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Transport of information in coherent optical systems in terms of 
diffraction. The amplitude object case
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Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, 
Poland.

The aim of this paper is to show in the simplest possible way the diffraction mechanism of 
information transport as exemplified by a radically simplified model of an optical system being 
substituted by a single lens, thin but extended to infinity, while the illuminating system is reduced 
to a point source emitting the monochromatic light. The object is assumed to be of amplitude type. 
In contrast to these simplifications the imaging considered is of generalised (though coherent) type 
when the object and the observation plane are not necessarily interrelated by the lens law and thus 
an infinite number of transformations of optical information is possible. Under these conditions the 
law of information conservation is formulated.

1. Introductory remarks

The problem of information transport in optical instruments is of fundamental 
importance both for their designers and users. Therefore, it seems advisable to 
provide the relevant information in all the textbooks on instrumental optics. 
Unfortunately, it is not always the case probably because of relatively high 
complexity of an accurate description in many situations, in particular, if the 
problem is formulated in terms of diffraction. A general treatment of the problem is 
difficult due to enormous variety of optical devices being in use nowadays. For these 
reasons and in order to make the problem as simple as possible, we restrict our 
attention to one example which, however, provides a good introduction to the other 
more complicated optical systems. This case is that of information transport in 
a simplified coherent optical system if the object is of amplitude type.

As mentioned above, the purpose of the paper is to show the diffraction 
mechanism of the optical information transport as exemplified by an optical system 
reduced to a single lens which is thin but infinitely extended in its plane as illustrated 
in Fig. 1. (This lens can be considered as a substitute of a more complex optical 
system). Such an idealised optical system allows us to introduce a relatively simple 
description of the transport of optical information in terms of diffraction and may 
constitute something like “ideal reference level” when considering transport of 
information in real optical systems. Our analysis will be carried out for the case of
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Fig. 1. Simplified optical system.

generalised imaging of an amplitude object when the object and image planes are not 
necessarily interrelated by the lens formula. Under these circumstances it is possible 
to formulate a law of information conservation. It is suggested that the derivation of 
two classic cases: of identity imaging when the image is perfectly similar to the object 
and Fourier transforming can constitute an interesting problem though simple 
enough to be solved by the students. The treatment will be ended with some critical 
remarks defining the relation of the offered idealised description to the real optical

The above approach is novel and, therefore, it has been presented to the students 
of the third year of physics-optics and biooptics in order to verify its com­
municativeness. The results appeared to be encouraging.

2. Encoding of optical information in an amplitude object
As the first stage of analysis we will consider the transformation of a spherical wave 
at the amplitude object plane. For this purpose, three simple problems will be 
specified, i.e., that of the amplitude object structure, that of spherical wave structure at 
the input to the object plane and finally that of a special case of a plane wave incident 
on the object plane.

— Structure of the amplitude object

Assume that the optical amplitude object located in the plane is expendable 
into a Fourier series and thus takes the form (compare [1], [2], for instance)

systems.

00 00

*(*i»yi) = Z Z tm„exp-2m(x1/xm + y1/yn)

(1 )

where:

fxrn = mfx 1, fyn = nfy 1 and *lm = WliM. yin = ^ J yn, (2)
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for the case of even amplitude transmittance. Obviously, condition (2) assures that 
the amplitude transmittance of the object is real in spite of the complex notation 
used. The case of an amplitude object of odd amplitude transmittance can be 
described by the equation

t{Xl,yi) = i Z Z £m..eXP-2ni(*l/*m + J'l/)J
m= — oo n= — cc

00 00 171= Z Z i«"expI7 txi(Wi/J+ 3'i(̂ i/jn)]
m  =  — oo n = — oo A U j

00 00 in= Z Z tmnexPTT-frlXlm + yiyiJ (3)
m =  — oo n =  — go A t t i

where tmn = —t_m_n for the other conditions unchanged.
Since further arguments for the two (even and odd) cases would be carried out in 

a similar way, we restrict our discussion to the even amplitude objects defined by Eq. (1).
— Illuminating system generating a spherical wave

The illuminating system is here reduced to a single point source emitting a mono­
chromatic light wave, and thus constitutes a coherent source. Under these circumstan­
ces the state of the optical field at the input of the object can be described 
approximately by the equation of the reduced spherical wave (compare [1], [2])

A' ..uin =  —ex p -ik r
in

Aexp -^ -(x i+ yi- •2x1x0 —2_y1y0), (4)

where (x0, y0 — dj) are the coordinates of the point source, which for x0 =  y0 =  0 
(position of the point source on the optical axis) takes a simpler form (see Fig. 1)

uin =  a  exp (x?+yi)· (5)

— Illuminating system generating a plane wave
As is well known [1], [2], a plane wave propagating in the object space under an 
arbitrary angle to the axis of the optical system (the latter being identified with the axis 
z of the coordinate system) has the form

A exp — 2Tti(xcosa/A-(-ycos/?/A+zcosy/A) = Aexp — 2ni(xfx+yfy+zf,) (6)
where: f x = cosa/A, f y =  cos/?/A,/_ = cosy/A are the spatial frequencies and cos a, cos fi 
and cosy are the corresponding directional cosines of the propagating plane wave. 
However, if we assume that the object is located in the plane z = 0, the notation of the 
incident plane wave is reduced to the form

Lfn(xj, _Pi) =  Aexp — 2ni(x1cosot/X+y^osfi/X) = Aexp — 2ni(xlf x+ylf y). (7)

— Transformation of the illuminating wave by an even amplitude object 
a) Illuminating the object by the spherical wave

For the sake of simplicity of the due calculations the equation of the spherical wave
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illuminating the amplitude object will be used in an approximate form (4) given 
above.

Transformation of the optical field on the even amplitude object (1) is defined by 
the equation

“out “out (xi,yi)i(xi,yi)

00 00 in
= ^  I  Z fm„exp —  [ x f+ y i - 2 x 1(Ad1f xJ - 2 y l (Xd1f yJ]

m = - a o n = —oo ''•“ l

00 00 in= A £ Z im„expy^-[x? + y ? -2 x 1xm- 2 y 1y j .  (8)
m =  —o o n = —oo A u i

This situation is illustrated in Fig. 2, in which the illuminating wave is marked by 
a thicker line.

Objective
plane

Fig. 2. Transformation of a spherical wave emerging from a point source on the axis and incident on the 
even amplitude object structure (objective plane).

Note that the prolongation of this wave on the other side of the object plane is 
marked by a thinner line symbolising the wave travelling in the same direction but 
weakened due to its transformation on the object Note again that the other waves 
emerging in reality from the object as a result of transformation of the incident 
spherical wave on this object are represented by their wave fronts in the form of 
spherical waves as if they were emitted by the virtual point sources located at the 
points (xm,y„, — d j ,  i.e., all positioned in the plane z — — d1 perpendicular to the axis 
of the optical system and passing through the real illuminating point source 
(x0,y0, It is easy to notice that the number of the emerging spherical waves
equals the number of harmonics of spatial frequencies (fxm = xJX dly f yn = y jkd f)  
constituting the structure of the amplitude object. Thus, the transformation on the 
amplitude object consists in suitable multiplication of the incident illuminating 
spherical wave into a suitable number of partial spherical waves, each of them
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carrying information about the corresponding structural harmonics. This is the way 
the structural information about the even amplitude object is encoded into a set 
of partial spherical waves emerging from this object.

b) Illuminating the object by the plane wave 
Let the object be illuminated by a plane wave travelling obliquely in relation to the 
axis of the optical system. Its equation has the form

2ni
uin(*i,yi) = ^ex p 2 n i(/,0x1+/j,0yi) =  ^ e x p — (XiCosao+^cos/io) (9)

where cosa0 and cos/J0 are the corresponding directional cosines defining the 
direction of propagation of the illuminating plane wave. Then the transformation of 
the even amplitude object (I) is described by the equation

uout(*i>Fi) =  ^  Z  Z  tm„exp-2Tti[x1(/;m- / J(0) + y1(/ym- / y0)]
m= — oo n= — oo

( 10)

^  Z  Z  im»exp-
2ni

O i (cos am -  cos oc0) + y 1 (cos /J„ -  cos p0)].
m = — oon= — oo

A graphical illustration of the above formula is presented in Fig. 3a, for the case 
of normal incidence (i.e., when cosa0 =  cosP0 = 0) and in Fig. 3b for the general case 
of the illuminating plane wave incident on the object plane at an arbitrary angle to 
the optical axis.

It can be easily seen that this time the structure of the object transforms the 
incident plane wave into the number of the partial plane waves equal again to the 
number of the harmonics constituting the structure of the amplitude object. Thus, the 
information about the object is here encoded in a corresponding number of partial plane 
waves, each of them carrying information about the respective harmonic.

— Concluding remarks

The above two examples indicate that the information about the even amplitude object 
expressed in terms of two sets of object parameters, i.e., in terms of {tmn} and 
{fxm = mfxl, f yn — nfyl} reappears in the structure of the set of relevant partial waves 
{plane or spherical) playing there the respective roles of amplitudes tmn and modifying 
suitably the spatial frequencies carried by those waves. {Note that in the case of 
partial spherical waves the modification of the spatial frequencies is equivalent to the 
changes in the positions of the virtual point sources of those waves, which follows from 
Eq. (2)).

The above remark is essential since, as we shall show below, all the transfor­
mations of the object information understood in this way and occurring in the 
course of two fundamental effects during its transport in the optical systems, i.e., 
the propagation in the free space and the transformation in the optical elements, 
consists in definite modifications of the structural parameters of the amplitude
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Fig. 3. Transformation of a plane wave incident on the even amplitude object structure: a — for a plane 
wave propagating along the optical axis, b — for the plane incident at an angle with respect to the optical 
axis.

object defined above. The knowledge of these modifications explains the diffraction 
mechanism of the information transport, on the one hand, and provides some 
chances of reconstruction, at least partly, of the amplitude object information. 
Independently, it provides a good introduction to the problem of performing some 
wanted transformations of this information. 3

3. Transformation due to free propagation
It is obvious that in the spaces between the elements of the optical system free 
propagation takes place. However, it is less obvious with which approximation this 
propagation can be described in particular cases. The decision in this case is 
usually a compromise between the expected accuracy of the description and the 
complexity of the latter (and, consequently, the time-consumption of the correspon­
ding calculations). In our case, we are interested in diffraction description which by 
its nature is relatively complex, but we choose a possibly simple approach following 
from the Fresnel approximation. By the same means we assume that the distances 
between the amplitude object and the optical system represented by a substitute lens 
as well as that between the substitute lens and generalized image (observation plane) 
are sufficiently large to justify the application of the above approximation.

Let an optical system of the scheme shown in Fig. 4 be represented by its 
entrance pupil Pin and the exit pupil Pout. In accordance with the above discussion
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Objective Observation

Fig. 4. Pupil representation of the simplified optical system.

the optical field incident on the entrance pupil, after having passed the distance d2 in 
the free object space, can be described by the following equation:

Utm(X» y J  =
exp(ikd2)

iXd.,

00

j UoU, ( * l >
in

Kx2 -  *1 )2 + 0>2 - yi)2]d*i dyi

=  A exp(ikd2) f  in
U.d0 exp| ( 11)

in
“out(x i.y i)exp| j j - t f + y l ) exp { -  2ni(xJx+ y J ) }  dxj d y2

where f x = x 2/ld 2, f y = y2IXd2. Substituting Eq. (8) into Eq. (11) we obtain 

exp(ikd2) __ f  in / 2,
^m(x2> y2) =  —m — exP T r ( x2+y!)ild [in

Yd2

+ 00

x exp{ - 2ni [xA(fx +fxm) + y2{fy +fyJ ] }dxxdyx 

exp (ikd2)
ild ·, exp

in
Id·, (x2 + y2)

00 00
Z Zm= — oo n = — cc

— 00

in
exp 1 5  [**+y* ] <>exp ~  2ni ix J x m +  ̂dxid>’i

where:
(12)
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D - di d2
dv +d2

and f~m = fx+fxm, f~n =/„+/„„· (13)

As can be seen, a double sum of Fourier transforms appears in (12), each being 
applied to unity partial spherical waves of general form

CXP[S (Xi+^) (14)

and, thus, of the form of Gaussian functions. Clearly, for these functions an accurate 
Fourier function is known.* By performing these transforms for c — — i/{XD) we 
obtain

Uin(*2>y2) = A " E T 4 ·’“  P l S M · » ! )
CO CO

x Z Z tmr exp [inXD (/~m2 + /~ 2)]. (15)
m = — oo n =  — oo

However, when substituting to (15) the corresponding values from formula (13), 
instead of f~m and /~„, we get

“i n ^ . ^ )  = W{x2,y ^ d v d2)

X Z Z £m„eXP U ^ D ( flm+ f2yn)']
m = —c o n = —oo

x exp {inXD \_fl +fy + V J xm + 2f yf yJ }
oo oo

= W(x2,y 2,d1,d2) Z  Z  exp {inXD [ / x2 + f2y + l f j xm + 2fyf yn]}

(16)
m — — oo/i — — oo

where

= f„mexp[i7 ilD (/L + /^)], (17)

and

W(x2,y 2,<li,d2 ) = ~ exp(ikd2) exp 
d 2

IK

Id (x l+ yl) = W(dl,d2)exp
IK

Id·, (xl+ yl)

(18)

This transform has the form

OF {exp—nc(x2 +  y2)} = -  exp 
c

f l+ f2, (14a)

for c being an arbitrary constant.
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for
D d.

W(dl ,d2) — ~—expikd2 = - —^--exp ikd2. 
a2 d±-\-d 2

Formula (16) expresses the superposition of the set of partial spherical waves, this 
time described in the space of spatial frequencies. Representing this superposition in 
terms of (x2,y2) variables prescribed to the entrance pupil of the optical system is 
reduced to performing the substitution x2 = fxXd2, y2 = f yXd2 and xm = f xmXd2, 
y„ = f ynXd2, respectively, which leads to the expression of the type

Uia(x2,y 2 )= W (x ^ y 2 ,dl ,d2) X £  C ,exp \ j ^ ( x l + y l  + 2x2xm + 2y2yn)
m= — con— — oo [_^^2 _

00 00 in
= W(d1,d2) £  £  tmne x p j- ( x l  + yl + 2x2x'm+2y2y'H) (19)

m =  — oo n= — oo

where:

1/5 =
d2 + D
~ d T

2d i + d2
and (20)

Thus, as a result of the free propagation in the object space (along the distance d2) 
we can see that the state of the optical field in the entrance pupil can be described 
with the accuracy to the coefficient lT(x2,y2,d1,d2), as a coherent superposition of 
the partial spherical waves of general form

IK
t'mn =  exp —  (xl + y l + 2x2x'm + 2y2y'n). (21)

Comparing the above with the state of optical field at the exit from the amplitude 
object we see that the new partial spherical waves are seemingly generated by the 
virtual point sources of new positions, this time described by the respective 
coordinates (x'm,y'n, —5). In turn, their complex amplitudes t'mn are perturbed by the 
quadratic phase factors e\p[in2D(Jxn+fy2n)]·, they are, however, connected with the 
amplitudes tM of the relevant harmonics in the amplitude object by formula (17), 
which results in an obvious equality of the modules |imn| = The phase 
perturbation in the form of the expression exp\_inXD(Jxm+ f ynf] has, as mentioned 
before, the character of quadratic phase factor and is different for each amplitude tmn 
of particular harmonics of the amplitude object This situation can be alternatively 
interpreted, for example, as an appearance (due to propagation along the distance d2) 
of diversified phase shifts in the virtual point sources of the partial object waves, i.e., 
in the points of co-ordinates (xm = 2d1f xm, yn -  Xdlf yn). Note additionally that the 
appearing phase disturbance changes also with the parameter D and thus with the
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distances dl and d2 characterising the geometry of the part of the optical system 
travelled so far by the corresponding waves (see Fig. 1 or Fig. 4), i.e., the illuminator 
and the object space.

4. Transformation in the optical system
As mentioned above, we assume the optical system to be reduced to a single 
substitution lens which for the sake of highest simplicity is considered as thin and 
infinitely extended one. * Let us assume additionally that this lens is idealised in the 
sense that there are no aberrations in its entrance and exit pupils. Under these 
circumstances the optical system can be treated as a simple phase transform of 
amplitude transmittance t(x2,y 2) of the type

t(x 2, y2) =  exP ~ jjr  (x \ + yl) (22)

where /  denotes the substituting focal length, while the whole expression defines 
change of the phase suffered by all the partial waves when passing from the entrance 
to the exit pupils.

Thus, the transformation of the optical field by the substitution lens is of the form

Kut(x2,yi) = exp|^
— 171
~ w

(xl+ yl) = W(dl,d2)

J » J > M i K H ) +K H ) +2x!B+2,,i B
oo oo

= W{d2,d2) £  £  t'mn exp
m= — oo n =  — oo

in
J c

(x \ + y l + 2x2x l  + 2y2yJ) (23)

where:

C = B f
f ~ B ’

and

(24)

<  = (C/B)xm, y! = (C/B)yn. (25)

As we see, the positions of the virtual point sources of the partial waves given 
originally by the co-ordinates (xm,yn, — df) are changed to the positions defined by 
(x",y", — C). Let us note again that Eq. (23) describing the state of the optical field at 
the exit pupil of the optical system has the form of a coherent superposition of the 
suitably modified partial spherical waves, this time of the type

* As mentioned earlier, this assumption allows us to avoid complications following from diffraction on 
the rims of the lens.
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Im — — oo
zn = — oo

(x2 + yi + 2x2xm + 23;2 y:) . (26)

It is worth noting that the parameter C common for all the partial waves 
contains the information about the focusing properties of the optical system and the 
influence of the geometry of this part of the optical system which has been passed so 
far by each of the partial waves and by the same means on the partial information 
about the corresponding harmonics of the object structure. As can be easily noticed 
at this stage, the positions of the point sources of the partial waves superposing in the 
exit pupil are changed again from these defined by the co-ordinates (x'm,y'n, —B) to 
those defined by co-ordinates (x'm,y'n, — C). This time, however, the point sources of 
the partial spherical waves are not necessarily virtual. All depends on the sign of the 
parameter C which can be either negative or positive depending on which of the 
inequalities is fulfilled

B > f  or B < L  (27)
In the first case C < 0, which means that all the partial spherical waves become 
convergent, while for the case of C > 0 the partial spherical waves remain divergent. 
This means that the images of the sources become real in the first case, while they 
remain virtual in the other.

5. Transport of information in the image space

The last stage of the object information transport in the simplified optical system 
considered is the free propagation from the exit pupil to the plane of observation. 
Here also the Fresnel approximation will be used, in the framework of which the 
optical field in the observation plane, after some calculations analogous to those 
applied for the free propagation in the object space (compare the passage from Eqs. 
(12) to (13)), takes the form

U(x3,y 3)
expikd3 

ild3 exp
in 

2d 3(xl+ yl) u out(x2, y2)
— 00 — 00 

IK
X exp (x l+ yl) exp -  2ni(x2f 'x+ yj;)& x2&y2 (28)

where: f 'x = x 3/(Xd3) ,fy =  y3/(Xd3). Substituting to the above equation the expression 
for Uout(x2,y 2) defined by Eq. (23) and denoting

W(d1,d2,d3) = W(dl ,d2) 

we obtain

expikd3
iXd3

(xl+ yl)
00 OO

1 Z t'mn
m =  — oo n =  — ao

U{x3,y 3) =  W(d3,d2,d3)exp
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i  i ' xpfe (A  + y\ + 2x2*m +  2 y2 y")

m
x exP T^-(x2 +  >'2)exp[-27ii(x2/ ;+ ^ 2/;)]dx2dy2Id

= W(di ,d2,d3)exp\ — (x| + y\[in
J l 3

oo oo

Z  Z  l
m =  — o o i t = —oo

X j  I  « p [ “ < i ć + i
1 1

x expi —27ii
’K - f t - s

3 / J

dx2d>-2.

Substituting

x"rn _ m rn _
Jxm~ 1 C  Jyn~  1C

<  , 1 1 1
and r = r  + J~ E C a,

we get

U(x3,y 3)=  W{du d2,d2)txp

c
00 00

x Z  Z
m = — oo n =  — oo

ITT
(*!+*!)

exp[ S (xl+yl)_

(29)

(30)

X exp { -  2tc i [x2 (/; - / ^ )  + y2( / ;  -/;„ )]  }<fx2dy2.

Thus, we have again to do with a Fourier transform, this time, of the Gaussian 
infunction: exp
IE (x t+yi)

the space of differences o

, from the plane x2,y2 associated with the exit pupil to 

spatial frequencies

/** = f x- n m, n  (3i)
Performing the Fourier transformation, according to (14a), for c = —i/lE  we obtain

in
(̂-Ks.-Vs) =  W(dt,d2,d 3)exp Id ~(xi+yi)

00 00
Z  £  C ex p [n tA £ (/“2+ /)r 2)].

(32)
m =  — oo n =  — oo

Passing to the co-ordinates x3,y3 in the observation plane finally gives

in
U(x3,y 3) =  W id ^d ^d J  exp Ad- (x |+ y i)
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oo oo

: — co n — — CO
x  Z Z C , exp XE (xl + y \ -  2 x 3x " -  2y3 y")

where:

f" _  t' exoinX Eif2 + f 2) x" -  x" —  v " ~ V ' ~  i  =  ™+ —^mn — *71 AH xm^TJ yn)·, X m Am ^ ^  q£  9 p  ^  ^

(33)

(34)

Comparing the final formula (33) with both the state of the optical field (8) emerging 
from the object plane and given in the form

“ o » « (* i.y i)  =  “ in ( * i .y i )  '(x i.-V i)

00 00 in
— ^ Z Z i«e*PTT[*i+)'i-2jci*.-2J'ikJ>

m =  — oo n =  — a> / t “ l

and the structure of the even amplitude object (1) of the amplitude transmittance in 
the form

00 00 —  2 in
t (x i ,yi) =  Z Z i ™ e x p - 7 - i — [ X j X i m  +  ^ y i J

m = — o o « = — co A a ^

some striking formal similarities appear visible (apart from the functional factor 
W ^du^dj) x exp[i’V^^3 (x 3 + yi)]) which allow us to formulate the following final 
conclusions.

6. Final conclusions
The above considerations allowed a relatively simple presentation of the diffraction 
mechanism of the transport of optical information in simplified optical systems 
visualising their following features:

— The object information for even amplitude objects is encoded in two sets of 
data, i.e., the set {tmn} of amplitudes of the harmonics of the amplitude transmittance 
distribution and the set {fxm, f yn} of spatial frequencies in the object, which are all 
transported by a set of corresponding partial spherical waves generated by the object 
if illuminated by a spherical wave.

— In the course of the transportation, these waves are subject to the relevant 
transformations and in particular both their amplitudes tmn and their spatial 
frequencies f xm and f  suffer from the following modifications:

Cn = tMexp \inXD{fxm+ fy2n)c\p[inXF{f2xm + /*„)]

=  im*exp [_inX(D + F ) ( f ln+ f jn)']

and

f i :  = K f xm and /;„  = K fyn, 

respectively.
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— From the above it follows that: a) |i*J =  |t i J  and |iyil| =  |t"„| and con­
sequently these modules are invariants of the transformations of the partial spherical 
waves in the optical system, and b) the spatial frequencies satisfy the equations: 
f'xm = mf x i = f xl and/"„ = n f yl =  nKf yi and, consequently, the spatial freque­
ncies preserve their mutual relations in the sense that they are entire multiples of the 
basic spatial frequencies f xl and f yl which, in turn, are proportional to the basic 
spatial frequencies f xl and f yi determining the spatial frequency spectrum con­
stituting the frequency structure of the even amplitude object

This state of affairs allows us to notice that the considered transport of 
information about an even amplitude object occurring in an extremely simplified 
model of an optical system preserves (in the face of the arbitrariness of the 
parameters dlt d2 and d3 determining all the transport constants D, B, C, E, F and, 
consequently, also K)  the whole information about the even amplitude object 
encoded in {t^,} and { f ^ ,  f yn} during all the stages of transportation, though 
modifying them in a simple way just explained.

The above considerations provide a basis for formulation of a kind of law of 
information conservation, which says that the optical information about an amplitude 
object is preserved in all the stages of its transportation (and by the same means is valid 
for all its possible transformations occurring on the way), though its form usually 
suffers from the corresponding modifications. This law is true, at least, for the case of 
simplified coherent optical system discussed above.

Let us add that the said law of information conservation is of not only theoretical 
importance providing an insight into the diffraction aspect of information transport 
in optical systems. It can have a practical significance as well following from the 
consciousness that in principle this information could be extracted from an arbitrary 
observation plane (located perpendicularly to the optical axis), though the comfort of 
this extraction can be highly differentiated due to the phase recovery problem which 
appears in spite of the real character of the amplitude object in all the cases different 
from conventional object-image relation.

Different degree of complexity when extracting the optical information follows 
from different results of superposition of differently modified partial spherical waves 
at different observation planes. The simplest cases are: i) identity transformation 
which occurs for such a system when the lens formula holds, and ii) when the Fourier 
transform of the optical information is needed, which is achievable if the known 
conditions for the parameters dt , d2, d3 and / are satisfied [2], The derivations of the 
respective formulas from the general expressions given in this paper are simple and 
can be suggested as a problem to be solved by the students.

7. Critical remarks
The relative high simplicity of the above considerations leading in a natural way to 
formulation of the law of optical information conservation has been achieved only 
because we have assumed some far going approximations facilitating the diffraction 
description of the propagation phenomenon in so much reduced optical system. The 
most radical simplifications were:
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— assumption of the monochromatic point source generating coherent spherical 
wave which consequently limits the considerations to the coherent optical system;

— assumption of the spherical wave illuminating the amplitude object in the

form ex p j^ ~ (x i +  yf)J, in spite of the fact that the object is infinitely extended;

— assumption that the optical system is represented by a single thin but 
infinitely extended substitution lens;

— assumption that the pupils of the optical system are aberration-free;
— assumption of the Fresnel approximation to describe the mechanism of 

propagation despite infinite sizes of both optical system and the observation plane;
— neglecting the influence of the detection stage.
Obviously, the real optical systems do not meet those assumptions. Therefore, the 

real transport of optical information is realised in a way much more complicated 
which results in relevant losses of the information both during its transport and 
detection. Consequently, the real optical systems satisfy the conservation law for 
optical information only approximately. However, even in its approximate version 
this law can play an essential role offering a kind of “ideal reference level” for the real 
optical systems, on the one hand, and providing a deepened insight into the essence 
of the diffraction transport of optical information
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