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Homographic wavelet analysis
in identification of characteristic image features
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Wavelet transformations connected with subgroups SL(2, C\ performed as homographic transfor­
mations of a plane have been applied to identification of characteristic features of two-dimensional 
images. It has been proven that wavelet transformations exist for symmetry groups S17( 1,1) and
SL(2.R).

1. Introduction

In the present work, the problem of an analysis, processing and recognition of 
a two-dimensional image has been studied by means of wavelet analysis connected

with subgroups of GL(2, C) group, acting in a plane by homographies hA(z) =  - -- - -j ,
CZ +  fl

e G L (2, C). The existence of wavelet reversible transformationswhere A -(::)
has been proven for individual subgroups in the group of homographic transfor­
mations. The kind of wavelet analysis most often used in technical applications is

connected with affine subgroup h(z) =  az +  b, a. case for A =  ^  of the symmetry

of plane £  ~  S2 maintaining points at infinity [1], [2]. Adoption of the wider 
symmetry group means rejection of the invariability of certain image features, which 
is reasonable if the problem has a certain symmetry or lacks affine symmetry. The 
application of wavelet analysis connected with a wider symmetry group is by no 
means the loss of information. On the contrary, the information is duplicated for 
additional symmetries or coded by other means. Changing the symmetry group of 
wavelet transform we obtain another interpretation of its value. For instance, by 
filtering the homographic transform of a suitable wavelet we can cut off the lines of 
certain curvature and length.

Considering the problem from the point of view of the wider symmetry group, 
makes it possible to choose another symmetry subgroup characteristic of a given
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problem. This is the case, for instance, in recognition of objects from air and satellite 
photographs distorted by atmosphere or when distortion of shape occurs in 
stereographic projection of images obtained by means of cameras with hyperbolic or 
elliptic lenses, which are used in security systems or sight systems.

From the theoretical point of view, the wavelet analysis for locally dense Lie 
group relies on the existence of Haar measure for this group (the measure invariable 
to right or left multiplication in the group) and construction of integrable 
unreducible unitary representation [2] — [4]. The existence of the measure indepen­
dent of locally dense groups is univocally guaranteed by Haar statement exact to the 
constant factor (see [5]). On the other hand, the integrability of a representation (in 
the sense of Statement 1) for the definite case sometimes does not occur [6], [7]. This 
takes place, e.g., for the whole GL(2, C) group acting on the C plane through 
homographies.

Studying a function with an image in complex numbers introduces additional 
difficulties from a technical point of view. It is natural to interpret |/(z)| in terms of 
signal intensity. For /  (z) phase one can give an interpretation of polarization for 
problems with coherent light or as a colour of a point in periodic colour scale. 
Imposing some additional limitation on the function, e.g., holomorphity, causes also 
limitations of the interpretation of the function value.

2. Wavelet analysis for affine group

Below the well known results of wavelet theory for affine group of the R2 plane are 
presented in short These results are described in terms of complex function analysis.

The R2 plane with affine symmetry group .4(R2) can be accomplished as 
one-dimensional straight line C with affine group /l(C) =  C*-i-C topologically 
isomorphic with S1 x R + x R 2. With A (C )3g =  (a ,b ) :z -* a(z +  b) acting on C, 
we obtain natural unreducible unitary representation I  in a set of functions 
integrable with the square L 2(C,d/i), d/u =  dz,dz

On the other hand, the /1(C) group operates also on itself, e.g., by the left 
multiplication L g(h) =  gh, giving its representation over L 2(A(C),dfi), with

Ttf(z) =  \a\-1A a - l (z -b )). 

Defining the Fourier transform

c

one can obtain the representation T  of the group /1(C) in frequency variables 

T j ( k )  =  \a\e~ibzf(dz).

left-invariable measure d a .  =  — =■
M

dadadbdb.
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Proposition 2.1. T  is the unreducible representation integrable with the square, i.e., 
there exists \j/ e L2(C,dp), called the basic wavelet, such that

(T giP\<pyeL2(A(C),dpA).

In such a case the dense set of wavelets also exists. The basic wavelet can be
conveniently defined by the equivalent condition

(2 n)2 \ H k )\2
dkdk

w =
which cuts off the lower frequencies.

Proposition 2.2 The linear mapping W^:L2(C,dp) -* L2(A(C),dpA)

W+flg): =  < 7 > | />

called wavelet transformation is the isomorphism of Hilbert space

W W * / >  =  < /! /> ·

The reciprocal transformation of the W^(L2(C,dp) image is given by the 
following formula:

W ;lf ( z ) =  J f { g )T J {z )d p A.
M  C)

Corollary 2 3 . The image of the transformation W^(L2(C,dgf) c  L2(A(C),dpA) is 
a Hilbert subspace with reproducing kernel

L (g ' ,g ) = W ^ (g ’- i g).

Hence, for any f  g e L 2(C,dfj.) and any wavelet i]/ one can obtain the following 
distribution of the unity in L 2(C,dg)

< m =  j  <f\Tg&y><Ttm h > d iiA.
M  C)

Proposition 2.4. There exists a discrete symmetry subgroup A <  A(C) which 
generates a base {Txtj/} in L2(C), in the following sense: there are a, b e  R+ for which

a ||/ll2 < z  l<2|/>|2 < b ||/H 2.
X eA

For instance, =  ( f j p ) 1, qk) ~  ZL x  Z2 where leZ L, k e Z 2 is a subset.
The above statements have been proved elsewhere [3], [7]. The following 

examples illustrate continuous wavelets:

Mexican hat, for any positive operators A,B >  0 is defined in Fourier coordinates 
as:

#(*) =  </c|̂ 4/c> e—<fc,Bfc>.
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Morlet wavelet, for any positive and reversible operator C we define

_g <zo |C

3. Homographic wavelet analysis

The requirement that symmetry group should preserve linear structure of a space is 
not generally justified in problems especially connected with a recognition and 
decoding. It is necessary in such a case to include a wider symmetry group, consistent 
with a problem given. For instance, in case of processing and recognition of images 
deformed by elliptical and hyperbolic lenses, homographies are the proper symmetry 
groups.

3.1. Properties of a homography

Let us remind of the essential properties of homographic transformations of a plane:

Lemma 3.1. I f  (z1,z2,z3) and (w1,w2,w3) are two threes of different points in 
condensed plane C ~  S 2, then there exists exactly one homography h transforming 
those points on themselves: /i(z1) =  w2, h(z2) =  w2, /i(z3) =  w3.

Lemma 32 . Homographies preserve an intersection angle between curves. 
Group GL(2, C) has got two-sided Haar measure, which in coordinates

equals dpCL =  \detg\~2da1da1 . . .  da^daA, but its representation as

a2z +  a2 .

9

\J1U up u .

/ a i> «2^
Va3>

homographic transformations on a plane hg(z) = is not integrable.
a3z +  a4

Let us classify subgroups GL(2, C), acting at C as homographies, according to 
geometries described by them [5]:

Affine geometry: C es R2 with the volume measure dp =  dzdz and affine 

symmetry group A(C) of elements hA generated by matrix A =  K  The right

Haar measure for this group is dpA(c) =  -—^dadadbdb.

Spherical geometry: S2 ~  C with volume measure in stereographic coordinates 
dzdz

dp- =  tz-------zt and symmetry groups of homography hA generated by matrices
c (1 +  z z f

AeSU(2). Haar measure for this group, expressed in coordinates called Euler angles 

equals dpSU{2) =  ^ ^ s'm  20dOd<pd\(f, where 0e[O , ji/ 2), <pe[0, 7t), i/f e [ —7t, rc). Group 

elements are represented in those coordinates by

_ / c o s isinOe1̂  ^  \ /  a b\

V isinöe^ cosöe \—b ä )

creating the dense set
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Elliptic geometry: D =  {z e  C; |z| <  1} with volume measure dfiQ =
dzdz

and
(1 — z'z)2

symmetry groups of homographies of groups generated S17(1,1). For this geometry 

Haar measure is dnsua =  -  sm2zdxd(pdil/, where: r e R ,  <pe[0, 7c), t/re[ — tc. tc) are
7t

Euler angles as coordinates of S U (1 ,1). The elements of the following form:

A — ( coshTe‘^ +^ sinhie1̂ - ^  \ _  f a b\
VsinhTe'^- ^  coshze~'^q>~y \P &)

are dense in the group. Other orbits of Sl / (1 ,1) group acting at C are C\D and 
3D u  {oo}. Due to the local isomorphism SL(2, R) ~  S U (l,l)  and Caley transfor­
mation

D 3Z
z +  i 

iz +  1e c+

we can perform elliptical geometry above the half-plane C+ =  {zeC;Imz >  0} with

measure dfj. dzdz and symmetry group of homography hA, where

A eSL(2 ,  R). In this case, Haar measure is d/xSi(2 Ji) =  -  eZtdq>dtds, where te  R, s e  R,

<pe[ — 7t, 7i) are Euler angles for SL(2, R). In these coordinates any group element 
can be approximated by elements of the following form:

^ _ {  costp^, s c o s s i n (pe~t \ _ f a  b

V— sin<pe‘, —ssin<pef+cos(pe_t )  \c d

C+ is one of the orbits C + , C _ , C 0 u { o o }  acting in this group on the whole Riemann 
plane C, classified by a sign of the imaginary part

3 2 . Elliptic wavelets

The S U (1 ,1) group consists of elements of form g =  ( a- j,
_ \ b dJ

where \a\2 — \b\2 =  1. As

the subgroup GL(2, C) it acts a natural way at C through homographies h (z) =  
az +  b
-------- . One of this action orbits is disc D. Going back to this action at functions over
bz +  a
disc D, we can obtain the whole family of actions parameterized by X >  0 in the form

1
T gf{z)- ( S z + a ) l f \Ez +  dJ·

a z+ b
(2)

Let <&x be the Hilbert space of analytical functions over the disc D integrable with 

the square relative to the measure dfi0 =  - —-(1  —zz)x~2dzdz invariant to the above
K
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action. Representations Sl/ (1 ,1) described by Eq. (2) in Hilbert spaces with scalar 
product

if\ 9 >  =  \ f\ f)9^ )dpQ
D

are unitary and unreducible for natural A >  1. It is shown below that the above 
representations of S U (1 ,1) group are integrable in the sense of Statement 1.1.

Let z be an operator of multiplication by an argument zf(z ) : =  z/(z). Its 
conjugation in the sense of a scalar product <-|·)* is an operator of the following 
form

<5: =  z + =  d
1 A - l + z d z'

Eigenstates of this operator, called coherent states or generalized exponents, are 
candidates for being the basic wavelets. There are holomorphic functions K v(z) =

1
r, well known in the theory of coherent states, numbered by eigenvalues v b S).

(1 — vz)x’
Thes create a dense set in 3)k. Moreover, a unity distribution takes place

m  = m
1

(1—zu)' dHo- (3)

Proposition 3.3. The unreducible and unitary representations T  of the Sl / (1 ,1) 
group defined by Eq. ( 2 )  are integrable, i.e., there exist such that

< T j m e L 2(SU(l,l),dpsmui)).

Proof. Let us take i/r =  K 0 =  1 a constant function on the disc for the basic 
wavelet In such a case

T9\p{z) =  (bz + d) - 1 =  a~lKE/.(z),

and after using unity distribution (3) one can find

« ♦ ' » - / ‘ • p b * · - · ' 1·

Using Euler coordinates one can calculate
+ oo *

I dz

K

idq> d\j/ sinh(2r)cosh 2A(t)

St/( 1.1) — oo 0 —k

=  4n 2A+ 1dx =
2 71

I ^ T
<  00.
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Of course, other basic wavelets can also exist, e.g.,

\p(z) =  0(argz — a)0(argz)

which cuts a window viewing angle a. If t/r is a holomorphic function such that 
< T > 11»  is integrable over S U (l, 1) to unity, then the so-called wavelet transfor­
mation exists: W+: -> L2(SU( 1,1), dgSU(i% t))

( % / ) ( * ,  6) =
2 - 1

bz +  a )  (bz +  a)·1

The inverse transformation becomes 

( W ;1g )(z )=  | g(a,b)\l/[ t Z +  b
1

bz +  a ) (bz +  a) sua. i ) ·

SU (1, 1)

For instance, if the basic wavelet is in a coherent state \]/v —
M — 1

71
K -, then the

corresponding wavelet transform W„ acts in the following way: 

W J  (a, b) =  I- — -  (a—vb)~l f ^ Va b
n a — v b j’

and its reverse

W ;1g(z) =
2 - 1

7t

g(a, b)

u dUsua. i)·(d—vb +  (b — va)zf
sua. i )

So we have a family wavelet transforms for SU (l, 1) group, parameterized by points 
of a disc D and natural numbers 2 >  1.

33 . Representations of SL (2, R) over C +

Let C + be an orbit of SL (2 , R) acting on C. For each 2 > 0  the operation

T J(z )  = u / I tI T t ). 9C SL( 2,R)(cz +  d)x \cz +  d (4)
is determined in the function set over C +. The measure of invariance of this 

2 — 1 ( z — z\ 2-2
operation is dfiCt =  _  ( ] dzdz. Let us denote by the Hilbert space of

n \ 2 i J
analytical functions with scalar product

<f\9> = f(z)g(z)dfic + .

c +
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For natural X, T are unitary unreducible representations in Hilbert spaces 3FX. 
Similarly as in the former case, one can find the coupling 5 =  z* of multiplying 
operator by an argument z/(z) =  z/(z), which is as follows:

8f(z) =  (X - l)]f (x )d z + z f(z ) .
i

Its eigenvalues are v e C _ ,  while corresponding eigenvectors are holomorphic 
functions

known to us as coherent states for SU (l, 1) after Caley transform. According to the 
construction of the representation in the Hilbert space 3FX, the following unity 
distribution takes place

c +

The basic wavelet i/i is defined as an element such that the integer of the function 
<7^i/i |i/i)  over SL(2, R) relative to Haar measure is equal to 1.

Proposition 3.4. Representations (4) of the SL(2, R) group are integrable, i.e., basic 
wavelet exists.

Proof. Let us consider the following wavelet i]/ =  K

g — 1 M transforms i/r to T.\j/ =  (- ----- . -— — ) .
y \c d ) r  gY \(a+ic)z +  b +  idj

in 3FX one can calculate

Using unity

In this case 

distribution

<t a  m  =
2 i2 i

z +  i j  \id—b — (a — ic)z dt*r
1

(a ^ W

/  2i y  /  2 ie ^e* \A
\i(d +  a) +  c — b )  \ — se2,+ i(e 2,+  l)J

where: t, s, (p are Euler angles described by Eq. (1). Afterwards one can verify that (for 
X >  1)

J  |<T9iA|i/i>|2d/iSL(2>R)

S I ( 2 . R)

1

7t
d ijd s d ę e 2t^

2e 21

s2eAt +  (e2,+ 1):
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dx ds
2x

s 2x 2 +  ( l  +  x )'
21

2̂-1

( 1 + x ) 2 2 - 1 dx
(1 +  s 2)2

ds <  oo.

Dividing \J/ by the corresponding constant one can obtain the basic wavelet. ■ 
Wavelet transform - » L 2(5L(2, R),d/ist(2_ R)) for each wavelet i/r has the

following form

(% f ) ( a ,b ,c ,d )
1

(cz +  d)x

2
dzdz

where: a, b, c, deR;  ad—b c =  1. On the other hand, the reverse transform has the 
form

-  J 9(“' b·c·d) * i^ T i) ■“«·»·

For wavelet ij/v =  K - , v e C + transformation generated is proportional in action to 
the following transformation:

W J(a ,b ,c ,d ) =
1

(a — vc)‘ f
vd—b
a —vc

and reverse to transformation

W ;l g(z)
g(a ,b ,c, d)

((a — vc)z +  b — vd)x d^SL(2· R)'
S L (2 , R)

3.4. Wavelets fo r  SU(2)

In this case, situation is quite simple, because SU(2) is a compact group. As a result, 
all its unreducible unitary representations are integrable [ 1], and any normalized 
vector of space can be considered as the basic wavelet Examples of such 
a representation are given below.

We give analogous expressions for transforms of this subgroup.

The SU(2) group consisting of matrices of the following form g =

|a|2 +  |b|2 = l ,  topologically equivalent to S3, acts on Riemann plane through 
homographies in a transitive way and has only one orbit C. This operation is 
transferred to the function set over C according to the formula

T J 00 = 1
/(—bz +  a f  V —bz +  a

a z+ b
2 >  0.
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For discrete X, measures dfir  = — 5-  (l +  zz)x 2dzdz invariant in relation to the
 ̂ n

above expression define Hilbert spaces SA of analytical functions with scalar product

</lff> =  i / ( z)3 (z )^c.
c

on which T  acting as unitary unreducible representations.
According to integrability of representations of dense groups for any function 

\J/e SA normalized by a condition |^)S[/(2) =  1 one can define the transform

w m , »  -  J / w  t  ( 5 $ )
c

where (a,b)e  C2; |a|2 +  |i|2 =  1. The inverse transform has the following form:

m ' g)(Z) -  jg (a , ( 1  fo‘+  ' / W
s3

4. Summary

The transformations proposed can be adopted as additional useful tools in solving 
problems of an analysis and recognition of objects obtained from air photographs. In 
general, the above wavelet transforms have justified application in all the cases in 
which an image is conformally deformed, without change of angles and with 
simultaneous change of the curvature. Because inverse wavelet transformation is not 
used for the recognition of images by means of extraction of characteristic features, 
therefore identification of characteristic features can be performed practically by any 
analyzing function \J/.

The wavelet transformation for SU( 1,1), SL(2, R), SU(2) can be adopted for sight 
systems with very wide viewing angle. In such systems the deformation of image 
makes it impossible to identify an object by application of the wavelet transfor­
mation corresponding to the affine symmetry group. The application of the 
transformation connected with a suitable symmetry subgroup of GL(2, C) (depending 
of the lens shape), enables us to avoid the problem of reconstruction of the deformed 
image. It is especially important when one does not know in what way the image has 
been deformed. For instance, the same object observed by the spherical lens will have 
different shape if located in different places. It means that there is no symmetry for 
shifts. The application of an ordinary affine wavelet analysis in such a case will make 
it impossible to identify the same objects located in different positions with respect to 
the lens axis. Therefore, it is necessary “to straighten” the image before wavelet 
analysis. Another possibility is to apply the other wavelet analysis (in this example it 
should correspond to spherical geometry) instead of “straightening”.
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Moreover, the present work enhances the method of searching basic wavelets for 
a given representation as common eigenvectors of the family of operators coupled 
with operators of multiplying by a certain family of functions. We used here one 
operator, namely multiplying by an argument
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