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Teaching optics

Possibilities of aberration correction in a single spectacle lens

M arek Zając

Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, 
Poland.

Spectacle-wearers make up a  considerable part of present-day society, so spectacles are one of the most 
popular optical instruments — very simple instruments since they are in lact single lenses. On the other 
hand their mode of operation and the demands for imaging quality are very specific. Therefore, spectacle 
lenses are interesting objects for aberration analysis and are excellent examples for illustrating purposes 
while teaching geometrical optics. Typically, the spectacle lens is fixed at some distance in front of the eye. 
When looking at distant objects, the eye rotates around its centre of rotation while the field-of-view angle 
is limited practically only by the spectacle frame. The chief ray, connecting point of fixation and centre of 
eye pupil always passes through the eyeball centre of rotation. Therefore we can assume that spectacle 
lens has shifted output pupil while preserving a relatively large field of view. Consequently, it is important 
to correct field aberrations, in particular astigmatism. It is interesting to investigate relationships between 
spherical aberration, coma and field curvature each as a  function of output pupil shift and to point out 
that it is possible to correct fully astigmatism and minimise spherical aberration or coma

1. Introduction
For about 700 years spectacles have been used for correction of such vision defects 
as myopia, hypermetropia, astigmatism or presbyopia. Except for very few cases, 
single lenses — mainly of spherical or toroidal surfaces — have been used to this 
aim. Only recently, aspherical surfaces are applied as well.

As in any other optical instrument, the imaging quality is of major importance 
when considering spectacle lens design. Typically, image quality is expressed in terms 
of geometrical aberrations (in particular, the Ill-order Seidel aberrations) and 
chromatic aberration. These aberrations depend on parameters describing the lens 
and imaging conditions, such as the lens surfaces radii of curvature, the lens 
thickness, refractive index and Abbe number of the lens material, maximum field and 
aperture angles as well as object distance and location of input pupil. Some of the 
above parameters depend on the way in which spectacle lenses are used (e.g., object 
distance, aperture and field angle location of input pupil), the others are determined 
by available technology (e.g., index of refraction, Abbe number). There are also 
additional requirements such as minimum and maximum acceptable lens thickness. 
All these factors determine the frames which the optimum lens design has to fit in.

First spectacle lenses had a form of simple plano-convex magnifying glasses 
(R. Bacon, Opus Maius, ca. 1268), then the negative lenses began to be used as well.
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For many years the shape of spectacle lenses was not a result of any theoretical 
calculations, but rather stemmed from experiment and intuition. First theoretical 
solutions are due to W. H. Wollaston, who, in 1804, obtained a patent for meniscus 
spectacle lenses. In the following years the problem of optimum spectacle lenses and 
their aberrations was investigated by F. Ostwald (1898), S. Czapski (1893), 
M. Tscherning (1904), A. R. Percival (1910—1920), L. C. Martin (1910), J. Petzval, 
J. Southal (1937), and others. We will also mention Polish opticians, T. Wagnerow- 
ski, J. Gutkowski, W. H. Melanowski and J. Bartkowska [1] —[5].

In spite of the fact that nowadays spherical lenses are being frequently replaced 
by lenses with aspheric surfaces, the problem of how to optimize a single spherical 
lens seems to be still interesting. Moreover, while teaching optics it is necessary to 
illustrate the theoretical consideration on aberration correction with relatively 
simple, but evident examples. Spherical spectacle lenses may be very useful as such 
examples. Their construction and specific demands for imaging conditions give an 
opportunity for especially careful analysis of aberration correction. Their example is 
simple enough to be understood even by a beginner in optical design, but on the 
other hand, a number of changeable parameters (radii of curvature, output pupil 
shift and object distance) enable us to perform valuable analysis of aberrations.

2. Demands for the construction of spectacle lens

The main parameter of a spectacle lens is its focusing power <P measured in dioptres. 
Its value depends on the refractive error of eye to be corrected. The refractive power 
itself, however, does not determine univocally the construction parameters of the 
lens. Assuming that the lens is spherical (and we will consider only such lenses in this 
paper) it is necessary to determine the radii of curvature pi and p2 of its two surfaces, 
index of refraction n and Abbe number v. Choice the above-mentioned parameters is 
a basic part of the lens design process.

While designing the lens a number of factors have to be taken into account. The 
three main criteria of a good quality spectacle lens are as follows:

— quality of an image formed with the lens,
— esthetic reasons and wearing comfort,
— technological reasons.
In this paper, we will concentrate only on the first of these criteria. The imaging 

quality is typically described in terms of aberrations, in particular Ill-order Seidel 
aberrations, such as spherical aberration, coma, distortion, field curvature and 
astigmatism as well as chromatic aberration. The amounts of particular aberrations 
depend on the construction parameters of the lens and the aperture and field angles. 
The latter are determined by the imaging geometry, i.e., the location of an object 
point and input pupil which, in turn, depends on the manner in which a person 
wears his/her spectacles. Typically, the spectacle frame holds lenses some distance 
from the eyes in a fixed position. While looking straight ahead the line of sight 
(which with some approximation is an extension of the eye’s optical axis) intersects 
the lens in its optical centre.
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Fig. 1. Off-axis object viewed through spectacle lens: a — field of view, b — field of sight

If the eye is at rest, then we see some part of the object space limited by the 
extension of retina. This is called “field of view” (Fig. la). However, the density of 
fotosensitive cells (rodes and cones) is high enough to give good vision only in 
relatively small central region of the retina called yellow spot Therefore, while 
observing an extended scene the eye instinctively “scans” the object space thus 
allowing to form sharp images of each detail of the observed object on the yellow 
spot. The direction of the line of sight changes thanks to rotation of the eyeball 
about its centre. The part of the object space seen due to the rotation of the eyeball 
but with head fixed is called “field of sight” (Fig. lb).

Fig. 2. Aperture diaphragm in the optical system composed of the eye and spectacle lens.

Principal rays drawn from the different object points of the whole field of sight 
intersect in the eyeball centre of rotation. We can recall here the definition of the 
aperture stop of the optical system (limiting the aperture angle of the light bundle 
entering it). According to it the principal rays drawn at different field angles with 
respect to the optical axis intersect in the centre of input pupil. Therefore we can 
assume that the optical system composed of motionless spectacle lens and rotating 
eye has an input pupil located in the eyeball centre of rotation. In other words, the 
spectacle lens has the input pupil shifted inwards by a distance d. This is illustrated 
in Fig. 2.

The distance from the spectacle lens to input pupil depends on the method of 
holding this lens in front of the eye. Typical spectacle frames fix the lens about 
12—13 mm from the outer surface of the cornea. The average distance from the
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cornea to the eyeball centre of rotation also equals about 12 — 13 mm. We can, 
therefore, assume that in the typical case the input pupil of the spectacle lens is 
shifted about d — 25 mm behind the lens.

Moreover, the optical axis of the spectacle lens is not horizontal, but bent by the 
so-called pantoscopic angle (about 10°). It follows from the fact that our line of sight 
is very seldom strictly horizontal. More often we look somehow downwards “in 
front of our feet”. Maximum angle between the optical axis of the spectacle lens and 
the line of sight is about 35° up and 45° down. Object location varies depending on 
whether the spectacles are destined for distant vision or for near vision. In the latter 
case it is assumed that the object distance equals approximately 25 — 40 cm 
(depending on the character of patient’s work or any other activity).

In order to study the optical system composed of eye and spectacle lens in more 
detail let us assume that the eye is not emmetropic. It means that the far point of the 
eye (i.e., sharp image of this point is formed on the retina without accommodation) 
is not located at infinity. For myopic eye the far point lies at a finite distance from 
the eye, for hyperopic one the far point lies behind the eye and is virtual independent 
on the direction of sight. When eyeball rotates its far point encircles a surface called 
far point sphere K R. Similarly, we can define the near point sphere K P. It is a surface 
encircled by the near point while rotating the eyeball. The near point is defined as an 
object point imaged sharply on the retina under maximum accommodation. Both 
spheres, the far point K R and near point K P for myopic eye are illustrated in Fig. 3. 
Let us note that both spheres have common centre being an eyeball centre of 
rotation.

Fig. 3. Far point sphere K R and near point sphere K T for myopic eye.

By definition the spectacle lens (for distant vision) has to correct the imaging 
conditions of the eye in such a way that it should image the object point lying at 
infinity onto the far point of the eye. Allowing eyeball rotation means that the 
fixed spectacle lens should image points lying at infinity onto the far point sphere of
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the eye. By analogy the spectacle lens for near vision should image the points lying at 
some finite distance onto the near point sphere of the eye.

Light rays emerging from infinity are focused by the lens into its focal point F. 
In ideal conditions the rays coming from infinity at different field angles should be 
focused onto perfect sphere (to call it “focal sphere”). In fact, it is not true for real lens. 
A typical “focal” surface called Petzval-Coddington surface differs somehow from the 
sphere. The shape and location of the Petzval-Coddington surface depends on the lens 
geometry and the location of input and output pupils. As it is seen in 
Fig. 3, this surface can be approximated with a sphere K F the radius of which is equal 
to the difference of the lens focal length and the value of the pupil shift Sphere K r 
should coincide with far point sphere K R or near point sphere KP for distant or near 
spectacles, respectively. Non-zero difference between sphere K F and Petzval-Codding­
ton surface means aberrations of the optical system composed of the lens and eye.

The aberrations are thus a measure of optical imaging system quality. A number of 
different descriptions of aberrations are used, of which we can mention wave 
aberrations or ray aberrations. One of the most typical aberration descriptions, called 
Seidel approximation, is based on developing the eiconal into a power series according 
to output pupil co-ordinates. The III-order coefficients of Seidel approximations 
describe such aberrations as spherical aberration, coma, astigmatism, etc.

Not all of the III-order aberrations are equally important for the spectacle lens. It 
is well known that spherical aberration is an aperture aberration. The aperture angle 
of an eye is rather small. Assuming that the iris diameter does not exceed 8 mm, and 
the object distance is not shorter than 20 cm we can estimate the highest aperture 
angle as to =* 2°. For such a small aperture angle spherical aberration is practically 
negligible. For similar reasons also coma is not very important Distortion is an 
aberration which does not destroy image sharpness, so its influence on the spectacle 
image quality is not of major importance. Field curvature is to some extent 
compensated by dynamic accommodation of the eye. The most important aberration, 
which seriously influences the imaging quality of spectacle lens is astigmatism. As it 
was pointed out the field of view is rather large; maximum field angle may be as high 
as some 30°. Moreover, the off-axis astigmatism destroys the image in such a way that 
is very uncomfortable for the spectacles wearer. Concluding, we may state that not all 
aberrations must be corrected with equal care. Undoubtedly, the most important one 
is astigmatism.

Since spectacles are designed as single lenses, this paper is in fact devoted to the 
general discussion on the possibilities of correcting of particular aberrations of 
a single lens.

3. Geometrical relations
3.1. Single spherical refractive surface

In Figure 4, the imaging by a single spherical surface separating media of different 
refraction indices is illustrated. Let the indices of refraction be n and n', and the 
surface radius of curvature equal p. It is convenient to make use the value
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Fig. 4. Positive lens with shifted pupil and its Petzval-Coddington surface (P-C) and focal 
sphere KP.

V describing the surface curvature

* 4
( i )

Focusing power of such a surface is

<P'p = (n '-n )V p. (2)

Imaging conditions are given by the following formulae (see notation in Fig. 4): 

n 'V  = nV' + <P'p, (3)
n'y'V' =  nyV  (4)

where V and V  are the reciprocities of object and image distances, respectively:

V - Ks

v ' = 7

(5)

(6)

The object and image sizes are denoted by y and y', respectively.
The wave front in the optical system output pupil is typically developed into 

a series according to Seidel formula. The part corresponding to the Ill-order 
aberrations is

- \ s ( x 2+ y2)2Ą ( C xx  + Cyy)(x2+ y2) 

- ^ F (x2+ y2) - ^ ( A xx 2+ A xyx y+ A yy2)+ ^(Dxx  + Dyy) (V)

where: S, Cx, Cy, F, Ax, Axy, Ay, Dx, Dy denote the Ill-order aberration coefficients.
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For a single spherical refractive surface the above coefficients are expressed by
the imaging parameters as follows:

— spherical aberration

S =  nV(V— Vp)2- n 'V '( V '- V p)2, (8)

— coma

Cy = nyV2(V— Vp) -n 'y 'V '2(V '-V p), (9)

— astigmatism

Ay =  nyV 3 — n 'y 'V '3, (10)

— field curvature

Fy =  nyV2(V - Vp)—n'y'V'2(V — Vp), (11)

— distortion

Dy = nyV3- n 'y ’V’3. (12)

3.2. Thin spherical lens

Spherical lens (Fig. 5) is, of course, a combination of two spherical surfaces of 
curvatures K i and Vp2, and focusing powers <PX and <P2, respectively:

^ = ( » - 1 ) ^ ,  (13)

<*»2 =  (1 -n )V p2. (14)

By summing up the formulae (8)—(12) which describe the particular aberration 
coefficients for the first and second surfaces of the lens and taking into account the 
imaging conditions (3), (4) it is possible to derive formulae describing aberrations of 
the whole lens.

Fig. 5. Imaging geometry by a  single spherical surface.

Let us assume that the point object is specified by the parameters y  and V. 
The first surface images it into a point specified by parameters yj and V\ were (see
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Eqs. (3) and (4)):

nV’i =  V + 0 U (15)
ny'iV'i = yV. (16)

If the lens thickness can be neglected this point acts as an object for imaging by 
a second surface. Therefore we can write:

V\ =  V2, (17)

y'i =  y 2· (18)
Imaging by a second surface is described analogously by:

V  — nF2 +  $ 2, (19)
y'V' =  ny2V2. (20)

From formulae (13)—(15) and (17) and (19) there result the expressions describing 
imaging properties of the whole lens:

V'=V+<P, (21)
y'V' = yV  (22)

where:

^  = >̂l + 0 2 (23)

is the focusing power of the whole lens.
For convenience we can introduce the normalisation of some parameters and 

divide them by the focusing power of the lens <P according to the following formulae:

v =  V/<P, (24)
v' =  V'/<P, (25)
(pl =  <V*· (26)

The geometrical shape of the lens is thus univocally described by a parameter

<Pi =  W - P 2 /P 1 ) ·  (2 7 )

The lens shapes for different values of parameter cp1 are shown in Table 1.

T a b l e  1. The shape of lens versus parameter tp^

Value of q>l (pl < 0 q>1 = 0 9>i =  0.5 <pt =  1 <Pi >  1

Lens shape Meniscus
-convex

Plano
-convex

Double
-concave

Plano
-concave

Meniscus
-concave
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4. Ill-order aberrations
4.1. Spherical aberration

The coefficient describing spherical aberration of thin lens can be obtained by 
summing up the coefficients for both surfaces (see Eq. (8))

S =  V(V— Vpi)2-n V \(V \  -  Vpl)2 + nV2(V2-  Vp2)2 -  V’(V -  Vp2)2. (28)

After inserting Eqs. (15), (17), (19) we obtain

s = v , + * r r * r .  *— +n— 1 \  « n — 1
-  [7-M P] V+

n - 1

2<PW,
— 1 V 2V  —

(n - l)n + * v' ‘ f f + £ ) + 2 [ y + * ] № * ) K l
2<PF2,

-------- + V V 2i - [ V + ‘P] Vpl. (29)

After inserting Eq. (13), introducing normalised parameters (Eqs. (24) —(26)) to 
(28) and suitable rearrangement we have:

S =  — { (-3 n 3+4n2 +  n -2 ) i;2 +  [4(n2-l)(?)1-n (3 n2- 2 n - l ) ] u

- [ (2  +  n)<pf-n(l +  2n)^1 +  n3]}. (30)

Comparing the right hand side of Eq. (30) to zero should lead to the condition 
under which spherical aberration vanishes. It is easy to see that the resulting 
relationship is a quadratic equation with respect to cp1. A real solution exists only if 
the discriminant of this equation is non-negative

A =  4 u (n - l)2( u + l ) + l - 4 n > 0 .  (31)

After rearranging Eq. (31), the appropriate condition is

4{n— l)2vz + 4(n—l)2v + l —4n ^  0. (32)

Since the index of refraction n is always greater than 1 the above inequality holds 
only for values of parameter v fulfilling the relations:

v iS
(n— l +  >/n2 +  2n) 

2(n — 1)
(n — 1— y /n 2 — 2n) ^  

2( n - l )
(33)

The values of refractive index for typical glasses are enclosed in the interval 
1.4 <  n < 1.8. The possible values of parameter v fall in the hatched region of the 
graph presented in Fig. 6.

As one can see from this figure two regions of possible solutions exist. In one of 
them the values of parameter v are greater than 0. However, positive v corresponds 
to the object located behind the lens (imaginary object). Such a solution is not
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Fig. 6. Range of param eter v describing object distance for which the correction of spherical aberration 
is possible as a function of values of refraction index rt.

interesting while considering spectacles. In the second solution v < —2. The object 
distance is then shorter than half of the lens focal length. Such a situation can be met 
for the reading glasses of small focusing power (object distance 2 5 -4 0  cm, $  < 2 D). 
Unfortunately, for the most interesting case, i.e, when object is infinitely distant 
(v =  0) spherical aberration cannot be compensated. A single spherical spectacle lens 
for distant vision is always burdened with spherical aberration.

We cannot fully compensate the spherical aberration, however, there exists 
a possibility of its minimization. It is the case where the first derivative of following 
equation is equal to zero:

^  = n(n^-l) C4 ("2 “  v~ 2(n+ 2) Pi + "(! + 2n)] ■ (34)

By comparing the right hand side of this equation to zero we obtain the well 
known condition for the lens of minimum spherical aberration [6], [7]

4(»! - l ) I.+ n(2n+ l)
-------- 2( i T 2j-------- ' (35)

T a b l e  2. Example lenses of minimum spherical aberration.

V s [mm] n <Pl
0 CO 1.4 0.782

1.5 0.875
1.6 0.933
1.7 1.011
1.8 1.089

-0 .2 5 -4 0 0 1.4 0.641
1.5 0.679
1.6 0.717
1.7 0.755
1.8 0.795
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Fig. 7. Values of parameter <p, =  'PJ'P describing the shape of the lens minimised spherrical aberration 
versus the refractive index n for different object locations: v =  0 — object at infinity, v < 0 — object in 
front of the lens (real), v > 0 -  object behind the lens (imaginary).

The values of this parameter as a function of v and n are graphically presented in 
Fig. 7. In Table 2 the lens shape is calculated for two object distances, namely 
infinity (distant vision) and s =  — 40 cm (typical reading distance). It is seen from the 
graph and the table that for higher index of refraction the lenses of minimum 
spherical aberration have the first surface more convex.

The considerations presented above lead to the construction of a single lens of 
minimum spherical aberration. From formulas (1), (13), (16) it follows that the radii 
of curvature of such lens are determined by the parameter q>1 as follows:

n - 1
P i  = V1* ’

1 — n

(36)

(37)

4.2. Coma

The coefficient describing coma of thin spherical lens calculated as a sum of 
appropriate coefficients for both its surfaces (Eq. (9)) has the form

C = œ [v (V -V pi) 

V+ Q jV+ Q y

n \  n - K pi

n \  n 

where œ is a field angle

-V p 2)- (V + * )(V + * - V P2) (38)

CD =  y V . (39)
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After inserting Eqs. (13) —(26) to Eq. (39) and rearranging the latter we have

(40)
~(vV)<Pz

C = —7----— \_(2n2 — n —l)v+ n2 — q>l(n+ iy\.
n (n - l)

From the above formula it follows that it is possible to find such a lens shape 
that coma vanishes. The necessary condition is

<Pi =
I n2- n - 1 

n + 1
v+

n + 1' (41)

Fig. 8. Values of parameter cpx — <PX/<P determining the shape of coma-free lens as a  function of value of 
refractive index n for different object locations: v — 0 — object at infinity, t> <  0 — object in front of the 
lens (real), v > 0 — object behind the lens (imaginary).

T a b l e  3. Example coma-fee lenses.

V s  [mm] n <?>1
0 0 0 1.4 0.871

1.5 0.900
1.6 0.985
1.7 1.070
1.8 1.157

0.25 -4 0 0 1.4 0.658
1.5 0.700
1.6 0.742
1.7 0.785
1.8 0.829

The values of parameter cpx as a function of refractive index n (from the interval 
1.4 <  n < 1.8) for different object locations (described by the parameter v) assuring 
the correction of coma are plotted in Fig. 8 and illustrated in Table 3, where two
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typical object distances are considered: infinity (distant vision) and S =  — 40 cm 
(typical reading distance). It is seen from the graph and the table, that coma-free 
lenses have similar shape to lenses free from spherical aberration.

43. Astigmatism

Starting from formula (10) applied to both surfaces of a lens and taking into account 
formulas (13)—(26) we obtain expression describing III-order astigmatism of a single 
lens

A = nyV 3—n'y'V'3.

After rearranging Eq. (42), we obtain 

A = - ( yV )2<P3.

(42)

(43)

The above relation expresses the dependence of astigmatism on the field angle 
to =  yV. It is necessary to note that formula (43) concerns only a thin lens with input 
pupil in contact.

In Section 2, we pointed out that in the optical system consisting of the eye and 
spectacle lens the input pupil is shifted behind the lens at a relatively large distance. 
This fact has essential influence on the lens aberrations. Therefore, we have to take 
into account this pupil shift while estimating the Ill-order aberration coefficients. 
It has been shown [8] that the aberration coefficients (for the lens with shifted pupil) 
can be expressed by appropriate aberration coefficients of the same lens with pupil in 
contact as follows:

s t =  s ,
Ct — C —yS,
Af = A —2ytC+y?S.

(44)
(45)
(46)

where yt is a perpendicular shift of the pupil centre in the lens plane being 
a consequence of longitudinal pupil shift zt. As can be seen from Fig. 9, yt depends on 
zt and object location. Depending on whether object point lies at infinity (v =  0), or 
at a finite distance (v ^  0) the dependency between yt and zt is either:

yt = wzv
or

y t =
2tyV  

z ,V - 1'

(47)

(48)

In the above formulas A, C and S are aberration coefficients of the lens with 
pupil in contact, but in appropriately shifted (y substituted by y —yt) variables. 
Coefficient S does not depend on this shift, but formal expressions for coefficients 
C and A  depends on the object location. For infinitely distant object the product yV  
in formulas (40) and (43) equals field angle a>, so the form of coefficients C and 
A  does not change. In such a situation inserting (30), (40), (43) and (47) into (46) 
enables us to determine astigmatism of the lens with shifted pupil.
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Fig. 9. Lens with the shifted input pupil — geometry relations.

From the formula below, it follows that astigmatism after pupil shift will 
vanish if

yt =
C ± yJC 2 — SA

s
(49)

For some combination of coefficients S, C and A it is possible to find such a pupil 
location that astigmatism is fully compensated. To obtain such correction it is 
necessary to shift pupil by the calculated distance. If the object is located at infinity 
(for distant spectacles) it is possible to find direct formula connecting the parameter 
(pl with pupil shift zt assuring correction of astigmatism. Inserting formulas (30), (40), 
(43) and (47) into (46) we find two possible values of the input pupil shift assuring full 
correction of astigmatism

_  (n+ i) 9 i - n 1±y/<Pi-n2q>l f50}
z* $  (n + 2)cpi~(2n + l)n(p1 + n2 '

From formula (50) it follows that the solution exists only if the lens shape fulfils 
the relationships:

——— ^  n2 or <p, <  0 
Pi

(51)

Using formula (50) we can calculate the value of necessary shift or find out that 
the desired solution does not exist in each particular case. Formula (50) is more 
convenient after rearranging it in such a way that for given value of pupil shift it is 
possible to find the lens parameters assuring astigmatism correction since for the 
spectacle lens, the value of pupil shift is determined by the spectacle frame

_  w(2w+l) 2(n2- l )  +  v/n2(l-4n)<P2z(2 +  4 (n - l )2(l-n<PzJ 
<Pl ~  2(n+2) 2zt4>(n +  2) ' 1 ’
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The solution exists only if the following condition is fulfilled: 

n2(l-4n)<i>2z2 +  4 ( n - l ) 2(l-n4>zt) >  0 (53)

from which we have the inequality

— 2(n —l)[(n—l) +  -v/n(n +  2)] - 2( n - l ) [ ( n - l ) - V n ( n + 2)]
n(4n— l)zt "  "  n(4n — l)z( ' 1 }

Fig. 10. Range of total focusing power where the correction of astigmatism is possible versus refractive 
index n for selected values of input pupil shift zr

It means that astigmatism can be corrected by pupil shift only for the limited 
range of focusing power values. In Figure 10, this range for different pupil locations 
versus index of refraction is presented. From Eq. (52) we can calculate the values of 
tpy describing the shape of lens with astigmatism corrected by pupil shift. Within the 
range given by inequality (54) two solutions exist. In the papars [3], [4] they are 
called Wollaston type and Ostwald type solutions, respectively. It is seen from 
Fig. 10 that for typical value of input pupil shift (25 mm) the lens power should not 
exceed +10 D. Lenses of such power (or even greater) are used in high hyperopia or 
for correction of aphakic eye.*

In Figure 11, the dependence of parameter cpl on n for several typical values of 
pupil shift and the lens of focal power $  = +10 D is illustrated. It can be seen that if 
this shift equals zt — 25 mm there are no solutions for refractive index smaller than 
n = 1.6 (on the basis of Ill-order aberration theory). In order to obtain a solution it 
is necessary to assume smaller value of z„ that is, to put the lens closer to the eye.

As numerical examples we considered three typical spectacle lenses of focusing 
power =  +10 D (as discussed above), i  =  + 2 D  (used in moderate hyperopia)

*For example, after surgical extraction of the crystalline lens (in the case of cataract).
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Fig. 11. Dependence param eter <px =  i j / i  describing the lens shape assuring correction of astigmatism 
on index of refraction n for a few typical values of the input pupil outset zi and focusing power 
<P =  +10  D  and object at infinity.

and $  =  — 2 D (for moderate myope). In Tables 4a, b, c, the construction parameters 
of such lenses with compensated astigmatism are given for object distance s=  oc.

If an object to be observed lies at a finite distance (reading spectacles, near vision) 
the analytic solution of the condition A, =  0 becomes too complex to be useful in 
practice. In such a situation the numerical methods are applicable in search for the 
solution."1 Nowadays, thanks to fast computers and availability of a number of 
computer programs for symbolic calculus this makes no problem.

T a b l e .  4a. Example astigm atism—free lenses for distant vision (object located at infinity, lens focusing 
power <P =  + 1 0  D, input pupil shifted 25 mm behind the lens).

n <Pi Pi [mm] Pi [mm]

1.4 N o solution
1.5 N o solution
1.6 1666 22.506 36.014
1.7 1901 24.130 36.823

3.206 21.834 31.732
1.8 3.241 24.684 35.698

3.654 21.906 30.166

Example curves presenting the value of astigmatism versus of the lens shape 
(parameter (p x) found numerically are presented in Fig. 12. The focusing power of the 
lens equals <P = 2 D, however the object distance is assumed to be s = 40 cm (typical 
reading distance). From the curves presented in Fig. 12 it is seen that for each case 
considered two solutions exist. *

* There are also other possibilities of finding the solution. One of them employs the numerical tracing 
of a chief ray in meridional and sagittal planes (calculation of meridional and sagittal curvatures K m 
and K,). This method, also based on numerical calculation, leads to  almost identical results. The other 
possibilty is to use approximate formulas such as given by Bartkowska [5] and M elanowski [4]. In 
this paper, however, we restricted ourselves to Seidel aberrations as the most frequently discussed.
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T a b l e  4b. Example astigmatism—free lenses for distant vision (object located a t infinity, lens of 
focusing power #  =  +2 D, input pupil shifted 25 mm behind the lens).

n <Pi Pi [mm] Pi [mm]

1.4 4.203 47.585 62441
8.655 23.108 26.127

1.5 5.294 47.223 58.221
10.705 23.354 25.760

1.6 6.444 46.555 55.107
12.755 23.520 25.521

1.7 7.650 45.752 52632
14.803 23.644 25.357

1.8 8.905 44.919 50.601
16.852 23.736 25.233

T a b l e  4c. Example astigm atis—free lenses for distant vision (object located at infinity, lens of focusing 
power # = - 2 D ,  input pupil shifted 25 mm behind the lens).

n Vi Pi [mm] Pi [mm]

1.4 -2 .472 80.906 57.604
-7 .259 27.552 24.216

1.5 -3 .363 74.338 57.300
- 9 2 1 0 27.144 24.486

1.6 -4 .308 69.638 56.528
-11.159 26.884 24.675

1.7 -5 .3 0 4 65.900 55.520
-13.108 26.701 24.804

1.8 -6 .3 4 4 63.052 54.466
-15.057 26.566 24.921

Fig. 12. Value of astigmatism versus the parameter <p1 determining the lens shape for focusing power 
<P =  + 2  D, object distance s =  — 40 cm and selected values of refractive index n.
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The values of parameter (px describing the astigmatism free lenses found 
numerically for the lenses of focusing powers $  =  +10 D, <P = +2  D, and 
$  =  - 2  D and selected indices of refraction n are collected in Tables 5a, b, c.

T a b l e  5a. Example astigm atism—free lenses for distant vision (objcet 40 cm before the lens of focusing 
power #  =  + 1 0  D  input pupil shifted 25 mm behind the lens).

n 9>i Pi [mm] Pi [mm]

1.4
1.5 1.943

No solution 
25.733 53.022

2.271 22.017 39.339
1.7 2.175 27.586 51.064

2.724 22.026 34.803
1.7 2.444 28.642 48.476

3.152 22.208 32.528
1.8 2.734 29.261 46.136

3.570 22.409 31.128

T a b l e  5b. Example astigm atism—free lenses for distant vision (object 40 cm in front of the lens of 
focusing power i = + 2 D  input pupil shifted 25 mm behind the lens).

n <Pi Pi [mm] Pi [mm]

1.4 3.288 60.872 87.423
8.158 24.516 27.941

1.5 4.129 60.547 79.898
10.084 24.792 27.521

1.6 5.023 59.725 74.571
12.009 24.981 27.250

1.7 5.966 58.666 70.479
13.933 25.120 27.063

1.8 6.953 57.529 67.293
15.857 25.225 26.932

T a b l e  5c. Example astigm atism—free lenses for distant vision (object 40 cm in front of the lens of 
focusing power i =  - 2  D input pupil shifted 25 mm behind the lens).

n 9>i Pi [mm] Pi [mm]

1.4 -1 .5 5 7 128.452 78.217
-6 .762 29.577 25.767

1.5 -2 .1 9 9 113.688 78.149
-8 .588 29.110 26.074

1.6 -2 .888 103.878 77.160
-10.413 28.810 26.286

1.7 -3 .621 96.658 75.741
-12.237 28.602 26.441

1.8 -4 .393 91.054 74.170
-14.061 28.447 26.559
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5. Conclusions
From the calculations and examples considered we can conclude that single 
spherical lens can be successfully used as a spectacle lens. Due to the specific mode of 
operation (small diameter of eye pupil, rotation of eyeball) such aberrations as 
spherical and comma do not seriously influence the imaging quality. Correction of 
off-axis astigmatism is the most important task while designing spectacle lenses. This 
aberration can be corrected thanks to the fact that the input pupil of a system 
composed of spectacle lens and eye is shifted behind the lens.

The shape of the spectacle lens with astigmatism corrected by pupil shift is given 
by the solution of the equation determining the parameter versus the total lens 
focusing power <ř and the refractive index n. For typical values of this index varying 
from n =  1.4 to n = 1.8 two solutions exist for small focusing powers One of them, 
giving greater values of the lens surface radii of curvatures, i.e., the more flat lens 
(called Ostwald solution) is preferred. For greater focusing powers the solutions exist 
only if higher values of refractive index can be accepted (e.g., for $  >  10 D it has to 
be n >  1.6).

The shape of astigmatism-free lens depends on the object distance. The lenses for 
distant vision (object located at infinity) should be slightly more bent than those 
designed for near vision even for the same total focusing power.
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