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Propagation of a low frequency electromagnetic pulse 
generated by an electric dipole in seawater

M. Ayub, Tasawar Hayat, S. A sghar

Mathematics Department, Quaid-i-Azam University, Islamabad, Pakistan.

An exact analytic solution for the propagation in seawater of a low frequency electromagnetic 
pulse generated by an electric dipole is investigated. The dipole is excited by a rectangular current 
pulse with a finite, nonzero rise and decay time. The frequency-domain formula for the 
downward-travelling field of a horizontal electric dipole excited by a pulse is Fourier transformed 
to obtain an explicit expression for the field that is uniformly valid in distance and time. It is noted 
that the present analysis may be used for studying pulse propagation in any highly conducting 
medium besides seawater.

1. Introduction
During the last few years, considerable interest has been demonstrated by the 
electromagnetics community in exploring the propagation of pulses in seawater. 
When a pulse generated by the current in an electric dipole travels in a dissipative 
medium the wave number is no longer linear in frequency. As a result the shape of 
a pulse along with its characteristics (amplitude, duration, rise and decay time) are 
modified. This is mainly due to the fact that the dipole source creates a field of 
interest which involves the complete near, intermediate, and far fields. As a con­
sequence, the form of the propagating pulse shifts successively from that of the 
excitation current and near field to spatial and its time derivatives [1] — [4]. Existing 
studies on the propagation of a transient electromagnetic wave in seawater are either 
incomplete or approximate in nature [5] — [14].

In our study, the exact solution for the propagation of a pulse with a nonzero rise 
and decay time is found. The signal is not modulated. Furthermore, realistic pulses 
do not extend from — oo to +  oo in time [ 1 ] nor do they exhibit step discontinuities 
as does the ideal rectangular pulse. Therefore, to study the effect of a nonzero rise 
and decay time on the transient response is worthwhile attempt. Such a con­
sideration results in the elimination of the delta functions as a useful pulse [4]. The 
low-frequency approximation is mainly based on the condition cr/coe »  1 , valid for all 
frequencies of interest in seawater.

2. Definition of the current pulse and its transform

A normalized rectangular pulse with a nonzero rise and decay time can be 
represented in terms of the step function U(t) as follows:
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&(t) =  1(1 — e_“'(i+'l))l / (i +  ti) —(i — —ii)| .  (1)

In Equation (1), 2t1 is the width of the original rectangle, zp =  l/u>p is the rise time, 
which is taken to be equal to the decay time and [/( .)  is the unit step function.

Consider an electric dipole immersed in seawater. The electric dipole is excited 
by a current pulse in A/s of the form

The Fourier transform of this pulse is

7 » I  = Ι0ΐωρ sin(mt1) 
ω +  ϊωρ (cutj

— oo
(3)

It is interesting to note that when cop -* +oo, Eq. (3) becomes

l z{(o) =  ^ 7- sin (toil), (4)
cot1

which is the Fourier transform of the normalized ideal rectangular envelope

J*(0 =  x f2t

Note that when i 1 -> 0 +, Iz(a>) reduces to

/ »  =
ω +  ίω„

which is the Fourier transform of the normalized exponential pulse, 

Iz(t) =  I 0CDpe - w>(,+,')U(t +  t l ).

(5)

(6) 

(7)

3. Electric field of a current pulse

The i-directed, frequency dependent electric field generated by an electrically short 
dipole with its axis along the z-axis and an electric moment 2heI0 [Am] is given by 
[3], (see Fig. 1)

Ez{p,co) =
μ0αΗ'Ιζ{ω)

2 π
ΐω ( ΐ - Ι ) ν ω  1 

αρ 2 α2ρ2 2 α3ρ 3
— apy/ω  + ίαρ-^ω

(8)

on the plane z =  0  perpendicular to the dipole, where he [meter] is the effective 
length of an electrically short dipole with the actual half length h, p — (x2 +  y2 ) 1/2 is 
the distance from the center of the dipole, and
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Fig. 1. Horizontal electric dipole on the surface of the sea.

a —
( T ) 1'2

=  (4tcx 10~7 x 4/2)1/2 =  1.585 x 10“3. (9)

Here, a ~  4 S/m is the conductivity of the seawater in which the dipole is immersed 
and er «  80, the condition a »  coe on the frequency is / «  cr/2itErE0 =  9.0 x 108 Hz. 
Since frequencies of 0 —100 Hz are of interest for the carrier frequency, this condition 
imposes no practical restriction. The time-dependent field is

ao

= j , . —icott M A  f  T Un ( i - i ) V “  1
E-M e  d“ "  )

— 00 
CO„

co +  icoB CO
I Ucot, . .  —a p j ta  —itot, — iliot—a p jm )  «(e —l)e * e 'e y 'dco. (10)

The variables and parameters in expression (10) are conveniently expressed in terms 
of the dimensionless quantities p’, t’, co' as follows:

a =  a' t! -  i/tj, co =  co'/tlt cop -  co'Jt1;

p =  p'/a', ap =  p's/Ty, cot =  co't'.

With these changes in variables and notation, Eq. (10) becomes

Ez(p',t') =  IX4 ^ A { p ' , a87tif

where

^  , A 2(p',t') t A ,(p',t’)
A(P , l )  — ------7----+ ------77----+

P P'2 P'3 ’
Aj =  Ij (p', f  - 1 ) - 1  j (p', t' + 1), j  =  1, 2, 3,

w , o  =  -n
co

(co' +  ico')
'p g -pV “'g-> ' ~ p'vM  c

(12)

(13)

(14)

(15)
— oo
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i— 1 f UK

2tc J y/a)'((o'+  i(o'p)

h  ( M 2n
1 f ------K ------ —p'y/ai'—i(a>'x'—p'y/(Df)  ̂ i
c J (o'((o'+i(o'p)

t' =  i '+ l .

(16)

(17)

(17a)

In Equations (15) —(17), each integrand has a branch point at co' =  0 and a simple 
pole at aS =  —ia>'p in the lower half-plane. The branch cut is chosen to be along the 
negative imaginary axis and the path of integration is along the real axis with an 
indentation about co' =  0 in the upper half-plane as shown in Fig. 2.

a Im (·>'

Fig. 2. Contour of integration for the integral / 3(p', t') when r' < 0 (a) and r' > 0 (b). In figure b, 
part C of the contour encloses both sides of the branch cut in the lower half-plane.
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Examination of the integrals / 1, I2 and 73 reveals that

h i p ' ,  0  =  2 -
,d73(p', t')

at'

/a(p'.t')
g / 3(p ',T ') 

d p ' .
(18)

by changing the order of integration and differentiation, since / 1(p', t'), 72(p ',t') and 
73(p', t') each exists and converges uniformly with respect to t' and p' >  0. Therefore 
it is sufficient to evaluate them only. The evaluation of 73(p',t') is given in Appendix.

4. Evaluation of Ez(g,t)

Once 73(p ',t') has been obtained, 72(p',r') and 71(p ',t') may readily be evaluated 
using Eqs. (18). Finally, by the use of Eqs. (13), (14) and (A36), the following formula 
has been derived:

/ 2 y / 2 f e - P ’W - i )  e -P 'V  V f - i)

{  ( t ' - l )  p'2 +  2cu'p(t' — l)2
e - p ' 1/2(t’ -\ )p ,2 S e - ^ - V c o W - l f p ' }

[p'2 +  2w'p(t' -  l)2](i' -  1)+  [p'2 + 2aSp( t ' - 1)2] 2 J
/  2 y / z r g - p ' W + D  e - p ' 1/2 ( f+ 1)

~~ U(t' +1) J 1 (i'+ l)  ~  p'2 +  2co’p(t'+ l)2

g_p'W+i)p<2 8e-p 1/2̂ +1)c«p(i' + l)2p' ]
~~ C7'2T 2 « ;(t' +  l)2] ( i '+ l ) +  [p'2 + 2cüp(t'+ l)2] 2 j

/  2 y /2  rg -p 'W -D  g—p,J/2(r—l)

+ W - 1 ) J  l  P'2 p'2 +  2cu'(t' - 1 7

+
e - p ' 2/ ( r - i )

( r - i )

[ p 2 +  2<Up(t' — l)2]p '2

~ - p ' W - i )  ·)
2 e  ( f - i ) __________ (

[p'2 +  2cü'p(i' — l)2] 2 J

■ 2  y /z r g -p 'W + i)  g-p'W +1)

« ( t '+ l ) J  i  P '2 _  p'2 +  2tü'2(t'+T)2
- P '1/(t' + 1)

+  e (r + i)
~ - p ' W  + l) -) 
2 e  (f' + l) (

[ p 2 +  2a>'p ( t '  +  l ) 2] p ' 2 [ p ,2 +  2 c ü p (t '+  l ) 2] 2j

__ — p'1/2(t' — 1)

+  ( W ^ e r t c ( p ' / V ^ ) ) - V 2 C - l ) / » [), ,  +  :,la. (i, _ 1), ] V ,2

- p ' 2/2(t' + 1)

- ( l / , " )erfcW V ^ )  +  ^ ( ^ [),,i+ 2 o , , (, ,+  1)rf ) , .· <«»
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Now substituting Equation (19) in Equation (12) we get the required time- 
dependent field.

5. Conclusions

The exact time domain solution for an electromagnetic pulse with a finite, nonzero 
rise and decay time in seawater has been derived. The field consists of two transients, 
each being the sum of two terms. Further, the results obtained may be applied to 
remote sensing in seawater, when low frequency pulses are used. These findings may 
also lead to some useful applications in an environment such as seawater or 
underground. A similar analysis can be allowed for any highly dissipative medium. 
The conclusions derived are expected to describe pulse propagation in the human 
body as well, provided that a proper carrier frequency is chosen for modulation of 
the low-frequency signal.

Appendix

The purpose of this Appendix is to evaluate J3(p ',t'). To this end, co'p is replaced by
a complex quantity cop, i.e.

t ip =  m'p+ ' u  i  =  \tip\ed, (Al)

where: co\ >  0 and 0 <  3 <  n/2. Then,

— itip =  |ri3p|e ~‘W2~9> or y/~iu>p -  \ [& pe~1,1/4 (A2)

where

V t i p =  V \ t i p\e‘m . (A3)

For t' <  0, the path of integration may be closed by a large semicircle in the upper 
half-plane as shown in Fig. 2a. It follows that

h(p', t') =  0, t' < 0  (A4)

since the function is holomorphic in the upper half-plane. For t' >  0, the path of 
integration may be closed in the lower half-plane as shown in Fig. 2b and l 3(p',i') 
can be written as

I 3(p',z') =  Ip(p',T’) + I b(p', t') (A 5)

where Ip is the contribution of the simple pole at a>' =  —kop, namely
r — <0.t' i p ' J l u ) .  /  k t : \l p — e ’ e y v '. (A6)

In Equation (A5), l b(p',t') is the contribution of both the branch cut and the branch 
point
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t(p ',-0=  f  ,, »2n J ft) (ft) +ift)p)
g-p'ViB'g-i^V-pV^d^ (A7)

:re the contour C encloses the branch cut, upward on the left-hand side and 
vnward on the right-hand side, and encircles the branch point with a small circle 
radius S. In order to simplify the expressions for Ib(p',r') in Eq. (A7), let 
_ on left-hand side of the branch cut and of =  e~i1̂ 1 ̂  on the
lt-hand side of the branch cut. Then, it follows that

- f j l i n .
m  U -» o+

ft).

a»' (ft)'-t-ic3')
-P'yJa' d

ft)

00

& P „  -  & d  r  /  ■- p '> /f ( - 1 +  I V  i f f  J i  ( - 1 +  .·)/v/2
f ( - i {  +  id> ,) ^

0

_  g - p V « l  -  W 2 e ip V f ( l - 0 /v /2

Using Cauchy-integral formula for the first integral in Eq. (A8) and on 
plifying, we obtain

7» =  l + - - J t (p \T ')  
7C

(A 9)

:re

r  ~ - f t '
7 ( p ' , t ')  =  I  ̂ s i n i p ' v ^ d f .

0 *

(A10)

iltiplying Eq. (A10) by em’* and taking derivative with respect to t' of the resulting 
ression, we obtain

5 t'

^re

(P',‘0 -e^'co I(p ',t') (A ll)

7(p'>0
j sin(p-y/2{) e _ , td{ 

0

(A 12)

evaluate the integral in Eq. (A12), we proceed as follows. Taking the derivative of 
(A 12) with respect to p', we obtain
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dl(p’, f )
dp

cos(p 'y /2 0

Vi
00

=  V2  e~P‘1,2x' Re J

e ~ TCd £

V i
- d f . (A 13)

Using C =  ( V ^ ~ i p ' / V ^ )  i*1 Eq· (A 13) we get

dl(p', t') 2 s j l  n,in .
=  / ^ R e [ / ( p ' )T')],

where

/ ( P ' , t ' )  =

erfc(z)

(A 14)

I  e_i‘d c = ^ erfc( ^ ) ·
-ip'/V2T'

7t J
e 1 di =  1 —erf(z),

, 2 _ 2
erf(z) =  —j= e 1 ds.

V 71

(A 15)

(A 16)

(A 17)

Now, for z =

( ~ X \ (  it

- j p

V 2t'·
which is pure imaginary and a change of variable s

Vv/2 ~ y  ^  ^  ’n te ®r a  ̂ ^ 4 '  (A 17), it becomes obvious that erffz) is pure imaginary. 

Thus, Re[erf(z)] =  0. Consequently, 

d/(p',r') a/ 2tc

5P' ~ Vz' £
From Eq. (A12), I ( p ' =  0, x') = 0 . Hence,

(A 18)

7 (p ',0  =  v2rt 
V  T ·

e u /2t du =  7t erf (p'/yjlx').

With Eq. (A ll), it follows directly that

8

8x'
1 r  <5,

a - -e ^ “'c3p7rerf(p'/<v/2r').

(A 19)

(A20)

By the use of Eq. (A 10), the initial value of Jb(p',x') reads
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W  =  0 ,T ') =  |  
0

Let y/Z  =  x. Then,

ä p s m ( p ' y / 2 £)

M - d i J
d{.

W , ’ =  0) =  2 i M ^ f c
J x(x2- c o p)

=  (c 5 /2 i)
- i i

- ip ' J lx

x(x2—c5p)
— d x —

e »V 2x  

x(x2 —cöp)
dx

(A21)

(A22)

and the path of integration is properly indented about x =  0. These integrals are 
elementary and can be evaluated by contour integration in the complex plane, where 
each integrand has three simple poles at 0, ±(c5p)1/2

=  0) =  — 7c +  7re,p(2“') ' . (A23)

With Eq. (A20), i b{p',i') is readily evaluated in terms of a new integral

h ( p ',x') =  h (P ’’x' =  0)e_ “'T’-7tc5p f ert(p’/y /lQ dl; .  (A24)
o

If c5p -» co'p, from Eqs. (A5), (A6), (A9), (A23) and (A24), it follows that

W . - n  =  a>p J erfc (A25)
o

since the result is independent of the position of the branch cut in the lower 
half-plane.

Next, let tj — t'£. Then, Eq. (A25) yields

73(p ',t') =  co'pt' } e - W  e r f c ( A 2 6 )  
0

where co'pz' =  copt and p'/y jlz '  =  apf^/lz.
Now, let Q — (u>'pz'Y12, R =  p '/y /lz '  and after using integration by parts, we have 

from Eq. (A26)

^(P',*') =  e d c ( R ) - ( R / y / n ) j ( l - Q - 3l2e x p ^ - i2 zC - ^ - ^ d ( .  (A27)

Making change of variable £ =  (1 — <Q_1/2, we get

73(p ',t') =  erfc(jR) — (27?/n/ tc) exp (— i32) 73 (i2,7?) (A28)

where
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I 3( 0 ,R ) =  iexp (fi2/ i - J ? 2a d i .  (A29)

After some straightforward algebra,

exp(G7Ć2—R2i !) =  ~  " T V ' 1 d l+ e 2'"“
Ri + ifi/i “I

J e ,2di 
0

resulting in

i3(Q, *) =  ^ Re (e 2,i2R erfc (R + (A30)

With Eqs. (A28) and (A30),

73(p ',t') =  e ń c ( R ) - e - R2Relez2eńc(Z}'] (A31)

where

Z  — R-j- iii. (A 3 2)

The locus of Z =  Z(t') in the complex plane is the hyperbola defined by the equation

fco 'V 12
Re(Z)Im(Z) =  M J  p' (A33)

where Re(Z), Im(Z) >  0. The minimum distance of this hyperbola from the origin 
equals

lz Lin =  [(2wp)1/2p']1/2. (A 3 4)

If |Z|min» l ,  i.e„

ap(2u>p)112 »  1, (A3 5)

then, by the use of Eq. (7.1.23) of [15], 73(p ',t') can be approximated by the leading 
term

I3(p', r')~erfc
1/2

, - p ' 2/ 2t'
p'2 +  2aipT'2

(A 3 6)
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