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Boundary diffraction wave 
as a phase filter correction tool
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A filter which transforms Gaussian intensity distribution into the uniform one has been considered. 
Two examples of the modification of the filter function near its edge, making the intensity 
distribution smoother, are shown.

1. Introduction
The Gaussian function is a good approximation of the transversal intensity 
distribution of the beam leaving the laser. Depending on the intended application, 
the beam is transformed into, e.g., the one of uniform, Bessel, or other intensity 
distribution, as required. However, the energy economy is always desired. To achieve 
a high diffraction efficiency it is indispensable to know how to redistribute the energy 
in order to satisfy expectations. The filter’s function shapes are designed in many 
ways. The common methods are the Fourier transform, the stationary phase method 
and the combination of those, included in the Saxton-Gerchberg algorithm 
[1] —[3], The stationary phase method has been perfectly worked out and now 
offers much more possibilities than its preliminary form which expresses the 
geometrical optics. It permits, for example, evaluation of the diffraction effects and 
then the finding of the field shape, since the boundary diffraction wave has been 
included in the method.

2. Basic relations

Let us consider two parallel planes r and q separated by z. The first one is a filter 
plane and the second one the observation plane. The design of the phase filter, which 
should transform the beam, is based on the geometrical optics. Required intensity 
and phase distributions are calculated under the assumption of straight-linear light 
propagation and with the application of the energy conservation principle. The 
condition of the phase stationarity has the form

înc + ^y + ^prop =  const (1)

where &iaa, 4>f , <£prop are the phase of the incident beam in the filter plane, the
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phase change introduced by the filter, the phase change resulting from the propagation 
in the free space between the filter and the observation plane, respectively.

For the circularly symmetric filter with the incident collimated Gaussian beam 
(such that <Piac = const) the stationarity condition (1) leads to the equation for the filter 
function

r ~g(r) =  V f (2)

s/(r-q(r))2 + z2 d r ‘

The quantities r and q are related to each other via the relationship which follows from 
the energy conservation law and the required intensity distribution in the observation 
plane. For example, the filter assuring uniform intensity distribution is described in 
[1], [2]-

The limited size of the filter causes the real intensity distribution to be somewhat 
different from that assumed during the designing. The oscillations resulting from the 
diffraction affect the distribution. The amplitudes of these oscillations are quite high 
compared with the amplitude corresponding to constant intensity. The amplitude 
distribution has been evaluated taking advantage of the possibility of separating the 
wave disturbance described by the Kirchhoff integral into the geometrical and the 
boundary diffraction waves (BDW). Both waves represent the action of the Fresnel’s 
zones associated with the light originating from the interior of the integration area and 
from the narrow strip touching the integration limits (i.e., the edge of the aperture) [4], 
The separation has been introducd for empty apertures, however, it is correct in the 
cases when the opening itself is also filled up with the diffraction structure 
(assumptions of the stationary phase method are fulfilled).

Among many formulae describing the boundary wave, the one of Fedoryuk [5]

r

df&tf/dn
\ m , r i )\2

(3)

(where in our case: /(£, rj) is the phase function of the integrand *, in this case the filter 
function; df(£,ri)/dn means its derivative along the outer normal to the line limiting the 
integration area, T is the line limiting the aperture, da is the element of the curve) 
seems to be particularly convenient for the discussion and for the use in filter 
designing. It follows from the above formula that one can modify the filter properties 
by changing the filter function near the edge as well as by changing the shape of the 
boundary line. Both ways of shaping the aperture field are known and have been used 
in the past, though without mathematical support

If the filter is the circle of the radius r0 and the incident collimated wave is 
impinging on the edge at the point where its amplitude reaches 1/e of maximum

* In the original Fedoryuk’s work, multidimensional integral jg(x)e,tf(x)dx, x =  xl tx2t... x„ is 
evaluated, relation (3) corresponds to this integral. In the present work, the double integral of the form 
k$g(x)e,trix)dx, x =  x 1,x 2, is evaluated, next all the further relations for U3 are adapted to this form of 
integral.
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value (waist of the beam), then the complex amplitude which is due to the presence of 
the edge can be described by

K

(4)
o

where: f f ( r 0,q,u.) is the filter function, k is the wave number, 

p(r0, q, a) =  (r2 + q2-2 rq  cosa +  z2)1/2,

+  r0 — q cos a,

The integration limits in formula (4) (from 0 to 7t) have been chosen to reduce the 
time of calculations. Even if the filter function is of radial symmetry only, an increase 
of the distance of the observation point from the axis causes an increase in the 
Fresnel’s zones number associated with this point In this case, the evaluation of the 
BDW can be done easily with great accuracy by adding contributions originating 
from the two, well determined critical points of the second kind [4]. But in the case 
where the filter function with angular derivative is introduced, searching for the 
positions of the numerous critical points could be as much time-consuming as the 
integration along the edge. Thus, by choosing the even filter function, with respect to 
the observation point position, we can carry out our calculations in a reasonable 
time. Obviously, the integration limits must be changed if the observation point is 
beyond (r,z) plane, where the filter function is no longer even.

3. Calculations — examples

To illustrate some of the possibilities described above, we present (Fig. 1) the 
boundary wave amplitude for the case where the filter described by Eq. (2) is placed 
in the opening of the radius r0 =  4 mm, with additional condition

assuring the requirement of the uniform intensity distribution in the observation 
plane [1],

The filter function derivative with respect to r-coordinate is equal to zero at the 
edge. As can be seen, the mean value of the amplitude around which the BDW 
amplitude oscillates grows both in the central part of the observation plane as well

(5)
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Fig. 1. Boundary diffraction wave amplitude vs. radial distance in observation plane for the filter designed 
according to relation (2). Filter function has radial symmetry and its derivative at the edge equals zero.

as near the edge. Such a BDW amplitude distribution affects the total disturbance 
distribution. The amplitude of the BDW becomes comparable to that of the 
geometrical wave.

To achieve the diminution of the BDW amplitude we change the filter function 
near the edge, keeping the radial symmetry in the first approach. The results of such 
a modification are in the focus of our interest. The filter function has been extended 
near the edge to satisfy evenness condition (equality of the 1st and the 2nd 
derivatives), to avoid the necessity of dividing the filter area into zones at which the 
filter function is monotonously increasing.

If the result is to be perceptible, the term containing the filter function derivative 
in (4) should be of the same order as that resulting from the derivative of the part 
of the phase function associated with the propagation in free space. Our extension

Fig. 2. Filter function obtained from relation (2) with the condition (5) which should assure a uniform 
intensity distribution and a filter extension according to relation (6).
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has the form (see Fig. 2)

f f  = f(r)h[r1-r'] + (ar2 + b r + c )h [ r - r j  (6)

where: rx =  3.9 mm, a = 0.0393262306, b =  -0.3066098452, c = 0.601238, fe[ ] is 
the cut-off function.

With this extension the radial derivative is equal to 0.008 at the filter edge. The 
result is shown in Fig. 3. As one can see, the average value of BDW as well as its 
amplitude have decreased by one order of magnitude. In the vicinity of r =  0, the 
BDW remains high although decreased due to the contributions coming from the 
edge which are in phase. Much greater diminution is possible if other filter function 
extensions, with higher radial derivative at r0, are used, or by introducing the 
functions with angular derivatives.

Fig. 3. Boundary diffraction wave amplitude vs. observation point position for the filter which behaving 
radial symmetry is modified at the edge according to relation (6). We observe diminution of the amplitude 
with respect to that of Fig. 1, but in the central part of the observation plane the amplitude, although gets 
reduced, still remains high.

An example of such procedure is shown in Fig. 4. The filter function near the edge 
was extended according to

m-m
1 2 2 cos (net) (7)

where: f Y(r) is given by extension (6),/2(r) is given by the integral equation (2) with the 
additional condition (5), n — is an integer.

The filter function (7) has been chosen to satisfy the Fedoryuk’s assumption that 
the function must be analytical, and with the intention to avoid the time consuming 
angular integration.

The result presented in Fig. 4 corresponds to n =  100. The calculation was 
limited to the 0 —1 mm division because of the very long time needed for the
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Fig. 4. Boundary diffraction wave amplitude vs. observation point position lying in the meridional plane, 
for the filter whose function was modified at the edge introducing angular derivative according to relation 
(7) in order to diminish the amplitude value in the central part of the observation plane. The quoted 
results are limited to 0 <  r <  1 for the reason of time-consuming calculations.

Fig. 5. Dependence of the boundary wave amplitude on the number n from relation (7) at observation 
point q =  0.

calculation. The dependence of Vv at q =  0 vs. n is shown in Fig. 5. All the 
calculations have been done for X =  632.8 nm. They were carried out with the help of 
Mathematica program [6],

5. Conclusions

Although the quoted results merely show the possibility of the BDW having 
influence on the field shaping, they illustrate the possible procedure and help us 
understand the phenomenon. If the radial extension of the filter function contains the 
increasing derivative, then the “horizon” is artificially widened by introducing higher 
spatial frequencies. In the case of an empty aperture the edge cuts off the higher 
frequencies. Such an extension, however, changes the situation. The rays associated 
with the geometrical wave originating from this region are directed outside the area 
of the radius r0 =  4 mm (i.e., radius of previously designed filter with the uniform il­
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lumination distribution). Thus, the procedure leading to the more uniform intensity 
distribution, using a single simple filter, results in a decrease of the filter efficiency.

One can imagine the best case where the filter function lifts rapidly by A/2 with 
respect to the value obtained from (1). The action of the BDW can be interpreted in 
terms of the first Fresnel zone associated with the edge [4], At this point the question 
of feasibility of such a filter in the binary technique arises. Although modern 
technologies of spatial frequency recording are very high, the question is whether 
a single fringe, not necessarily the whole one (it can be cut off by the edge), will satisfy 
our requirements. How many levels of greyness should be used?

The observation point lying very close to r0, at a distance of the order of X, has 
been excluded from our considerations because in this case the method fails.

Some comment concerning various calculational algorithms supporting the 
methods of the filter designing, mentioned in the introduction of this paper, should 
be done. In the set of two filters, with the first filter transforming the amplitude, and 
the second one transforming the phase, which transforms collimated Gaussian beam 
into that of uniform intensity distribution, the procedure is repeated from the one to 
the next plane and back, until the result is self-consistent [2].

It can be seen from our considerations that the real propagation process is 
irreversible. This is the consequence of using the theory which goes beyond the frame 
of geometrical optics.
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