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In the paper, we analyse spectral information content of a satellite picture of 728 square kilometres 
terrain in the northwestern Poland. Our aim is to classify forest areas on the basis of combined 
information from the multispectral Landsat image and ground truth data. The classiGcation 
procedure chosen is the maximum likelihood method with equal a priori probabilities of the 
presence of particular classes in the image. The forest stands are classified to 13 and the other 
grounds to 23 classes.

1. Introduction
In practical applications of image processing techniques two main approaches are 
employed: the frequency space and the image plane processing. The frequency space 
processing is based on Fourier transform realised either optically by means of a lens 
or numerically by means of the fast Fourier transform algorithm. A possibility of 
manipulations on an image spectrum leads to pattern recognition based on 
correlation operation. Correlation techniques in optical pattern recognition are 
possible on relatively small images limited by the size of existing spatial light 
modulators illuminated with coherent light. Recognition can be based on either 
discrimination of a correlation signal obtained in a single filter operation or 
discrimination decision made in feature space when a few, e.g., circular harmonic 
filters are sequentially employed [1]. Pattern recognition in the frequency space 
takes into account information content of the whole image, such as edges, lines and 
shapes but not that of a single pixel.

The image plane processing is based on local operations carried out either 
optically or numerically. Optical imaging can be described as a convolution 
operation of an input object function with a point spread function of the objective. 
Optical imaging system realises a convolution integral in parallel for the whole 
object plane. Numerical image plane processing consists in iterative local con­
volutions of neighbourhood of subsequent image pixels with a filter window. Local 
convolution sums combine information content of the pixels in the neighbourhood. 
As a result, morphological image modifications are possible [2].

Spectral satellite images are usually analysed using the image plane processing. 
Recognition is replaced by classification for two reasons. First, resolution of 
geographical information or meteorological satellites is too poor (at most 20 x 20 m)



T a b l e  1. M ain types of forests observed in the region under investigation [1].

Forest type Sub-type

Forest stand

Main
species

Additional
species

Undergrowth 
layer species

Coniferous forest -  weak forest sites, with 
strong acid soil made of sands and highmoore 
peat, coniferous fleece, main species in the forest 
stand: pine

young coniferous forest -  not 
influenced by the ground water, dry to 
moderate moist

(ground water level approx. 3-5 m);

pine or birch birch or pine juniper,

rowan,

non-petiole oak

bog coniferous forest -  moist 
meliorated

(ground water level approx. 0.5 m)

pine or birch spruce,

birch

bushy willow

Mixed coniferous forest -  weak forest sites, 
with acid soil and low level o f alkaline 
saturation, made of sands and transitional peat, 
species in the forest stand: pine (dominates) and 
non-petiole oak, beech, spruce, fir, birch.

young mixed coniferous forest -  
moderate moist, not influenced by the 
ground water

(ground water level below 5 m)

pine beech, oak, 

larch, birch, 

spruce

juniper,

rowan,

hazel

mixed moist coniferous forest -  with 
mineral soil, moderately influenced by 
the ground water

(ground water level approx. 2 m)

pine, spruce oak, birch, 

spruce

bushy willow, 

hazel

bog mixed coniferous forest -  moist 
meliorated

(ground water level approx. 0.5 m)

pine birch,

spruce

bushy willow
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Forest -  fertile forest sites, moderate, weak 
acid or neutral soil, with moderate or high 
level of alkaline saturation, species in the 
forest stand: petiole oak, beech, fir, alder, ash.

young forest -  not influenced by the 
ground water

(ground water level approx. 5 m)

beech, 

petiole oak

maple, juniper, 

lime, larch, 

spruce

hazel, 
hawthorn, 

lilac, rowan

moist forest -  with mineral soil, 
influenced by the ground water

(ground water level approx. 2 m)

petiole oak ash, maple, 

lime, spruce

lilac, currant

Mixed forest -  moderate fertile forest sites, 
fertile soil, moderate acid soil, with moderate 
level of alkaline saturation, species in the 
forest stand: pine, non-petiole and petiole oak, 
beech, spruce, fir larch, birch.

young mixed forest -  with moderate 
moist soil, not influenced by the ground 
water

(ground water at a low level)

pine, beech, 

petiole oak, 

non-petiole oak, 

lilac

larch, birch, 

lime, spruce

hazel, juniper, 

rowan

mixed moist forest -  with mineral soil, 
moderately influenced by the ground 
water

(ground water level approx. 2 m)

pine, spruce, 

petiole oak

spruce, birch, 

lime, beech

hazel, rowan

bog mixed forest -  moist meliorated 

(ground water level approx. 0.5 m)

spruce, pine birch rowan, juniper

Alder forest -  forest sites with bog peat 
organic-mineral soil

moist meliorated forest sites -  strongly 
influenced by the ground water 

(ground water level approx. 0.5 m)

alder birch, ash

Supervised classification of Łobez forest area in Landsat im
ages
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to recognise useful shapes. Second, information content of each pixel recorded in 
several spectral bands is crucial. As a result, each pixel separately is considered and 
assigned to a class [3] —[6].

In this paper, we present a supervised classification of terrain photographed on 
a multispectral satellite image. Oversight of classification decisions is possible due to 
additional information on the analysed terrain, such as description made by the local 
forester office and data collected by one of the authors during the forest reconnais­
sance. The limited amout of additional information available in the digital form has 
made us choose the maximum likelihood classification method with an assumption 
that all classes may appear with the same probability.

2. Source data

The analysed region is located in the northwestern part of Poland, in the 
neighbourhood of Węgorzyno, which is in the southern part of the Łobez forest 
inspectorate. It is a lowland with the various kinds of vegetation. The main types of 
forests present in the area are listed in Tab. 1, according to data obtained from the 
Institute of Forestry Research in Warsaw [7].

Classification of data from a multispectral satellite image is made. The image was 
taken on February 4th, 1995 by a geophysical satellite Landsat TM with the 
resolution of 30x30 m. The area covered by the image is 24.180x30.540 m 
(806 x 1018 pixels). An additional multispectral image recorded by SPOT XS satellite 
on October 26th, 1995 was used to help in visual discrimination of regions. This 
additional image has the resolution of 20x20 m.

In the Landsat image recorded in February, deciduous tree stands are not 
enough diversified for visual assessment. Therefore, the following spectral bands are 
chosen: band 1 (0.45 — 0.52 pm) in the visible part of the spectrum and bands 
5 (1.55—1.75 pm) and 7 (2.08 — 2.35 pm) in infrared. Figure 1 presents the inspected 
area in pseudocolours, where red corresponds to band 7, green to band 5, and blue to 
band 1. For computer classification six wavebands are used, that is, apart from the 
above mentioned we use band 2 (0.52 — 6.00 pm), band 3 (0.63 — 0.69 pm) and band 
4 (0.76 — 0.90 pm). Thus, the supervised classification of the terrain is made in 
six-dimensional (6-D) feature space.

Apart from the remote sensing images, we use topographical maps of Poland 
(1:50000) made in 1994, review maps of Łobez forest inspectorate made by the 
Regional Management of National Forests in Szczecin [8] and data acquired during 
the local reconnaissance in October, 1997 to choose the training areas.

3. Classification methods
Multispectral classification consists in dividing a group of pixels into a finite number 
of separate classes on the basis of their multidimensional numerical values (vectors). 
Supervised classification is a kind of multispectral classification in which a user 
selects typical pixel vectors that represent area types one wants to identify in an



Fig. 1. Source Landsat TM image with pseudocoloured three bands (R = TM7, G -  TM5, B -  TM1).
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image. The selection of these pixel vectors is made before the classification, with the 
help of data from other sources, such as aerial photos, maps and ground truth data. 
In this way, one can train a computer to recognise pixel vectors of similar 
characteristics [3] —[6].

Pixel vectors which group in certain regions of a multidimensional feature space 
can be assigned to separate classes according to several criteria. The simplest one, 
a parallelepiped criterion accepts pixel vectors which end between predefined 
minimum and maximum data values in each dimension. Another criterion, a mini­
mum distance one excludes all pixel vectors which are separated from the class-mean 
by a distance bigger than a predefined threshold given in units of standard deviation. 
The third classification criterion, called the Mahalanobis distance, takes into account 
the directional spread of pixel vectors and is given in terms of particular classes k

MD = (x -  xk)T Ck 1 (x -  Xjt). (1)

Covariance matrix C for the whole image is defined as

C =

C11 C 12 " • C ln

C21 C 22 = £ { (x -x )(x -x )r }

cn l ................C mn _

(2)

where n is the number of spectral bands and equals 6 in our case; the diagonal 
elements of the matrix cu = a2{xi) = 2s {(x,·-*,·)2} are variances of subsequent bands 
i = 1 ,  ... n; the other elements =  cov^x,·) =  2s{(X|—x^x^—x^)} are covarian­
ces for pairs of random variables xf and xp where i and j  are numbers of spectral 
bands; E {x} =  x denotes the expected value calculated for the whole image; and 
vectors

x —— » xr = [Xi, *2 ··· *„] (3)

Xn

correspond to 6-D intensity values recorded in each image pixel.
The covariance matrix expressed in terms of the mean vector value x that is 

calculated for the whole image is not useful in classification tasks. The situation 
changes when the mean vector value xk is calculated for a uniform group of pixels, 
which form a class k. Then, the covariance matrix Ck calculated for this class 
k becomes more sensitive to directional spread of pixel vectors in the 6-D spectral 
space.

Finally, the most popular criterion is called the maximum likelihood. It has 
several versions connected with the prior probability that a pixel vector neighbour­
hood may influence the assignment.
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In this work, we choose the equal prior-probability maximum-likelihood 
classification criterion for reasons:

— Polish forests are diversified and the most typical stands contain a nonuni­
form mixture of the main species with several additional species.

— Polish forests usually preserve uniformity over small areas corresponding to 
a small number of pixels.

— We had no access to numerical information about the structure and area of 
uniform forests in the region analysed.

The main part of the work, including multivariate classification and calcula­
tion of the area statistics, is made using ER 
Mapper 5.1 commercial software. The rest of 
the work, that is, spectral profile visualisa­
tion, calculation of spectral distances, dist­
ributions, etc., is made using a spreadsheet 
program.

The main steps of supervised classification 
process are shown in Fig. 2.

At the beginning, data used to select 
training areas are gathered and studied in all 
spectral channels. In our case, information 
collected during the forest reconnaissance 
played a supporting role. Then, initial trai­
ning regions are selected. In the next step, 
statistical parameters of the training regions, 
i.e., distributions, means, and standard devia­
tions are calculated. The training regions for 
which mean values are too close (a distance 
between region mean values is smaller than 
a given value) or standard deviations are too 
large (above a given value) are rejected. Then, 
the supervised classification is carried out by 
means of the ER Mapper algorithm. If the 
result contains significant errors, for example, 
bad assignments in areas that are known to 
be of a certain type, then the training regions 
are modified, and the procedure of classifica­
tion is iteratively repeated. The result is an 
image in which pixels are assigned to one of 
several classes corresponding to different ty­
pes of land.

Final result

V

Selection of initial 
training regions taking 

into account ground data

Fig. 2. Block diagram of supervised classification proce­
dure.
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3.1. Multispectral space
A multispectral space is a discrete limited Euclidean space. The number of its 
dimensions is the same as the number of spectral bands used. The coordinate values 
are given in intensity units. A spectral space is equivalent to a feature space, which 
serves to represent object properties and is frequently used in pattern recognition 
applications [1], In this case, properties of an object correspond to intensity of light 
recorded in given spectral channels.

Every pixel in an image has its representation in the spectral space. Pixels of 
similar spectral signatures form clusters, which represent pixel classes. Training areas 
can be chosen on the basis of these clusters. An example of a 3-D spectral space is 
shown in Fig. 3.

Band 2 A

+ V  
+ + +  

Vegetation

+4- +
+

+  +
Water

Cluster

W + +
·.+ +  ..···

Soil

Band 1

Fig. 3. Example of 2-D spectral space.

Probability that 
pixels belong to 
various classes

Fig. 4. Example of a 2-D spectral space with classes modelled by normal probability distributions.
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The spectral classes can be described by multivariate probability density 
functions (pdfs) in the spectral space. The pdfs determine the probability of finding 
a pixel that belongs to a certain class at any point in the spectral range. Figure 
4 shows an example of a 2-D spectral space with classes modelled by normal 
probability distributions.

In the case of images made by Landsat TM, the spectral space has 7 dimensions. 
Increasing the number of spectral channels used may give better results, but using 
a large number of channels is not always effective. In our case we do not take into 
account data from band 6 (10.4—12.5 pm).

3.2. Maximum likelihood classification
From several possible distance measures which can be taken for classification 
algorithm we choose the distance function. It is used to calculate a distance between 
mean vector values in the 6-D spectral space for each pair of classes

where k, l are class numbers, and i = 1, ... 6 stands for chosen spectral channels.
The distance function is used to determine which classes of training are as 

overlap and should be merged together. The minimum distance between class-means 
can be found after analysis of all distances between means of initial training regions.

The supervised classification is done according to maximum likelihood decision 
rule, which assumes that the histograms of the band values of each class have normal 
distributions.

Every pixel in the 6-D spectral space represented by a vector x = [xj x2 ... x6], 
should be assigned to one of the spectral classes cok, k = 1, ... K, where K is the 
number of classes a priori taken into account during the classification. To find the 
proper class we calculate the conditional pdf p(cojx), k = 1, ... K. The classifica­
tion condition is

xecu* if p(a)k\x) > p(col\x) for each / ^  k. (5)

It means that x is assigned to the class cok, if for this pixel vector the conditional 
pdf p(cujx) is the highest.

The conditional pdf p(a)Jx) is not a priori known, however, its value can be 
estimated from the following Bayes probability equation:

Values of p(a>k), which describe the pdf of finding pixel of this class in the image, 
should be known a priori. If it is not possible, then we assume that they are equal. 
This assumption is not very realistic in the case of diversified mixed forests of the 
area, however, exact calculation of p{cok) values is difficult.

Let us define a discriminating function gk(x) as follows:

(4)

(6)
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gk(x) = \n{p{x)\(ok)p(cok)} =  lnpfrlwJ + lnpK ). (7)

From Equations (5) and (7) the modified classification condition is derived

xecok if gk(x)> gl(x) for each l ^ k .  (8)

We assume that the conditional pdf p(x|cok) for each spectral class is given as 
a multidimensional normal distribution and for n spectral channels is expressed as

=  (27c)~"/2|Ckr 1/2e x p | - i ( x - x Jt)r Clr 1(x - x jk) |. (9)

The factor (2n)~n/2 in Eq. (9) is constant and can be neglected. Thus the 
discriminating function can be rewritten as

gk(x) =  ln p im J - iln lQ I-^ x -X fc f iC iT ^ x -x J . (10)

In our case, the first component \np(u>l) is constant for all classes and can be 
neglected in calculations. Finally, the discriminating function can be written as [3]

gk(\)=  — ln lQ I—(x—xJt)r C1T1(x—xk). (11)
The discrimination function of this form is used in the following classification 

procedure.

4. Supervised classification

4.1. Training regions
The main and time-consuming task during the classification is the proper choice of 
training regions. The training regions should well represent modelled classes. The 
quality of classification depends on this choice. In the first stage of the process, we 
selected 52 classes and the total number of training regions was 148.

4.1.1. Spectral intensity profiles

The analysis of spectral intensity profiles is made to check the intensity variability 
between distinct classes and inside classes. Afterwards we reject classes that overlap 
or have too large standard deviations. In Figure 5, examples of spectral intensity 
profiles of forest classes are shown. The lines connecting intensity mean values have 
not any physical sense; they only help to visualise profiles. Below we use the 
following classes of age of tress: young (1 — 20 years), cut-ready (up to 85 for pine, 
65 for spruce, 90 for beech, 65 for birch, 125 for oak, 85 for larch, and 60 for alder), 
and old (over cut-ready age).

— Moist deciduous forest and moist mixed deciduous forest: young forest stands 
reflect more radiation than older ones. This may result from the fact that when trees 
are young and small, the undergrowth layer has an important influence on the total 
reflectance value. Deciduous forest stands reflect more radiation than coniferous or
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mixed ones. It is difficult to distinguish a moist old spruce forest from a moist old 
mixed pine/oak one.

— Moist coniferous forest and moist mixed coniferous forest: young forest stands 
reflect more radiation than cut-ready and old ones. It is hard to distinguish young 
pines from old pines in moist forests, because they have almost the same spectral 
intensity profiles.

Fig. 5. Spectral intensity profiles calculated for forest classes.

— Moist young forest: young moist deciduous forest stands reflect more 
radiation than coniferous forest stands. It is difficult to distinguish a young moist 
mixed birch/pine forest from a moist coniferous larch forest, because its spectral 
intensity profiles overlap in the visible channels TM1, TM2 and TM3.

— Cut-ready deciduous and coniferous forests: deciduous forest stands reflect 
more radiation than coniferous ones. Several pine-dominated forest stands have 
similar spectral intensity profiles in spite of the additional species. There is no 
difference between such forest stands in the channels TM1, TM2 and TM3. 
Classification cannot be done on the basis of these spectral channels data.
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— Old forest: spruce-dominant stands are dense, therefore reflect less radiation 
because the undergrowth layer gives less contribution to the total radiance factor.

— Pine-dominant forest: the biggest reflectance has a young mixed pine/oak 
forest stand in moist sites. Other additional deciduous species give less reflectance 
than oak. The reflectance of cut-ready pine-dominated forest stands does not 
strongly depend on additional species. The same holds for old pine-dominated forest 
stands.

— Sites with different forest stands: it is difficult to distinguish between the 
following pairs of classses:

a) a moist cut-ready mixed birch-dominated forest stand and a moist cut-ready 
birch forest,

b) a moist deciduous forest stand with old birch and a moist deciduous forest 
stand with cut-ready birch,

c) a moist cut-ready mixed oak-dominated forest stand from a moist forest stand 
with old oak and pine.

— Open ground: different kinds of open ground have different spectral intensity 
profiles and can be easily distinguished from each other.

4.1.2. Band intensity distributions

Standard deviations of spectral intensity profiles of forests are smaller than those of 
cities and open grounds. The main differences between different kinds of forest appear 
in the infrared bands TM4 and TM5. Radiance reflection and dispersion in these 
wavelength ranges occur in parenchyma. Chloroplasts are transparent to these 
wavelengths and do not reflect radiance. Thus, it is internal structure of leaves, 
thickness of cuticle, and mezophyll that mainly influence the recorded spectral 
intensity values. The mezophyll of different species has various structures, which results 
in various reflection factors. The more diversifed the species appearing in a training 
region, the bigger the standard deviation of recorded intensity values. The rejection 
criterion, that is, the maximum acceptable standard deviation for a class is 8.25.

The supervised classification requires that pixel intensity values within one class 
have normal distribution. Table 2 shows means and standard deviations for one of the 
training regions, and the corresponding distributions (histograms) are given in Fig. 6. 
It appears that pixel intensity values recorded in the channels TM1, TM2, TM3 and 
TM7 have normal distributions, while those recorded in TM4 and TM5 are composed 
of several normal distributions.

T a b l e  2. Mean and standard deviation values for one of the training regions.

Channel No. Mean Standard deviation

TM1
TM2
TM3
TM4
TM5
TM6

54.299
20237
16,742
45.175
33.015
11.052

0.854
0.524
0.572
2289
2012
0.856
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Band 1 Band 2

Band 5

Intensity

Band 7

Fig. 6. Intensity distributions (histograms) calculated for one of the training regions.

In our case, we assume that pixel intensity values in the channels TM4 and TM5 
can be approximated by normal distributions and possible misclassifications can be 
corrected at a stage of verifying the procedure. Formed in this way, the 6-D normal 
distributions of clusters of intensity values do not overlap with distributions of other 
clusters. Since the classes finally calculated are well separated, the assumption is 
justified.

42. Results
The terrain under study is assigned to 36 classes and 13 of them are forests. Forests 
are divided to 5 coniferous and 8 deciduous classes. Large areas of open ground 
cannot be precisely classified as cultivated agricultural terrain because the Landsat 
image covers areas which formerly belonged to state farms. A considerable part of 
this terrain should be forested. All the classes are listed in Tab. 3. Figure 7 presents 
the false colour map of classes, which can be compared with the original Landsat 
image shown in Fig. 1. The calculations are listed below:

— Almost all assignments are consistent with the ground truth data.
— In some cases, areas of moist mixed coniferous forest with young pine (40% 

or 50% of all trees) were wrongly assigned to the class 2.5, which is a forest with pine 
and spruce.



Deciduous forests

1.1 cut-ready birch
1.2 young beech
1.3 cut-ready beech
1.4 alder
1.5 oak, beech, larch
1.6 birch, pine, larch (young)
1.7 oak, pine (old)
1.8 oak, pine (young)

Coniferous forests
2.1 cut-ready pine
2.2 old pine
2.3 young pine
2.4 cut-ready spruce
2.5 spruce, pine

Meadows
3.1 meadow 1
3.2 meadow 2
3.3 meadow 3

3.4 meadow 4

Bogs
6.1 bog 1
6.2 bog 2

Open grounds, soils

4.1 ground 1
4.2 ground 2
4.3 ground 3

4.4 PGR (state farm)
4.5 farms
4.6 homogenous
4.7 fallow

4.8 village ground 
Lakes
5.1 lake 1

5.2 lake 2
5.3 lake 3
5.4 lake 4

Cities, industry areas
7.1 town

7.2 sand
7.3 minerals
7.4 mining waste dump
7.5 clearing

Fig. 7a. Result of supervised classification -  list of pseudocolours.



Fig. 7b. Result of supervised classification -  classified image.
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— Several pixels belonging to the airport and military areas (shown in the 
right-bottom corner of the image) were wrongly assigned to the class 7.1, which is 
a town.

T a b l e  3. Classes finally taken into account.

No. Class name Number of training regions Total number of pixels in a class

1.1 Cut-ready birch 17 1185
1.2 Young beech 2 49
1.3 Cut-ready beech 2 114
1.4 Alder 9 367
1.5 Oak, beech, larch 8 280
1.6 Birch, pine, larch 

(young) 4 129
1.7 Oak, pine (old) 4 194
1.8 Oak, pine (young) 2 60
11 Cut-ready pine 20 2247
12 Old pine 6 526
13 Young pine 5 613
14 Cut-ready spruce 2 26
15 Spruce, pine 12 969
3.1 Meadow 1 3 1606
3.2 Meadow 2 2 205
3.3 Meadow 3 1 74
3.4 Meadow 4 1 81
4.1 Ground 1 1 243
4.2 Ground 2 1 559
4.3 Ground 3 1 290
4.4 PGR (state farm) 7 4642
4.5 Farms 2 482
4.6 Homogeneous 1 730
4.7 Fallow 2 615
4.8 Village ground 3 4387
5.1 Lake 1 5 2044
5.2 Lake 2 1 194
5.3 Lake 3 1 213
5.4 Lake 4 1 257
6.1 Bog 1 3 48
6.2 Bog 2 3 182
7.1 Town 4 1230
7.2 Sand 2 578
7.3 Minerals 2 12
7.4 Mining waste dump 3 64
7.5 Clearing 4 69

5. Conclusions
In supervised classification tasks, a good average classification accuracy varies from 
80 to 95% depending on the number of bands considered and on diversity of 
analysed area. In our study, verification of the classification is not possible: we
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used images taken in 1995 and accomplished our work three years later. Forests had 
changed during those years and we could not estimate the obtained classification 
accuracy. Efficient supervised classification is to be made using recent images, in 
close collaboration with offices of Regional Management of National Forests.

To achieve good classification accurcay the following conditions should be 
fulfilled:

— Different class pdfs p(cu,·) should be calculated on the basis of estimation 
description.

— Two or more images of the same region made in different seasons are to be 
employed to increase the number of dimensions of the spectral space.

— Images with higher spatial resolution are to be used. However, we are not 
able to state what the optimum resolution of images is for the purpose of 
classification of forest area.
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