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Matricial relations for polar Kerr-effect multifilm  
and bulk systems at oblique incidence
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A simplified matricial formalism for the polar Kerr-effect multiiilm and bulk systems at oblique 
incidence is presented. Overall 4 x 4  characteristic matrices are determined for multifilms 
comprising both dielectric and magnetooptic thin layers having their boundaries placed into the 
ambient isotropic medium. Then, 2 x 2  extended Jones reflection matrices are obtained for polar 
Kerr-effect multifilm and bulk systems. Numerical examples of Kerr rotation angle and figure of 
merit function variations against the incident angle are given comparatively for p- and s-polarized 
incident light.

1. Introduction
Films of rare earth-transition metal alloys that exhibit polar Kerr-effect behaviour 
are considered as promising materials in erasable optical storage systems using 
thermomagnetic writing and magnetooptical readout [1] — [3], Since the polar 
Kerr-effect is described in terms of reflection changes of the polarized incident light, 
determination of reflection matrix is helpful in characterization and understanding of 
the performances of readout systems [3] —[6],

A detailed description of the Kerr-effect in bulk and thin-film materials is given in 
a number of references [5] — [10]. It turns out that obtaining explicit results involves 
rather complicated algebra.

In this work, we present a simplified matricial formalism for the polar Kerr-effect 
multifilm and bulk systems at oblique incidence. We obtained a major simplification 
by assuming that each thin layer is embedded in between two imaginary ambient 
isotropic layers of zero thickness. Since both interfaces of the layer are imaginatively 
placed into the same isotropic medium, the final expressions are much simplified. By 
this procedure each layer can be seen and treated as a separate entity. Different kinds 
of anisotropy can be easily accounted for, as in the case of magnetooptic films coated 
on biaxial substrates [11].

Obviously, the theory of electromagnetic wave propagation in lossless aniso­
tropic media makes use of unit electric and magnetic field vectors that are expressed 
in terms of three characteristic angles [12]: the angle of refraction (determined by the 
Snell’s law), the polarization angle, and the walk-off angle (formed by the electric 
field and electric displacement vectors). Since magnetooptical media are both ab­
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sorbing and anisotropic, these characteristic angles are complex and their physical 
meaning is lost [10], but we can still use them successfully. Rather simple expressions 
are obtained in terms of trigonometric functions of complex arguments.

One of the disadvantages of the Kerr-effect readout is that the Kerr rotation is 
small. Hence, the technique of enhancing the Kerr effect by coating dielectric thin 
layers on the magnetooptic lilms is obviously applied [4], Reflection at oblique 
incidence on isotropic dielectric layers is usually described in terms of complex 
amplitude Fresnel reflection coefficients for p- and s-polarized light [13]. In the case 
of multifilm readout systems it seems worthwhile to have a framework equally 
well applicable to both isotropic and anisotropic layers. Therefore, the 2 x 2 extend­
ed Jones matrices [14] relating the reflected and transmitted amplitudes of the p 
and s modes are adequate to be used. In this way, we can check easily the results by 
comparing them to those obtained in limits of isotropy.

2. Notations and general relations

Let us consider a magnetooptic thin layer that is placed into the isotropic ambient 
medium of refractive index n0. The coordinate system is chosen so that the interfaces 
are parallel to the x-y plane and the magnetization is in the z (polar) direction. The 
dielectric tensor e can be written as [3], [4]

" 1 jq 0 "
E = E - M 1 0

. 0 0 1 _

j  =  (—1)1/2, the unmagnetized index of refraction is n =  £1/2, and q is proportional 
to the magnetic field.

Let a monochromatic plane wave with angular frequency u> be incident in the x-z 
plane at angle q>0 with respect to the positive z axis. It propagates along the unit 
wave vector — (sin (p0, 0, cos (p0)T, where ( )r  denotes the transposed vector. At 
the front interface the wave is divided into a backward-reflected wave of wave vector 
ko and two forward-propagating waves of wave vectors k* , i = 1, 2. At the second 
interface, inside the magnetooptic layer, there are two backward-propagating waves 
of wave vectors k [  =  — k2, and k j  =  — k^ [5], The wave vectors k i, i = 1, 2, may 
be written as

k f =  ( " W x  +  tfz ) , i =  1, 2 (2)

c is the vacuum velocity of light, x  and z are unit vectors along the positive x  and 
z axes, f =  n0 sin q>0 is the tangential component that is the same for all wave vectors, 
and £* = n* cos q>f-, where n* are indices of refraction, and (pf are the respective 
refraction angles. In general, for absorbing magnetooptic layers, £* are complex and 
are determined by relations [5]:

Ci+ = [i(i-n<z)]1/2, i 2+ = [ i ( f  +  mz)]i/2, i f  = -C z , Cz =  ~Ci+ (3)
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where £ =  (e—£2)1/2. Indices of refraction are given by n* =  [£2+(ij±)2] 1/2> so that 
nj" = n 2 and nf  =  n f . Refraction angles cp* are given by =  arccos^/n*). 
Thus, one obtains q>i = n —tp 2 and q>2 = it—<pf. Then, unit wave vectors can be 
specified as fc* =  (sin (pf, 0, cos<pJ±)r .

Let Ef and Hf (i =  1, 2, a =  +) be electric and magnetic field vectors of forward- 
and backward-propagating waves, and Sf =  Ef x Hf be the respective Poynting 
vectors. In a lossles anisotropic medium vectors Ef, Hf, and Sf (i =  
1, 2, a =  ± ) form four orthogonal systems that are rotated against the (x, y, z) 
coordinate system as shown in Fig. 1 [12], [15], The relationship between 
(Ef, Hf, Sf) and (x,y,z) systems is specified by the refraction angle <pf, the 
polarization angle af, and the walk-off angle <5f [12]

Ef cos<5f 0 — sinc5f
Hf =  0 1 0
Sf _ sin<5f 0 cos<5f

cosaf
-sinaf

0

sinaf 0 cosipf 0 — sin<pf
cosaf 0 0 1 0

0 1. sin cp" 0 COS (pi

x
y ■
z

(4)
y

Fig. 1. Relationship between the (£f,.Hf,Sf) orthogonal triplet and the (x ,y ,z ) laboratory coordinate 
system. The relationship is specified by angles af, <p’, and

This general relation can be applied also to absorbing magnetooptic media. The 
polarization angles are determined by

a f =  arctan[;nf£/(n£f)], a f =  - a f ,
af =  arctan [ — £/(n£2 )], a f  = - a f .  (5)

The walk-off angles are given by relations:

5+ = arctan (jq £ sin a f  /n f), i = 1, 2,
<5f =  -<52+, <5f =  —<5f. (6 )
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These relations result from Maxwell’s equations. Further, one obtains nfcosSf 
= n, where t =  1, 2 and a — ±.

Although this procedure may seem complicated, it presents some advantages: it 
leads to simpler algebraic expressions, it allows determination and checking of the 
unit vectors separately before using them to calculate reflection matrices, and finally, 
it allows simple general programs accounting for different kinds of anisotropy to be 
developed.

3. 4 x 4  characteristic matrix of a magnetooptic thin layer 
having both boundaries into the ambient medium

Let us consider a magnetooptic thin layer having both boundaries imaginatively 
placed into the ambient medium. Let Eqip, £*1» and Eq2P, E02* be the complex 
amplitudes of the p and s modes of forward- and backward-propagating waves into 
the incident (index 01) and emergent (index 02) ambient medium, and let E* (i =  1, 2) 
be the complex amplitudes of ek 'iric fields for waves propagating into the 
magnetooptic layer. Electric field w rs of forward- and backward-travelling waves 
into the incident and emergent -lent regions are given by [14]

Eo· =  (Eoi,s + Eoippa) exp \J(an -  kg r)] (7)
where: i — 1 , 2, a — ± , s =  (0, 1 , 0)T is a unit vector perpendicular to the incident 
plane, p9 are unit vectors parallel to the incident plane that are given by 
pa — x s  = ( — a cos cp0, 0, sin<p0)T. The time dependence is specified by exp{jwt). 
The respective magnetic-field vectors are given by HJj = kj$ x EZJco. Using Eq. (7) 
gives [14]

Hoi =  {nJc^Elup* -  Eoips) exp [J((ot-k^ r)]. (8)

As far as the magnetooptic layer is concerned, we consider that the resultant 
electric-field vector of all the forward-travelling waves adds up to EJJ and those of 
backward-travelling to Em. These resultant electric-field vectors are given by

Em = Z  E?Ef exp(—y k fr)lexp(jcot), a =  ± . (9)

Taking into account that kf x £f =  (tu/c)Hfnfcos<5f =  Hfncu/c, one obtains the 
resultant magnetic-filed vectors

Hm =  Z  £ rH?exp(—ykfr)J(n/c) exp(/cui), a =  ± . (10)

Let us denote Eoi =  (EJia,E lip)T and E a= (Ei.EI)7- with i — 1, 2 and a =  ± . Then, 
by applying the standard boundary conditions to the resultant electric- and 
magnetic-field vectors at the two interfaces, one obtains four matricial relations for 
reflected and transmitted electric-field amplitudes [16]

f +£ 0+i =  E ++p + E~, (11a)
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f +Eoi =  p + - E + + E - ,  (lib)

X+£ + + p +x~ E~ = X 0+f +-Eo+2, (He)

X~E- + p~x+E + = Xo f - io z . (Hd)
f",pa and x”{a =  +) are 2 x 2  matrices. The elements of the matrix f + are 
determined by relations:

Tn =  - K o ai/(9^2 cosai), (12a)

ti+2 =  - n 0»C0C(Co + i 2+)/(ffC2+ cosai), (12b)

T21 = X o ai/(9Ci cosai), (12c)

t2+2 =  - " O"ioi(io +  i i ) / ( 0 i i  cosa2+) (12d)

where £0 =  (" o -^ 2)1/2, a,· =  (n§C2 + ei0ii+) with i =  1, 2, and g =  (C0 + C)(noC + eC0)· 
The elements of the matrix p + are determined by relations:

pti =  sin ai/(2niC0C cosai), ( l3a)

P22 =y^2n^sinai/(2niC0Ccosai), (13b)

pt2 =  P/2+G, P21 =  P/2 — G (13c)

where: p = 2(Q((£-no)/g and G = (Ci -  C2 )(£(o + woi2)/(2gi)· The matrices f  and 
are given by

f — T 11 z 22 P22 P 21

L-*i, Tl+2. * P  " _P 12 p ii.

(a =  +) are diagonal matrices with elements given by

X’u =  exp[—y(w/c)hmCn. i = 1, X « =  ±  (I5)
where hm is the thickness of the magnetooptic layer. In Equations (11c) and (lid), 
X I = exp[ —ja(u>lc)hmC,0], with a = ± .

Let us define the 4 x 4  matrices

*
T (16)

where 12 is the 2 x 2  identity matrix, and 0 2 the 2x2  zero matrix. Let us also define 
the vectors with four components:

^01 — (Eoia> Eoip, E01s, E01p)T,

£  =  ( £ r , £ j , £ i , £ i ) r,

£02 — (2^0 £q2j> X q £02pi Xo Eq2s9 X 0 E02p)T>

Then, Eqs. (11) can be rewritten in the compact form:

(17a)

(17b)

(17c)
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*£oi =  P E>
?E02 = f% E.

Eliminating E from Eqs. (18) gives 
Ent = fiiEn

(18a)
(18b)

0̂1 — " “ i02· (19)
*

The matrix M  is the 4 x 4 characteristic matrix of the magnetooptic layer having 
both interfaces into the ambient medium. It is determined by relation

M =  ( f ) " V ( z ) " V ) _1f .  (20)
This 4 x 4  characteristic matrix can be written in the form

A? JBU
LA AJ (2 1 )

where: Am, Bm, C„ and are 2 x 2  matrices.

4. 4 x 4 characteristic matrix of a dielectric thin layer 
having both boundaries into the ambient medium

Since the polar Kerr-effect multifilm systems may comprise isotropic dielectric layers, 
we have to apply the same framework to both isotropic and anisotropic layers. Thus, 
let us consider a dielectric film of thickness hd and index of refraction nd, having both 
surfaces in the ambient medium. Since the problem of plane-wave propagation in 
isotropic media is well known [13], we will present further only relations for the 2 x 2 
matrices A, B, C and D. All of them are diagonal matrices. Let As and Ap be the 
elements on the main diagonal of matrix A (An  =  As and A 22 = Ap). They are given 
by

Av = X d 1 (1 ■- r*Xi)/( 1 -  rv2), v =  p, s (22a)

where: X d = exp[— j((o/c)hdCi'], £d = (nd — g2)1/2 and rv, with v = p,s, are Fresnel 
reflection coefficients, r, = (C0- ( d)/(C0 + U  and rp = ( n ^ 0- n ^ d)/(n^0 + niCd).

Similarly, we denote by Bv, Cv and Dv, with v = p,s, the elements on the main 
diagonal of matrices B, C and D. They are determined by relations:

By =  -  X i 1 rv(l -  X l W  ~  rv2), (22b)
Cv= - B v, (22c)
Dv = X d l (Xd—ry)/(l—ry). (22d)

Note that elements of the main diagonal of matrices Am, Bm, Cm and Dm for the 
magnetooptic layer are well approximated by relations similar to Eqs. (22). For 
example, elements Amil (i — 1, 2) on the main diagonal of the matrix Am are given 
approximately by relations similar to Eq. (22a)

AmU* ( l / 2 ) £ x r ' ( l - r l X f ) / ( l - r l ) ,
i= 1

(23a)
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A,.22 «  (1/2) i * f  ‘(1 ■- r j - r fp) (23b)
1=1

where ru and rip (i = 1, 2) are Fresnel reflection coefficients at the ambient/ 
magnetooptic interface, ru = (C0-Cj+)/(C0 +  Ci+), rip = [(ni+)2C0-'io i.;f]/[(n,;f)2Co 
+  noCi+]. and X t =  xti that is given by Eq. (15). The approximate relations are useful 
to check the respective, exactly determined elements of the 4 x 4 characteristic matrix 
for the magnetooptic thin film.

5. 4 x 4  characteristic matrix of the polar Kerr-effect multifilm 
placed into the ambient medium

Once the 4 x 4  characteristic matrices are determined for both isotropic dielectric 
and anisotropic magnetooptic films, one can determine the 4 x 4  characteristic 
matrix of a multifilm placed into the ambient medium. Thus, for a succession of 
N  films, each of them being embedded in between two imaginary ambient layers of 
zero thickness, the 4 x 4  characteristic matrix is

M =  MxM2 ... M n_ A .  (24)

The layers that are of either dielectric or magnetooptic materials are numbered 
starting from the incident ambient medium.

6. 2 x 2 extended Jones reflection matrix
for the polar Kerr-effect multifilm coated on a substrate

Let us consider that the polar Kerr-effect multifilm is coated on a substrate. We 
assume that there is also an imaginary ambient layer of zero thickness between the 
multifilm and the substrate. By applying standard boundary conditions [14], one can 
determine 2 x 2  extended Jones matrices of reflection, fg and transmission tg at the 
ambient/substrate interface. For an isotropic substrate of refractive index ng, f  and tg 
are diagonal matrices with Fresnel reflection and transmission coefficients rgv and tgv 
(v — s, p) as elements on the main diagonals [r#11 — rgs, rg22 = rgp, and similarly 
for tgil, i = 1, 2, where rgs = (C0-C 9)/(C0 + Cg), rgp = (n*C0-n o i9)/(”»C0 + "oie), tgs 
= 2Co/(Co + Cs), tgp = 2ng(0/(njCo + nl(g), with C, =  in) ~ ^ 2)1/2]- Then, we obtain

where: £ 01 is defined by Eq. (17a), A, S, C and D are 2 x 2  matrices forming the 
overall 4 x 4  characteristic matrix of the multifilm that was defined by Eq. (24), 
12 is the 2 x 2  identity matrix, and Eg = (Eg„Egp)T with Egv, v = s,p, the complex 
amplitudes of the s and p modes of waves transmitted into the substrate. From Eq. 
(25) we get the 2 x 2 extended Jones reflection matrix f  of the polar Kerr-effect 
multifilm coated on a substrate
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f  = (C+Drg)(A + Brg)~l . (26)

Note that explicit matricial relations presented in this work for polar Kerr-effect 
multifilm systems are simpler than those given in [10].

7. 2 x 2  extended Jones reflection matrix 
for a polar Kerr-effect bulk system

Let us consider a simple bulk magnetooptic material inserted into the ambient 
medium. Using Eqs. (11)—(15) gives the 2 x 2 extended Jones reflection matrix of the 
bulk magnetooptic material, fb with elements given by relations:

rbi x =  ( T n + r is ) /2 , rb22 =  (r i P +  r 2p)/2,

rn  2 =  ^21 =  - j ^ n oC0/[(C0 +  0(«o C +  «Cofl (27)

where ris and rip (i =  1, 2) are Fresnel reflection coefficients at the ambient/ 
magnetooptic interface. These relations are considerably simpler than those present­
ed in [3].

8. Numerical example

Let us consider a polar Kerr-effect bulk system with n = 2.96— y'3.4, q = 0.001 
—y'0.025 [5], in air (n0 = 1). Let us define the ratio ys =  rbl2/rbll in the case of 
s-polarized incident waves, and yp = rb2i/rb22 for p-polarized incident waves. Then, 
Kerr rotation angles 0^  and 0Kp are given approximately by [8]

0Kv = Real(yv), v = p,s. (28)

Fig. 2. Variation of Kerr rotation angles 0Kj (o) and 0Kp (x )  against incident angle <p0 (a). Variation of 
respective figure of merit functions FOM , (o) and FOM p (x )  against <p0 (b). A polar Kerr-efTect bulk 
system is considered with n =  2.96 —_/3.4 and q = 0.001—;0.025, in air (n0 =  1). On either curve the signs 
are marked in steps of 10°.

Similarly to the case of normally incident waves [17], we define the figure of merit 
functions FOM, and FOMp for s- and p-polarized incident waves
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FOM, =  (M £ v)1/2, V=p,S (29)

where R, =  |r411|2 +  |rM2|2 and Rp = |r,,2112 |rfc22|2. Variations of Kerr rotation 
angle and figure of merit function against incident angle tp0 are shown in Fig. 2, 
comparatively for s- and p-polarized incident waves. One can see that variations of 
0*, and FOM, against q>0 are smoother than the respective variations of 0Kp and 
FOMp.

9. Summary

In this work, we present a simplified matricial formalism for the polar Kerr-effect 
multifilm and bulk systems at oblique incidence. Simpler final expressions result for 
both multifilm and bulk systems in comparison to those presented in other works
[3], [10].

Three simplifications are introduced:
1. We consider that either layer of the system is imaginatively embedded in 

between two ambient isotropic layers of zero thickness. Since both boundaries of the 
layer are placed into the same isotropic medium, the final expressions are much 
simplified.

2. We extended the procedure of unit vector representation in terms of three 
characteristic angles to the absorbing and anisotropic magnetooptic media. Al­
though the characteristic angles (that are complex in this case) lose their physical 
meaning, the procedure is still applicable by using trigonometric functions of 
complex arguments.

3. Since the polar Kerr-effect multifilm systems may comprise both isotropic and 
anisotropic layers, and for isotropic layers one obviously uses Fresnel coefficients for 
p and s polarizations, we used in this work 2x 2  extended Jones matrices relating the 
reflected and transmitted amplitudes of the p and s modes. Simpler final expressions 
result in comparison to those presented in other works in which one uses 2 x 2  Jones 
matrices relating the x  and y components of reflected and transmitted waves.

In the case of a magnetooptic thin layer having both boundaries in the ambient 
medium we obtained four matricial relations for reflected and transmitted electric 
field amplitudes at the two interfaces (Eqs. (11)) that are written in terms of 2 x 2  
matrices given by Eqs. (12) —(15). The four matricial relations are rewritten in the 
form of two simpler matricial relations (Eq. (18)) in terms of 4 x 4  matrices. A 4 x 4  
characteristic matrix M  is defined by Eqs. (19) —(21). The respective 4 x 4  characteris­
tic matrix for an isotropic dielectric thin layer having both boundaries into the 
ambient medium is given by Eqs. (22).

Once having the 4 x 4  characteristic matrices defined for both dielectric and 
magnetooptic thin layers, we can determine by Eq. (24) the overall 4 x 4  characteris­
tic matrix of a multifilm placed into the ambient medium.

The 2 x 2  extended Jones reflection matrix is given by Eq. (26) for the polar 
Kerr-effect multifilm coated on a substrate and by Eq. (27) for a simple bulk 
magnetooptic system.
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Numerical examples of Kerr rotation angle and figure of merit function 
variations against the incident angle are given in Fig. 2, comparatively for p- and 
s-polarized incident waves.

References
[1] Chaudhari P., Cuomo J .J, Gambino R.J., Appl. Phys. Lett. 22 (1973), 337.
[2] Mimura Y., Imamura N., Kobayashi T , Okada A., Kushtro Y., J. Appl. Phys. 49 (1978), 1208.
[3] Ruane M , Mansuripur M., Rosenvold R., Appl. Opt. 25 (1986), 1946.
[4] Egashira K , Yamada T., J. Appl. Phys. 45 (1974), 3643.
[5] Sprokel G .J, Appl. Opt. 23 (1984), 3983.
[6] Zak J ,  Moog E.R., Liu C., Bader S.D., J. Magn. Magn. M at 89 (1990), 107.
[7] Robinson C.C., J. Opt. Soc. Am. 54 (1964), 1220.
[8] Tomita Y„ Yoshino T., J. O p t Soc. Am. A 1 (1984), 809.
[9] Tang J.Y , Tang J .F , Appl. O pt 29 (1990), 2582.

[10] Mansuripur M , J. Appl. Phys. 67 (1990), 6466.
[11] Sugaya S , Mansuripur M., Appl. Opt. 33 (1994), 5073.
[12] Landry G.D., Maldonado T.A., J. O pt Soc. Am. A 12 (1995), 2048.
[13] Born M., Wolf E., [Eds.], Principles of Optics, Pergamon Press, New York 1975.
[14] Yeh P., J. O pt Soc. Am. 72 (1982), 507.
[15] Goldstein H , Classical Mechanics, Addison-Wesley Publ. Co, Reading, Massachusetts, 1981.
[16] Cojocaru E , Appl. Opt. 36 (1997), 2825.
[17] Wang B, Zhao Y , Auner G .W , Appl. O p t 33 (1994), 1828.

Received August 3, 1999


