretical analysis and experimental technique
of apodization have appeared. A comprehensive
review of apodization was given by JACQUINOT
and RoiZEN-DossiER [1]. In the past the rese-
arch work on apodization was conducted either
under the completely coherent or incoherent
illumination. No paper however, treated the
apodization problem in partially coherent light.
The fourth Luneberg apodization problem [3]
under the partially coherent illumination has
been for the first time studied by ASAKURA and
UENO in [2]. This problem was studied by
BARAKAT [4] under the two extreme conditions
of completely coherent and incoherent illumi-
nation. Since in [2] the problem was restricted
to the circular aperture only, it might be
interesting to extend the study to the case
of the slit aperture of an optical system, which
is the subject of the present paper. Of course,
the general formulation for the slit aperture is
formally the same as that for the circular
aperture, but both cases differ in detailed
development of analysis. For this reason, this
paper presents a basic solution for the fourth
Luneberg apodization problem in the case of*
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the slit aperture illuminated by partially cohe-
rent light.

2. Formulation of the problem

In previous paper [2] a theoretical study of
apodization has been performed in the case of
a circular aperture of the optical system, in
order to increase two-point in the contex of
Sparrow resolution cryterion, provided that the
point objects are illuminated by partially cohe-
rent light. The paper [2], being frequently
referred to in the present paper, will be denoted
by | for abbreviation. The subject of the pre-
sent paper is to study the above problem in
the case of a slit aperture of the optical system.
The optical system under discussion is assumed
to be free from aberrations. The complex ampli-
tude distribution in the receiving plane, due
to a point object located on the optical axis
of the system, is given by

D(u) = D(i?, d)
1
= \T(<3,,3;)exp(Mxr) (%%,

@

where T(d,,%) is the apodized pupil function
which satisfies

(2)

If this inequality is true the optical system is

a passive one and <3 is a parameter which will

be discussed shortly. In Eq. (2), T. is the non-

-apodized, uniform pupil function with a con-

stant value. In view of the Parseval's theorem

for the Fourier transform relationship of Eq. (1),
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the total light flux passing through the pupil
may be described by the relation:

[ iD(r, ,5.)[2dr=
—a0

3)

where the constant 1/27r at the right hand side of
this equation is omitted for the sake of simpli-
city. If the total light flux passing through the
non-apodized aperture is set be equal to one, the
non-apodized pupil function T, must be

T. 4

which corresponds to a maximum constant value
of Eq. (2). Then, the total light flux passing
through the apodized aperture is given in a
normalized form by

J*IT(<5,,%)12&p i

9= Lo = J*IT(<$,,%)12d3,, (5)
fIT.12&; -i
where ” ranges within the interval 0< < 1.

In accordance with the statement of I, the
partially coherent Sparrow resolution criterion
is given, using Eqg. (1) at the Sparrow resolution
limit

by

where <is the Sparrow limit of resolution corres-
ponding to the resolvable limiting separation of
two point objects situated at the same distance
from the optical axis, and a is

i-y
1+y

Q)

In Eq. (1), y is the complex degree of coherence
characterizing the coherence condition of illumi-
nation, and having a value in 0.1 interval
(0< y< 1)inwhichy = 1and 0 correspond to
the completely coherent and incoherent illumi-
nations, respectively. If T(<5,, &) is a real, even
function, then Eq. (6) becomes in terms of Eq. (1)

J* T(5., %)cos X

50

r [ Br\
xdr 1 r-T(5,%cos) *~ jdr—
—a rT((5,,r)sini =~j-jdr =0 (8a)
or
i* J*T(<5.,8)T(f).,i)y(<50,a;s,?)dsd%, (8b)
1-1
where
—(2C0S )--——- COS ------- +
+ asism N3 Sm K5 ©)

We are now in a position to formulate the
apodization problem for the slit aperture. The
problem is to determine a pupil function
T(<3(,,ry) which satisfies the two conditions of
Egs. (a) and (8), such that the central intensity
of the diffraction image due to a single point
object

1
MO A)R2=11*T (M, r)dr]
-1

(10)

be a maximum (this equation is obtained by
putting r = 0 in Eq. (1) and then squaring the
resultant equation). Condition (8) is the partially
coherent Sparrow resolution criterion. Condition
(a) states that the total light flux passing through
the apodized aperture takes a certain value less
than the one for the non-apodized aperture. This
later condition comes from a passivity of the
optical system denoted by Eq. (2). As in the
case of a circular aperture the calculus of varia-
tions is used to obtain an integral equation for
the desired pupil function in a sense of the
Sparrow resolution criterion. By using Egs. (5),
(8) and (10), the variation problem is
1
\% N T(<9, %)dri™ +

1
+INj* [T(<5,, adl2d r-$j +

1
JF T(<90,3)T(<5(,%)F((5Q,a;3,t)dsdt, (11)

where /4 and A are the unknown Lagrange
multipliers which are determined from the cons-
traint equations. Assume a solution of the form

T(<3.,%) + 6B(a), (12)
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where e is a small- parameter which is ultimately
to be made zero, and R(%) is an arbitrary fun-
ction, with continuous first and second deriva-
tives, which vanishes at the end points (—1, 1).
Substituting Eq. (12) into Eq. (11) and solving
the following equation

dF
= 0, 13
i (13)
we have
1 1
~B(a;)d%{2 T(<3,a?da; + 2//T((5,,;r) +
-1 -1

1
+A ¥ T(<5,)#(<3,,a;s,%)ds +
-1
1
+A  JF T(<5,,t).Z22(<5.,(i;%,t)<M}=0.
-1

(14)

A necessary and sufficient condition for the
above integral to vanish is that the bracketed
terms become zero. Rewriting the bracketed
terms, we have

2/iT(<5 4)-] |
-1

T(<5,8)[2+ A{H(<H,,a;s,%) ¢

~#(d,,a;iP,.s)}]ds=0, (15)

where

A(N0) 3T,

Equation (15) is a secondary homogeneous Fred-
holm equation which must be solved to obtain
the desired pupil function to increase the Spar-
row resolution criterion under the partially
coherent illumination.
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3. Solution of integral equation

We are now going to solve the homogeneous
Fredholm equation (15). Rewriting Eq. (15),
we have

T(<5,, 99
1

J*T(d,,s)A(d.,a;",a?)ds
21x 4

' (17)

with a kernel given by

I gs\ [ <&a\

A(<5,, a;s,a;) = 2-A"~cos!l-y-lcos!— j+

EAaICSSI/th sm4

—AIr’cos

Since the kernel is separable by two variables
~and s, as is seen from Eq. (18), it is put in the
following form

4

A(d.,a;s,37)=""(37)™(s), (29)
where
&a(s) = —2Aassin™°— = 2Aa"3(s), (20)
aja?) = —aksini\
aes) = AcosN-yNj = AE(s).

Substituting Eq. (19) into Eqg. (17), we have

4

T(<5,,, @) = ~
1=1

Ci<q(%), (21)

51



where

I:= - L B G
2l
1
FTS)MN(NMN)& -,
Q= - J* T(<5.,
-1
1
” J* (<5, s)B)(s)ds,
@2)
~3 — I'T(<5.5)&g(&)"

f T (™., 5)%3(s)<ys,

1

— - y - CT(<5, s)A,(8)ds

FJT(<5,,,5)% 2(s)&.

The solution of the integral equation (15)
now reaches Eq. (21) in which the four parame-
ters <o @ B3 and g must be determined via
Eq. (22) by using the constraint equations (5)
and (8). Unfortunately, only two constraint
equations (5) and (8) exist in spite of the fact
that four equations are required to determine
the four unknown parameters c,, Gg, g and c™
The additional two equations can be derived
from Eq. (22):

J*T(<S.,s)ai(s)<7s
-1

1 (23)
(T(($Q,s)a2(e<us
-1
2a fT(<50,5)%3(#)(%s
? (24)
fT(5,,5)ag(.s)ds
By referring to Egs. (20) and (22), the

constraint equation (8) can be expressed by

1
J*T(<3,,5)%4(s)ds

S +
J*T(;5(,5)% 2(s)&

52

fT((5.,s)<H3(s)&
' (25)

+ a = 0.
J*T(<5.,5)%2(s)<?$

Thus, there are four equations (5), (23), (24),
(25) from which c,, Oy “8asd can be determi-
ned. Unfortunately, these four equations are
noniinear. There, we must solve a set of four
nonlinear equations simultaneously. In order
to derive four nonlinear equations in a more
explicit form, we set the pupil function T(<5,, &)
of Eq. (21) in the form

T(<5.,, @) = c.,R,.a,(;r), (26)
1

where

(4 = i)

and a, (%) is also given by Eq. (20). Consequently,
the task of determining ¢q, Cg, ¢, and < becomes
that of determining A,, Ag, Aq and Ag, because
¢ is simply a constant. Before proceeding
further, we define a set of integrals given by

EU= J @@ (8084 (27)

which will appear in the subsequent analysis
and, therefore, has been evaluated in Appendix
A by using Eg. (20) for a(a? and ay(a). By
means of Eq. (26), the four constraint equations
(5), (23), (24) and (25) become

4

AN A CAAF, = 9
=1
4 4
N NN N R®iNd !t 07
i-1 (28)

4

t=I

4aAg A Ag = 0.

The nonlinear algebraic equations given by Eqg.
(28) must be solved for each Ag, Ag, A3and Ag
The method of solving these algebraic equations
can be found in | and, therefore, the detailed
treatment of that method is omitted here. Once
the parameters Ag, Ag, A3and Aare determined,
the pupil function of Eq. (26), we are looking
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for, together with the present apodization pro-
blem, finally takes the form

T(<5,,,A) A + AqCOS

—Agsin — Aga”cos (29)
where Eq. (20) is used for <qg(r) and a trivial
constant gis omitted without loss of generality.
This form of Eqg. (29) was already derived by
BARARAT [4] in the fourth Luneberg apodization
problem under the incoherent illumination. In
his study [4] the parameters Aqg, Ag, Aqand Agare
a function of <3 alone, but at the present study
they are functions of both §,and y (the coherence
condition of illumination). Consequently, these
parameters vary, when the coherence of illu-
mination is changed.

4. Results and discussion

The four parameters Ag, Ag, Agand Ag, which
are the coefficients of the pupil function in
Eq. (29), where computed for various values
of the coherence condition of illumination with
accuracy to five decimals. These parameters
are listed in Table for ~ = 1. In this table, the
passive condition of an optical system given
by Eg. (2) has been taken into account. As it
was already discussed in I, a variation of the
total light flux passing through the apodized
aperture does not influence the form of pupil
functions obtained under the present apodiza-
tion scheme. This means that the pupil functions
corresponding to various values of < become
equivalent to those corresponding to €= 1 by
a normalization. By this reason, the data
for the case of ¥=1 are only tabulated in
Table.

The pupil functions T(<5,,.r) obtained by
using the above parameters are illustrated in
a normalized form by Fig. 1 for various values
of @, at different coherence states of illumina-
tion. This normalization is taken in such a way
that the pupil function of uniform amplitude
distribution over aperture becomes equal to
one under various coherence conditions of illu-
mination. The resultant pupil functions of Fig. 1
are, of course, qualitatively similar to those
for the circular aperture [2]. The general beha-
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viours of the pupil functions as functions of
and y are clearly seen in Fig. 1. The non-apod-
ized values Q = 2.606, 2.903, 3.196, 3.494, 3.809,
4.163 for the coherence conditions of illumina-
tiony = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 are the values
of the Sparrow resolution limits for the uniform
amplitude distribution over the aperture, under
various coherence conditions of illumination.
As <, is progressively made to decrease below
non-apodized value under each coherence con-
dition of illumination, the pupil function T (5, -r)
is such as to weigh against the centre of the
aperture. This phenomenon appears up to a
certain value <, different for each of the cohe-
rence conditions of illumination. As s further
decreased below this value, there is inversely a
weighting at the edge of the aperture. Note that
the maximum transmittance lies at the centre of
the aperture except for the case of the comple-
tely coherent illumination y = 1.0 (see Fig.
If). When the illumination approaches the
completely coherent light and (G, is decreased,
there appears a weighing in the ring-shape
region of the aperture. Under the completely
coherent illumination, the maximum transmit-
tance is produced at the edge of the aperture
for 3.8< <, 1t is obviously recognized from
Fig. 1 that the pupil function investigated under
the present apodization scheme is largely affec-
ted by the coherence condition of illumination.
Thus it is concluded that the coherence condi-
tion of illumination must be known beforehand
in order to obtain an appropriate pupil function
fitting the apodization purpose.

The total intensity distribution for the slit
aperture due to the two point objects illuminated
by partially coherent light is [5, 6]

/ . N <A\
Dr---j + Duor+—"4
17, (0)! 27 \ 2/
|
2y D .r - "D or+ -— 30
#2y Dy, Dot GO

where ID,(0)" is the central intensity (r = 0)
for the uniform amplitude distribution, due to
the single point object, which is given by

1
1i9,,(0)12=13*T .deeI'=1,
-1

(31)
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a)y =0

Pupil function parameters (< = 1)

%)
2606 070711
25 0.70908
24 0.71401
23 0.72102
22 0.73044
21 0.74274
18 113948
14 1.11038
10 1.08110
0.2 1.06142

b)y =02

3 4

2903 070711
28 0.70968
26 0.73209
24 0.78432
22 0.87727
20 1.16476
16 1.11994
10 108111
0.2 1.06142

) 7=0.4

%) *

3196 070711
30 0.71897
28 0.76752
24 1.23484
20 1.16544
16 1.12009
12 1.00116
0.2 1.06142

0 0

—-0.08567 —0.32585
—-019322 —0.68898
-032368 —1.07827
—-046758 —1.45073
-061235 —1.76485
—0.00140 0.12063
—0.00025 0.04751
—0.00003 0.01490

0 0.00010

2 A

0 0
—-007272 —-0.24011
-028773 —0.83033
—-058367 —1.45283
—-090524 —1.92757
—0.00202 0.12520
—0.00042 0.05233
—0.00002 0.00995

0 0.00007

2 3

0 0
—014230 -—-0.38355
—038701 -0.89664
—0.00471 0.17527
—0.00134 0.08268
—0.00028 0.03399
—0.00004 0.01192

0 0.00004

*4

0

0.30986
0.61420
0.89800
1.12527
127163
2.60030
2.24000
1.99597
1.77638

*4

0.29730
0.89857
1.35611
153916
2.91049
2.42895
1.99864
1.77638

0.60305
121182
3.80471
2.97060
2.44709
2.11543
1.77638

d)y=06

3.494
32
30
28
24

16
12
0.2

e)y =08

3.809

34
32
28
24

16
12
0.2

f)y=10

18

4.163
40
38
3.6
32

12
0.2

0.70711
0.74102
0.83758
1.07098
1.23678
1.16600
1.12020
1.09118
1.06142

0.70711
0.72121
0.79007
1.00867
1.33383
1.24045
116781
112116
1.09173
1.06149

*1

0.70711
0.71523
0.76306
0.88497
1.27290
1.16688
109121
1.06142

0

-0.22128
—0.51864
—0.98585
—0.00286
—0.00080
—0.00016
—0.00002

0

—0.09296
—0.30635
—0.74729
—0.00134
—0.00134
—0.00038
—0.00008
—0.00001

0

3

cNoloNoloNoNeNe]

0
—0.47506
—0.925%4
—1.44349

0.10614

0.04924

0.01999

0.00697

0.00002

~3

0
—0.18467
—0.49476
—0.91390

0.05943

0.04933

0.02269

0.00915

0.00319

0.00002

&

[eNeoNoNoNoNoNeNe]

0
1.01988
1.65309
211358
3.94377
3.01788

211876
177633

0

0.82545
1.79787
251474
5.91820
4.00051
3.07379
248243
212773
177722

*4

0

0.83878
2.50601
4.78936
7.73044
3.00746
2.12346
1.77639
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Fig. 1. Pnpil functions T(f5(,,y) for various values of the Sparrow resolution limit tig under various states of the
coherence condition y of illumination

T, beinggiven by Eq. (4). In Eq. (30), the ampli-
tude distribution -D” % -y j in the image space
due to the single point object situated at +

separated front the axis is, using Eqgs. (1) and
(21), given by

7) 7+ 6)
) 7% 2
j" T(d,,&)cos
. 1
J" tt,.(M)cosj y+ —1.7jdo;
i=l -1 N2
4
(32)
where
F%()ab1PA  agda  (33)

5G

In Appendix B, (?, PA has been evalu-

ated by using various properties of Appendix A
The intensity distributions corresponding to the
pupil functions of Fig. la-f at various
states of the coherence condition of illumination,
are shown in Fig. 2 as a function of <&, The
present results are very similar to those obtained
for the circular aperture [2]. The central inten-

for various coherence conditions

y of illumination, according to the present apo-
dization scheme, at first decreases until is
reduced to a certain value, and then increases
above that value, as the two point objects are
brought closer together. As the loss of central
intensity is increased, the side-lobe intensity is
increased. With the decrease of y, the intensity
distribution at the central area is broadend and,
at the same time, the central intensity is decre-
ased. As a conclusion, the behaviours of the
intensity distribution vary at various states of
the coherence condition of illumination.
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Fig. 2. Intensity distribution i(v, d,/2) of two-point image for various values of the Sparrow resolution limit d.
under various states of the coherence condition y of illumination
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Appendix A

The integrals of Eq. (27) are evaluated by
using Eq. (20) for %(%) and %/%. Before evalu-
ating these integrals, we use an integral of
the following form

1

P(%, I = JaPexp(77c%)&p. (Al
-1

This integral has a relation, except for the case
&=o0,

B(%, ®
= e {exp (79 + (- 1)"+7~exp(-¢A)} -

%

-- )
= -MAP(M-1,7¢)-T..(75)}, (A2)

where

T,(7;) = 2cos® when M is an odd number

= 27sint when w is an even number.

By the relation of Eq. (A2), we have the
following relations

B(0, ®

r . 2sin7, —
= ’% exp(77;ie)dcp = —%— = 2P(0,7;),

B(l, A = -~P(0, A)-TA"W}
277 — N
= — (P(0,7:) —cosT:} = 27P(1,7;),
B(2, A = )%{2P(|,7C)-T,(7Z)}
= --{Z%P(I,7c)-sin7c}=2P(2,7c), (A3)
B(3,7;) = -M3P(2,7-)-T,(7c)}
3

{3P (2, 7)—cos ¢ = 27P(3, 7o),
P(4,") -~-{4P(3,7:)-T,W}
= - i{4’F>(3,7c)-sin7c} = 2P(4,7c),
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where
sin7

P ©.A)=

P ® = —7-(P (0, 7) —cos 73},

P(2,7)= —k{ZP(l, 7)—sin7;}, (A4)

P(3,7c) =y{3P(2,7c) —cos7c},

P(4,7¢) = - %{4P(3,7:)-sin7c}.

Using the integral of Eq. (Al), we have

B(%, *M-)-i>)+P(%, —1)

= J*aPexp{7(M + v);r}daH-
-1
1
4- J*aPexp{7(M —r)cp}&p
-1

1

= 2 JFir'exp(7Mcr)cos(w)dac, (A5)
-1

from which we can derive the relations:

—Re{P(™, %-j-r) +P (u, ~—12)}

= JP'cos(wac)cos(rcr)dci?,
(A6)
— Im{P(M,M + r)4P(u,M —v)}

1
= = "sin('MO?)cos(rer)dac,

where Be and Im indicate the real and imaginary
parts of the bracketed term, respectively. Using
Eqg. (A6) and referring to Egs. (A3) and (A4),
we evaluate a set integrals Py in which %(%)
and <4(% are given by Eq. (20).

1
Pn = =p 0,0)=2,
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="~"Re{E (0, <5,)+E(0,0)} =P (0, ™)+,

= -ilm{F{I,~)+F((1,0)} = -P(1,<$,),

Re{F(2, d.)+F(2,0)}

= 1Im{R(3,<9,)+R(3,0)} = R(3, ™),

= -Re{R (4, ~.)+R(4,0)} =R (4, ")+ .

The integral F Bwhich remains still unsolved
can be solved by referring to the following
relation

F@,Mr)>P@,M—r)
1

= 2i "afexp(ma?)sin(i?a?)da?
-1

1
= —2 FAsin(M)sin(w)d”™ +
-1

1
+27 J*a?"cos(Ma?)sin(ra?)da?, (A8)

OPTICA APPLICATA V,1

from which we have

—— Re{-P(w, I 'c) — —V)}

= F%"sin (%&?) sin (va?) da?. (A9)

Consequently, E 3 reaches

L = ) asSn=sin o

= --R e{R (2, /\)-R(Z,O)}

= ~{p €,)-"i @ 10)

Appendix B

The integral ~ (~ ¢~ /2) of Eq. (33) is evalu-

ated in the following. Setting %-=r;L(5,,/2

Eq. (33) and using Appendix A, we have

-1

1
tri(%) = (@) cos (tic) da?
-1

cos(ta?)da? = ReE(0, t) = 2P(0, 1),

1
(79) = ( (@) cos (&?)ce?

cos (ta?)

(°"V+)+4-V-)}

VA)HA(V-):

in
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Le quatrieme proMeme de l'apodisation de Lune-
berg sous lumiére partiellement cohérente

Le quatrieme probléme de [Il'apodisation de
Luneberg, se rapportant a lI'augmentation de la limite
de séparation de Sparrow sous éclairage partiellement,
cohérent, a etet formulé pour appareillage a fente
a l'aide du calcul des variations. Les fonctions de
lentille recherchées, obtenues par la sulution de I'é-
quation intégrale aux limites fixes de Fredholm, ont
été évaluées pour différentes conditions de cohérence
spatiale de la lumieére.

YeTBepTblii BoMpoc anoamsaumn JlioHe6Gepra
B 4aCTM4YHO KOFepeHTHOM CBeTe

UeTBepTblii Bonpoc anogusaumu SlioHe6epra, Kacaoluiics
yBeNuMueHWst npejena paspeluatoLieid cnoco6HocTM Cnappona
npy YaCTUYHO KOTepeHTHOM OCBELLeHUW, CopPMYIMPoOBaH Ans
LLieNeBOi anepTypbl NPU NOMOLLM BapUALMOHHOIO UCUMCIEHUS.
Tpebyemble 3paykoBble (YHKLUMUM, MOMYyYeHHblE pELLIeHUEM
OAHOPOAHOr0 WHTErpasbHOro ypaBHeHus ®dpearonbmMa, onpe-
JeneHbl NPY PasHbIX YCNOBUAX NPOCTPAHCTBEHHON KOrepeHTHO-
CTU OCBELLEHNSI.
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