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Gaussian beams with optical vortex
of charge 2- and 3-diffraction by a half-plane
and slit
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In the paper, the half-plane diffraction of the Gaussian light beam containing double and triple
optical vortex is examined. The analysis is based on scalar theory of diffraction in Fres-
nel-Kirchhoff approximation. Special attention is paid to the dynamics of the optical vortex within
the diffracted beam. Some results for the case of diffraction by single slit are also presented.

1. Introduction

Optical vortex (OV) is a point singularity in phase distribution of the electromag-
netic wave [1], [2]. Optical wave fronts with phase singularities reveal some
charateristic and useful features. They have a helical geometry and non-zero angular
momentum [3], which is different from polarization (photon spin) part of the total
angular momentum of the electromagnetic field (it is called orbital momentum)
[4] —{6], The orbital angular momentum is quantified in respect of both quantum
and geometry. From the point of view of quantum its z-projection (for single photon)
takes values Lt = mh, where m is a positive integer characterizing the OV. The
non-zero angular momentum makes the OV a stable structure within the wave front.
From geometrical (topological) point of view the integral calculated along the closed
curve including OV could have a value 2nm [7]. Because of the above properties the
value of m is often called the topological charge of the OV. The distribution of the
OV belonging to the same wave front is limited by some topological rules [7], [8].
Because of the special features of the OV, they have been widely studied in the last
decade. A number of papers were devoted to the possible application of the OV
[9]-[13].

In this paper, the diffraction pattern of the Gaussian beam containing OV (with
topological charge m= 2 and m = 3) diffracted by half-plane and single slit is
examined. The analysis is performed on the basis of the scalar diffraction theory
(Fresnel-Kirchhoff diffraction integral [14]). The half-plane diffraction of pure
Gaussian beam has been examined in [15].
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2. Optical beam with OV

For the purpose of present analysis, a Gaussian beam with multicharge OV is
considered. Such a beam can be described by the equation [16] (in parabolic
approximation [17])

E(x,y,zD = Ez(x+isgny)mexp{-r 2A) (1a)
where:
Ez= EQ exP{ - ikz) expj- (m +1) i atan i, (Ib)
1 ik

=c A +2RK] (i)
co(zD = (1d)
(le)

t 2na>0 .
T (if)
r2= x2+y2, (lg)

k = 2n/X is the wave vector, X — the wavelength, b —the beam confocal parameter,
zD — the distance from the beam waist to plane of interest, oj(zd) — the radius of the
beam, R(zD — the radius of curvature of the wave front.

The topological charge value m > 1 means that the wave front singularity can be
decomposed into m single OV [7], [18]. The sign of the parameter sgn determined
the sign of the topological charge.

X[mm] X[mm]

Fig. 1. Phase map of Gaussian beam with double OV (a) and triple OV (b). The solid line corresponds to
line Re(E) =0, the dotted line corresponds to the line Im (E) = 0.
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Formula (la) can be rewritten as
E(x,y,zD = Ezexp{—2A} £ "jsgn,i,xm,yt. @

Figure 1 shows an example of the phase map (i.e, the plot of the line Re(£) = 0
and Im(£) = 0) of converging Gaussian beam carrying double and triple OV. The
lines intersect at a singular point

3. Diffraction integral

To calculate the diffraction pattern we follow the method described in [19], where
the same problem was solved for the case of Gaussian beam with single OV. The
diffraction by single slit can be described by the formula (Fresnel-Kirchhoff
diffraction integral)

. *® m /m\ ]
E(Xiyi,Zt) = T$ J [exp{— 21} £ | )sgn'i'x“ ,yt

X exp{—iK{x2+y2—2xfx —2yty)] dxdy ©))
where:
T=E exp{-ifezj .
1 iAz, exp { —IK(xf +yf)}, (3a)
(3b)

h are the coordinates of slit edges. In the case of half-plane h~* oo.
To calculate the integral (3) the following relation was used:

h k h
JV +2exp{—Gy}dy =" |y " +lexp{-Gy}dy+"ily"

4 4 4
xexp{ —Gy}dy—-z"lg,(hn+1Nh —gn+1NQq) )

where:
Sy = 2Kyt, (4a)
Gy = —yzF +iSy -y, (4b)
Nh —exp{—h2F +iSyh}, (4c)
Ng = exp{—g2F+iSy-q}. (4d)
Let: Sx = 2Kxt, (4e)

Gx = —x2F +iSx-x. (4
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3.1. Diffraction by a slit

In the case of Gaussian beam with double charge OV the integral (3) can be written
as:

E(xty,,Z) = T(E2XEy+2isgnEIXE|ly—E2yEXx), (5)
Eox= ' xZexpf-axatx = — /MW (5x2—2F) (5a)
)|
h
Ey=1J exp{-Gy}dy = * My (erf(tf)-erf(Q)), (5b)
‘ o)
[1 - ] L L (5C)
£,°- _|m|exp{- Cxldx=" MX'X F'i,!
h

Ely = j*yexp{-Gy}dy =~ F _3/2SyM y(erf(ii)-erf(Q))+" """, (5d)

4

h
Ex = j*exp{-Gx}dx = (5e)

4

£2,-jlexp{-G,} =-££(*+$)+8(«+$)

+AM 1 F-32( (erf(tf)-erf(Q)), (50
_12q F—iSy
T2 NfE~ °Y
H = 12hF-iSy (5h)
2
Mjc = exp{:* L}> )
M . )
Y e{ir L} (5))

In the case of Gaussian beams with triple OV, expression (3) can be written as
E(xtyl,2") = T(E3xXEy+ 3isgnE2xEly- 3 E I xE2y-isgnEXE3y) (6)
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where:
£3,= |x 3exp{-Gx}dx=i* ~ F - H3(3-g), (6a)
E\ =Jy3exp{-Gy}dy=Nh{ * r -~ + ~ -7

=02 qSy.Sy2__i_

IF  4£2 8£3 IF2
+iy/nMy ASy -F~52- ~ Sy F~12] (erf(//) - erf(Q)). (6b)

3.2. Diffraction by a half-plane

If the condition: arg(H) < is satisfied [20] one can evaluate the limit h-* oo.

Formulas (5b), (5d), (5f), (6b) take the form:
()]

Ey= j*exp{-Gy}dy = erfc(Q), (7a)

@® - r
£1y= Jy exp{ —Gy}dy = ~-"£ _3/2Sy-Myedc(Q)+~FNg, (70)

«

Q
£2y= Jy2exp{-Gy} = erfc(2)(E 3/2-~Sy2£f +

(7c)
®

£3y= Jy3exp{ —Gy}dy = erfc(Q)"3£_5/2S y - £ “ 7/2Sy3

Ng(.i2iiS Sy2 i 1 7
2I9(q + I){:q 4%2_r2£/ (7d)

4. Examples

As an example some diffraction patterns of Gaussian beam (1) diffracted by
half-plane and single slit are calculated. The beam parameters are: £z= 1, b = 15
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Fig. 2. Phase map of Gaussian beam with double OV diffracted by a half-plane, a — q=02 mm,
b—q=0.01 mm, ¢ — q =0 mm, d—q= 001 mm, e —q= —0.07 mm, f — q= —0.18 mm.

Fig. 3. Phase map of Gaussian beam with double OV diffracted by a single slit: a — slit located
symmetrically — slit width 0-24 mm; b — the same slit shifted, g = —0.1 mm, h= 0.14 mm; ¢ — slit
located symmetrically — slit width 0.18 mm.

zD= 15. These parameters correspond to strongly converging beam [15]. In all cases
the image plane is at zt —500 mm from the object plane.

Figure 2 shows the results in the case of Gaussian beam with double OV
diffracted by a half-plane. For g = 0.2 (q determines the half-plane edge position)
there are no intersection points in the phase maps in the area considered (calculated
at image plane, Fig. 2a). If g= 0.01 one intersection point arises (Fig. 2b), and
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changes its position when the plane edge is shifted down (Figs, b—d). For g = —0.07
the second intersection point appears (Fig. 2e). Both singular points change their
relative position while the edge shifts (Fig. 2e,f). Figure 3 shows the diffraction image
in the case of single slit illuminated by the same beam as in the previous example. In
Fig. 3a, the beam is incident to a slit of width 0.24 mm located symmetrically against
optical axes. If the slit center moves, the diffraction pattern symmetry is broken (Fig.
3b). In Figure 3c, the slit is at central position and its width is 0.18 mm. As one can
see the intersection points are more distant from each other (compared to Fig. 3a).

Figure 4 shows the diffracted image of the half-plane illuminated by Gaussian
beam with triple OV (Fig. Ib). As in the case of beam with double OV the number of
singular points at the image and their position change with the half-plane edge
position.
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Fig. 4. Phase map of Gaussian beam with triple OV diffracted by a half-plane: a — q = 0.25 mm,
b —qg=003mm c —qg=0mm,d —g= —005mm, e —g=—012 mm, f —q= —1 mm.

Figure 5 shows the diffraction image of single slit illuminated by the same beam
as in the previous example. Changing the slit position one can change the number of
singular points at the phase map (at the plotted area), Fig. 7a,b.

It should be noted that the number of observed singular points depends on the
observation area. Figure 6 shows part of the phase map corresponding to that shown
in Fig. 4c, but plotted in larger area. One can see one more singular point Figure
7 shows the intensity distribution for the same case. Comparing Figs. 4c, 6 and 7 it is
easy to notice that one of the singular points lies deep in the dark area of the
diffraction pattern. For that reason it can be hardly detected. The author admits that
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Fig. 5. Phase map of Gaussian beam with triple OV diffracted by a single slit: a — slit located
symmetrically, slit width 0.24 mm, b — slit located symmetrically, slit width 0.1 mm, ¢ — the same slit
shifted, g = —0.04 mm, h = 0.06 mm.

Fig. 6. Different part of the phase map shown in Fig. 4c (g —0 mm). The intersection point shows
the location of second OV.

similar results presented in paper [19] were misinterpreted. The conclusion was
that for g > 0 no singular point survives the diffraction process, which is not exactly
true. As regards the present case, for an observation area being large enough one can
find singular point for g > 0, however, deep in the dark part of the diffraction

patterns.

5. Conclusions

The results obtained using Fresnel-Kirchhoff diffraction integral were in very good
agreement with numerical calculations based on known diffraction algorithm [21],
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Fig. 7. Light intensity distribution of the beam with triple OV diffracted by a half-plane (§ = 0 mm).

not presented in the paper. Unfortunately, the author is not ready to perform
experimental verification. The method used in [19] is too poor to produce the
multicharge OV beam of sufficient quality. For this purpose, more sophisticated
methods have to be applied, which are not available to the author yet

The author hopes that the present results are convenient even in the absence of
experiments. The stability of the OV and their characteristic dynamical behaviour in
diffraction process make them useful as beam markers that enable precise optical
measurements. The dynamics of the compound OV is more characteristic and
complicated than that of a single one [19]. This enables more complex measure-
ments. Successful application of the OV to optical measurement demands a well
constructed theoretical model describing them (model of diffraction and scattering
process). This work is a contribution to developing such a model.
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