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Use of computer algebra system for recalculation
of the fifth-order aberrations of GRIN media

LEON MAGIERA

Institute of Physics, Wroctaw University of Technotogy, 50-370 Wroctaw, Potand.

The methodoiogy of caicuiation of the Efth-order aberrations of gradient-index (GRIN) media by
application of computer symbotic calculations (computer aigebra) is presented. The software
package applied was REDUCE. The resuits obtained enabled us to correct the results known from
the literature. The designed computer program has also been added. A special computer program
has also been designed.

1. Main points of the theory

The procedure for evaluating the iifth-order abberations of GRIN media has been
described by cuprTA et ai. [1]. Unfortunateiy, a few of the coefficients derived there
are incorrect. The aim of this paper is to demonstrate how to appfy computer
aigebra software for caicuiations of aberrations of GRIN media. For simpiicity, iet us
recall the main points from Gupta's paper.

The optical ray path is described by the well known Hamilton's equations [1]:

X=2P3HI P=
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where X and Y denote transverse coordinates of the ray and P and Q
are their optical direction cosines corresponding to the x and y axes, respectively.
The dot placed over any function symbol indicates differentiation with respect to

—N* **A' Coordinate z is measured along the axis of symmetry. Further,

(7= Y +y\ F=P*+ Qi and H denotes Hamiltonian, which has the following
simple form derived by LUNEBURG [2]:

H= —/n"(Li,z)—F, (n —refractive index). @
Expanding X and P in ascending powers of ray parameters we obtain

N= A EAZ N

3
P=jN+I? 3+ +..,
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where the subscript i denotes the :-th order term. In Equations (3) X3 and X,
are x and y components of the third- and fifth-order aberrations, respectively.
Further expanding Hamiltonian in the Tayfor series we get

H=H.+Hi.y+N.iF+~H2, yi+... @

where

0

Now, inserting Egs. (3) and (4) into Egs. (1) and equating terms ofequal order we get:

= (5a)

*3 = 2H,,iP3+.r3, (5b)

X, = 2H,,iP,+y,, (50)

A=-2HnN, X, (5d)

A3= - 2HAX 3+ P3, (5¢)

P,= -2H3.X,+" (5f)
where:

X3 = 2(H33i/l3+H W
X, = 2(H33i/3+ H.,F3)P3+4(H33U33+H.3F33)P3
+(H33" + 2H33t/3F3 + H.3FDPI,
P3= -2(H3.U3+H33FJX3,
P,= -2("173+H33F3)X3-4(H3.t/33 + H33F33)"3
-(H3.M +2H33t/3F3+ H 33 7)™,
with:
f3 =Xi+ri, F3=PA"+QL U33=X3X3-y3Y3, 73 =73 +8183

Aberrations will be expressed in terms of two paraxial rays: an axial one (h, 3) and
the field one (H, 0). These two rays have the following properties:

hz)=0, h(0=1 H(z)=1and H(O =0,

where ZQ and ( localise object and reference planes, respectively. Therefore, for
general ray with coordinates (xQ,y,) and ( t) in object and reference planes,
respectively, we have:

X3= x,H+fh, y3=yH+fh,
P3= X03+"3, Qizyon+A-

(6)
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Paraxial rays satisfy Hamilton's equations (5a) and (5¢). Therefore, for the axial ray,
in particular we may write:

h= 2H.iP, ¢=-2Hn,A. )

The evaluation procedure of aberration X, can be carried out in steps described
below. The difference of Egs. (5b) and (5e) gives

A(X,3-hP,) =f,3-P h. )

Hence (8) results in

where
i = yi(*33-p3h)dz. (9b)

Inserting Eq. (9a) into Eq. (5b) and integrating the above equation we obtain
z

i
Analogically, the difference of Egs. (5¢) and (5i) gives

= (1)

As in the paraxial image plane localised at Zi, h(z,) = 0, the integration of Eqg. (11)
finally gives

Resuming we see that in order to evaluate aberration X, we have to go through the
following steps:

— estimate the refractive index distribution n,

— build the Hamiltonian H,

— fix parameters of the ray (X(,yo.<.?).

— solve paraxial equations to obtain h, 3, and 0,
— evaluate Taylor coefficients

— evaluate formulae (9b), (9a), (10) and finally (12).

An analogous evaluation procedure is true for ;.
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2. Results and conclusions

A computer program for evaluation of the fifth-order aberrations has been designed
(see Appendix).

With the heip of the program developed, aberrations of the fifth-order have been
evaluated for GRIN medium with the refractive index of the form

n= + + (13)

For this refractive index distribution we have

—1 , .
™" and (= (-g-n-q----)-[]-, (m —natural' number),

2a

and aberrations of the fifth-order have the foHowing compact form:

Z,

X, X, r, P = cosp+ B+ cos29) XoMCi+  cos™(p)cosp
+ X0 (Pt + D2cos 240 + X*r cos P + Fxo, (143)
ys(XQ,r,(p) —  sin™ + Xo"Csin2<p + XoP" sin<p(R™ + R2COS" <)
+ X0™Psin2 + XorQsin<g (140)
where:
r= + P=~"sin”
and Bi, B2 ... are aberration coefficients. The exact forms of afl these coefficients

have been extracted from X~(xQ,r,<p) and YAXQ,r, <) in the foHowing way:

5=X,(0,1, 0),

N 13y, (x L rt/4)\ N 13X (L0
o A.=0' A "0 A.=0

A 1 pix,(l,r,0) 1 37y,(lr,K/4)
N 2sin\(jt/4) \ 3n cos(n/4) 3rn

n /7y, (1r,0)\

= SP-—m-"==7z( a?"),,.*"-
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N 13%Xo,l,n/A\
\ 3x0 A.=0'

173, (x.,1,W 2)\
N * 2 N 3*g

NtI308 (L, M)\ . NX.O.r.x/n

N=2n A | A Br J,.

Comparing a!! the results obtained with those known from [1] one can easily
observe that coefficients: #3 and "2 are not the same. The correct results

should be as follows:

D, - .

The remaining coefficients are the same as those published in [1].

An analogous calculation procedure has been extended for seventh-order
approximation [3].

Summing up we notice that REDUCE has proved to be a powerful too! for
calculation of aberrations of GRIN media [4].

Appendix

% PROGRAM FOR CALCULATIONS OF 5-th ORDER ABERRATIONS ( x - COMPONENTS)
% OF GRIN MEDIA WITH AXIAL SYMMETRY

% " REFRACTIVE INDEX "
n:=no*(i-1/2*a"2*u+!/2*b*a4*u'"2+g*a"6*u"3)$

% " HAMILTONIAN
HAMIL:= -(n"2-v)"(1/2)$
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% "TAYLOR COEFFICIENTS "

H2C:=SUB(u=0,v=0,DF(HAMIL,u,2,v,0))$ H11:=SUB(u=0,v=0,DF(HAMIL,u, 1 v, 1))$
H02:=SUB(u=0,v=0,DF(HAMIL,u,0,v,2))$ H30:=SUB(u=0,v=0,DF(HAMIL,u,3,v,0))$
H21:=SUB(u=0,v=0,DF(HAMIL,u,2,v,1))$ HI 2:=SUB(u=0,v=0,DF(HAMIL,u, 1v,2))$
H03:=SUB(u=0,v=0,DF(HAMIL,u,0,v,3))$

% " PARAXIAL RAYS

h:=SIN(a"z)$ hD:=COS(a*z)$ th:=no*a*COS(a*z)$ thD:=-no*a*SIN(a*z)$
z0:=0$  zI:=2*m*Pl/a$ dz:=(4*m-3)*P1/(2*a)$

xI"orhD +~hi pl:=xo*thD+k*th$
yl :=eta*h$ ql:=eta*th$
UL-xI**2+y1**2$ VI:-pl**2+ql**2$
% " FURTHER EVALUATIONS"

let COS(2*m*P1)=l; let SIN(2*m*PI)=0;

let COS((2*m*PI-PI)/2)=0; let (SIN((2*m*PI-Pl)/2)r2=l;
let SIN((4*m-3)*P1/(2))=I; let COS((4*m-3)*Pi/(2))=0;
on div; on exp, off allfac;

n:=(HH*UI+HO02*V )*pl*th+(H20*U I+HII*VD)*xI*h$  cl:=INT(H,z)$
cl:=cl-SUB(z=0,c)$

fl-(HO2*VI+HII*UI)*(pl/h)$ f2:=DF(h,z)/(h**2*th)"cl$ wl:=INT(fl-f2,2)$
x3:=2*h*(wl-SUB(z=dz,ws))$ P3:=(th/h)*x3-(2/h)*cl$

fI" (HI*UI+H02"VI)*qMth+(H20*Ul+HII*VI)*y 1*h$ cl:=INT(f1,2)$
fl:=(HO2*VI+HII*UN*(ql/h)$  f2:=OF(h,2)/(h*"2*th)*cl$  wl:=INT(fl-f2,2)$

y3:=2*h*(wl -SUB(z=dz,w1))$ Q3:=(th/h)*y3-(2/h)*c 1$

U13:=xI*x3+yl*y3S V13:=pl*P3+ql*Q3$
fx5a:=INT((HI*UI+HO2*VI)*P3"th,z)$  fx5a:=SUB(z=zl,6t5a)-SUB(z=0,ix3a)$
ix5b:=INT((H20*UI+HII*VI)*x3*h,z)$ x5b:=SUB(z=zl,ix5b)-SUB(z=0,fx5b)$
fx5c:=2*INT((h 11*U 13*p ) *th+h02*V 13*p 1 *th),z)$  X3C:=SUB(z=z 1,6t5c)-SUB(z=0,fx5¢)$
fx3d:=2*INT((H20*U 13+H H"V13)*x I*h2)S  ix5d:=SUB(z=zl ,&5d)-SUB(z=0,ix5d)$
fx5e:=l/2*INT((H21*U1"2+2*H12*U!*VI+H03*VI**2rpl*th,z)$
ix5e:=SUB(z=zl,ix5e)-SUB(z=0,ix5€e)$
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Ix3f:=1/2* INT((H30*U I**2+2*H21*U I*V I+ H12*V [**2)*x!*h,z)$ '
ix3f:=SUB(z=zl,ix5f)-SUB(z=0,Ix3f)$

%clear fl,wl,wl,x3,p3,cl,i2,y3,q93,ul3,vI3,ui,vi;
Ix5:=(fx5a+ix5b+fx3c+fx3d+ix5e+fx5f)$

k:=r*COS(fi)S eta:=r*SIN(fi)$

on aiifacS

% "TOTAL ABERRATION X3"
x5:=2/SUB(z=zl,th)*ix5$

pauseS

% " ABERRATION COEFFICIENTS "

S:=SUB(x0=0,r=l ,fi=0,x5);

B1:=SUB(x0=0,r=1 fi=Pi/4,DF(x5,x0)); B2:=SUB(x0=0,r=I,fi=0,DF(x5,x0))-B 1,
Cl:=SQRT(2)*(SUB(x0=0.r=!,fi=P1/4,DF(x3.x0,2))-1/2*SUB(x0=0,r=[,fi=0,DF(x3,x0,2));
C2:=SUB(x0=0,r=1,fi=0,DF(x5,x0,2))-SQRT(2)*SUB(x0=0,i=1,6=P1/4,DF(x5,x0,2));
DI:=0.5*SUB(x0=i,r=0,fi=P1/4,DF(x5,r,2));
D2:=0.5*SUB(x0=1,r=0,G=0,DF(x3,r,2))-DlI;

Ecoeif:=SUB(xo0=l,r=0,fi=0,DF(x5,r));

F:=SUB(x0=1,r=0,x5);

showtime;
end;
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