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We discuss energy spectrum of electron-hole pairs in a quasi-zero-dimensional system consisting 
of spherical semiconductor nanocrystals placed in transparent dielectric matrices. Absorption and 
emission of light in such systems is investigated. We study theoretically the prospect of using hole 
transitions between equidistant series of quantum levels observed in nanocrystals in design of 
a nanolaser.

1. Introduction
The optical properties of quasi-zero-dimensional structures consisting of spherical 
semiconductor nanocrystals (SNs) (quantum dots) of radius a ~  1 — 10 nm, grown 
in transparent dielectric matrices, are currently being intensively studied [1]. Such 
heterophase systems are promising materials for creating new nonlinear opto­
electronic devices, in particular, elements for controlling optical signals in lasers or 
optical computers [2]. In this context we point out that the SN size a should be in 
the range of a few nanometers, in order to provide for the electron and hole energy 
levels splitting of the order of a few kBT0 at the room temperature T0.

Since the energy gap of a semiconductor is much smaller than in the dielectric 
host, the motion of carriers in a semiconductor nanocrystal is restricted by its 
volume, and optical properties of the systems under study are determined by the 
energy spectrum of spatially confmed electron-hole pairs (EHPs, excitons). Quan­
tum confinement effects have been found in SNs by optical spectroscopic studies 
of electrons [3] and excitons [4], [5].

The energy spectrum of an exciton in a small SN was obtained in [6] — [14] as 
a function of the SN radius a in adiabatic approximation under the assumption that 
me «  mh, where me and are the effective masses of an electron and a hole in a SN. 
In the excitonic Hamiltonian, the electron-hole Coulomb interaction, as well as the 
polarization interaction of the electron and hole with the SN surface, have been
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taken into account. The first order perturbation theory on the electron wave 
function of a spherical potential well of infinite depth has been used. In papers [15],
[16], the finite height of the potential barrier V0 at the boundary between the SN 
and the dielectric matrix, and the associated penetration of the ambient host by the 
electron, have been considered. The electron wave functions were obtained 
in [9], [10] for an electron travelling both in the SN and in the ambient dielectric 
host.

In the experiments reported in [3], an interesting energy structure was found 
which consisted of an equidistant series of quantum levels, caused by quantization of 
the heavy hole energy spectrum in the adiabatic potential of the electron. The 
purpose of the present paper is to discuss the possibility of applying transitions 
between these levels in nanolasers.

The paper is organized as follows. Section 2 is concerned with Hamiltonian 
of electron-hole pairs in SNs. In Section 3, we discuss the energy spectrum of EHPs. 
Section 4 is devoted to comparison of the theory with experimental data obtained 
for CdS nanocrystals. In Section 5, we consider absorption and emission of light in 
SNs. The concept of using CdS nanocrystals as active lasing medium for construc­
ting nanolasers is presented in Section 6.

2. Hamiltonian of electron-hole pair in a nanocrystal

A simple model of a quasi-zero-dimensional structure in the form of a neutral 
spherical SN of radius a and permittivity e2, embedded in a medium with 
permittivity ex, was discussed in [6] —[10]. An electron “e” and a hole “h” with 
effective masses me and mh were assumed to travel within the SN; we use rc and rh 
to denote the distances of an electron and a hole from the center of the SN, 
respectively. We assume that the permittivities satisfy the relation e? »  e1, and that 
the conduction and valence bands are parabolic. In this model, in the framework of 
the effective mass approximation, the EHP Hamiltonian takes the form [6], [7]

H  = - ^ V t - ^ V t  + E t + Veb(f',r\)+ Vw (rh,a) + VcA r e,a)

+ Kh’(f c>fh>a)+ K  A fe>fh>a) (!)

where the first two terms represent the kinetic energy of the electron and the hole, 
Feh(re,rh) is the energy of the Coulomb interaction between the hole and the electron

/ - - e2 a ->
Feh(re,fh) = ~ ^ a ( r ! - 2 r erhcos0 + ri)1'2 (2)

where 0  = <(re,fb), Vee.(re,a), and Vhb,(rh,a) are the energies of interaction of the 
electron and the hole with their own images, Veh.(fe,rh,a) and Vhe.(fe,fh,a) are the 
energies of interactions with “alien” images, and Et is the bandgap in the bulk 
semiconductor with permittivity e2.
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For arbitrary values £x and e2, the terms in Eq. (1) describing the energy of 
the polarization interaction can be written in an analytic .form [11], which is 
particularly simple for the case e2 »  eb [6], [7]:

V^.{rb,a) (3)

K e '( r e . f l) (4)

Vth-(f,f,a) = Vbe....
2fi2a [(rer ja ) 2 -  2rerbcos0  +  a2] 1/2’ (5)

3. EHP spectrum in nanocrystal

The spectrum of EHP in a small semiconductor microcrystal was investigated in [6] 
and [7] in the case where its size was restricted by the condition

a0 «  ab «  a ae ca aex (6)

where ah — e2h2/(mbe2), ae = e2h2/(mee2) and aex = e2h2/{pe2) are the Bohr radii of 
the hole, electron and exciton in the semiconductor with permittivity e2, respectively; 
fi = rnemb/(me + mb) is the reduced effective mass of EHP, and a0 is a characteristic 
dimension of the interatomic distance order. When condition (6) is satisfied, the 
polarization interaction is a significant part in the potential energy of the 
Hamiltonian (1). The above inequalities also allow us to examine the motion of an 
electron and a hole in the effective mass approxiamtion. The validity of (6) further 
enables us to consider the motion of a heavy hole (mb »  me) in the electron potential 
averaged over the motion of the electron (adiabatic approximation).

In the adiabatic approximation we assume that the electron kinetic energy 
is the largest term and we take the last four terms in Eq. (1) together with 
the nonadiabatic operator as a perturbation. Then, taking into account only 
the first order perturbation theory, one can easily obtain the spectrum of an EHP, 

in the state (nc,le,me;nb,lb,mb), (here ne,le,me and nb, lb, are the main, 
orbital and magnetic, quantum numbers of an electron and a hole) [7], [9]

h2
££!::№ > “  w  < .i.+  V'Aa)+K?A (7)

where the first term is the kinetic energy of an electron in an infinite spherical well, 
and Fce.(fl) is the average value of the electron interaction with the self-image with 
the infinitely deep spherical well functions

1 m nc,le,mc W 0 ’“)
Jle+l/2(“ne.lere/fl)

■f/e+3/2(u«.e,ie)
(8)

where Yic,„c are normalized spherical functions, u„cJc are the roots of the Bessel
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function = 0. The quantityIe+ l /2 \u ne,lt (a) is an eigenvalue of the heavy hole
Hamiltonian

(9)

where

V„t,it,mc(rh,a) =  Veb(rh,a)+V ch.(rb,a)+Vhe.{rh,a) (10)

is the average value of the Coulomb interaction and of the electron and hole 
interaction with “alien” images on “free” electron states (8).

Quantitative results for the EHP spectrum (7) are obtained here only for the 
simple case lc — 0. Using expressions (3) —(5), (8) and (10), one can obtain:

and Ci(y) is the integral cosine. Here and below the energy is measured in units 
Rh =  li2/(2mha^) and dimensionless lengths x — r ja  and s = a/ab are used.

Note that in the approximation considered the interaction of an electron with 
the images (its own and “alien”) (12), (13) and the interaction of a hole with an 
“alien” image (12) yield a constant addition ~ s _1 the hole energy.

Taking into account formulae (3) and (10) —(12), we write the potential energy 
in the heavy hole Hamiltonian (9) as follows:

— 2Ci(2nncx) + 2Ci(2nne)+ 2\nx—2 , (11)

(12)

(13)

where
1

¿/"‘•0-°(x,s) =  k V ix ^  + F '’··0·0^ * )

1 2 ‘1— x nnex
— 2Ci(2Ttnex) + 2Ci(27ine)

+ 21nx4—̂  — 4 . (14)

The minimum of the potential energy (14)
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where

Pn o = 2Ci(27ine) —21n(27i«e) —2y+—— 1
·’ £i

(y =  0.577 is the Euler constant) is reached at the point x — 0. A series expansion of 
the potential (14) with respect to the parameter x 2 «  1 with accuracy up to the first 
two terms gives the hole spectrum 2^,0,o(s) in oscillator from [7], [9]

¿£o.o(i) =  ^ ^  + cô(s,ne)^ih-l-^

where
/  2 V /2

<5(s,ne) = 2.232Î l+ - i t2n2J s 3/2,

(15)

(16)

and co(s,ne) is the frequency of the hole oscillator vibrations, rh = 2nr + lh = 0,1,... is 
the hole main quantum number (nr is the hole radial quantum number).

Taking into account formulae (13), (15) and (16) we obtain the EHP spectrum 
[£ ^ >le=o(s)] in the state (nc, le = 0; ih) for the SN of radius (s =  d/ab) [8], [10]

£nhe,ie = o(s) -  £gH—^ Kfi+s 1^ZBei0+ P Bei0+ ^ + c 5 (s ,n e)^rh+ -^ (17)

where K = 0.67 represents the spread of the SN radii [4] and /? = me/mh. Moreover, 
numerical analysis of X-ray data [5], which took the spread of the SN radii into 
account, shows that the mean radius evaluated over the Lifshits-Slezov distribution
[17] was s =  0.86s [5], where s is the SN radius obtained in the small variance 
approximation.

The main contribution to the EHP spectrum (17) is provided by the second term 
(electron kinetic energy), which comes from the purely spatial restrictions imposed 
on the quantization region. The last two terms, which are associated with the 
Coulomb and polarization interactions between the electron and the hole, are 
regarded as corrections. The polarization interaction between the hole and the 
electron, on the one hand, and the surface of the SN, on the other, contributes, like 
the size quantization of carriers, to the renormalization of the energy gap of the SN 
given by Eq. (17). The polarization interaction, which is of the same order of 
magnitude as the exciton binding energy in the SN, in this case is found to be much 
smaller than the size quantization energy of the charge carriers in the SN.

We also note that the exciton spectrum (17) is valid only for lower states of the 
exciton (nc,0, tb) in the SN, for which (En 0 —£ g) «  F0, where F0 is the depth of the 
potential well for an electron in the SN (e.g., in the cadmium sulphide SN, 
F0 = 2.3 —2.5 eV when condition (6) is satisfied [18]).

4. Comparison of theory with experimental data

In papers [3], [19] interband absorption spectra of CdS SNs (e2 = 9.3) of sizes 
varying from 1 to 102 nm dispersed in a transparent dielectric matrix of silicate
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glass were investigated. The effective masses of electrons and holes in CdS were, 
respectively, m jm 0 — 0.205 and mjm§ = 5 (i.e., me« mh). The dimensional 
quantization phenomenon found in [4] for the electron energy spectrum was 
qualitatively described by the formula

-  £ . + ^ < . v (18)

In this case, in the region of SN sizes a comparable with the exciton radius, 
a ^  acx ~  3 nm, the experimental points were observed to deviate from the 
theoretical dependence (18). The spectrum of electron-hole pairs in the interval of 
SN sizes a ^  aex calculated in [6] —[10] gave a qualitatively correct description of 
the dependence of the experimental spectrum [3] on the SN radius a.

In the experiment reported in [5], an energy structure consisting of an 
equidistant series of levels was found in the region of transitions to the lower 
level of dimensional quantization of the electron (ne = 1). The above structure is due 
to quantization of the hole energy spectrum in the adiabatic potential of the electron.

From the comparison of formula (16) (for ne =  1) with the experimental 
dependence of the splitting magnitude on the SN size a obtained in [5], it fol­
lows that for SNs of radii 1.5 ^  d ^  3.0 nm, the splitting d>(s) (Eq. (16)) is in 
good agreement with the experimental data [5] and differs from the latter only 
slightly (^  4%).

5. Absorption and emission of light in nanocrystal

The interband absorption of light in SNs was studied theoretically in [20] using the 
dipole approximation in the framework of the model considered here, and under the 
assumption that the absorption length X »  a.

An expression for the quantity K(s, co) defined by the hole optical transition 
from the energy level ih =  2nh to the lowest electron level (nc = 1, le = me =  0) was 
derived in the following form:

K(s,co) =  A Z L nh(s)
"h

xáj^cu) — ^ Z 10 + Pli0+ ^  —c5(s,nc = l)^2nh+ ^ (19)

where A(a>) = hco — Eg, w — incident light frequency, and A  is proportional to the 
square of the absolute value of the dipole moment matrix element calculated with 
Bloch functions. The quantity K(s,co) (19) connects the energy absorbed by SN in 
a time unit with the time average of electric field square of incident wave. Moreover, 
the product of K(s,co) and SN concentration in the dielectric matrix gives electric 
conductivity of the quasi-zero-dimensional system under consideration for the 
frequency co, which is connected with light absorption coefficient in the usual way.
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We determine the quantity K(s,co) (19) corresponding to the hole optical 
transition from the energy level rh =  2nh to the lowest electron level (ne =  1, 
le = me = 0)- In this case, the expression for the quantity L„h(s), given by the square 
of the overlap integral of the electron and hole wave functions, takes the form [20]

2n512
(1 + 2/3tc2)3/4

«h+1
2z"hnbl o*r3/4- (20)

In the interband optical absorption spectrum of SN, the radius of which fulfils 
condition (7), each line corresponding to given values of the radial ne and orbital 
lc quantum numbers turns into a series of close lying equidistant levels, correspon­
ding to various values of the main hole quantum number ih. This conclusion follows 
from (15), (16) and (19), and is a direct consequence of the Coulomb and polarization 
interactions of an electron and a hole in SN.

We can estimate the value of the overlap integral square (K(s,a>)/A) using 
(19), (20) and the experimental data taken from [3]. For the hole transitions 
from the equidistant quantum levels: (nb — 0; lb = mb = 0), (nb =  1; Zh = mb = 0), 
(nh = 2; Zh =  mh = 0), (nb = 3;/h — mb = 0), to the lowest electron size-quantized 
level (ne = 1; le — mc = 0), we have

K(s,co)
A T (21)

where: L0 = 7.66s-3/4, L1 = 0.5L0, Lz = 9.4TO_2L0, L3 = 1 0 _2L0. From the 
above expression, it follows that the main contribution in the light absorption 
coefficient in a cadmium sulphide SN with the radius s (Eq. (6)) comes from the hole 
spectral lines corresponding to quantum numbers (nh = 0; /h = mb = 0) and 
(nh =  1; lb = mb = 0), the transition oscillator strengths of which are dominant. The 
contribution of higher excited hole lines (nb ^  2;lb = mh = 0) is negligible.

This way, in the framework of the model of the quasi-zero-dimesional system 
considered it has been shown that the absorption and emission edge of a cadmium 
sulphide SN is formed by two transitons of comparable intensities.

6. Nanolaser on heavy hole transition in SNs

We assume that CdS microcrystals have a direct band structure, like bulk CdS. 
The extrema of the conduction and valence bands are placed in the center of the 
Brillouin zone. Moreover, CdS is a wide-gap semiconductor (Eg = 2.58 eV) in which 
nonparabolicity effects are weak. At the same time, the dispersion laws near the 
bottom of the conduction band and the top of the valence band can be considered as 
parabolic [21].

When developing the theory, the electron and hole bands were assumed to be 
parabolic. The nonparabolicity parameter j  of such bands for EHP energy 
Ei*,o(a) (Eq. (17)) in the ground state, which is obtained from the experiments of 
[3], [19] in SN of size a ~  aex takes a small value
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* )  =  ^ 8%.
h t

This relation gives a basis for the assumption that the valence and conduction 
bands are, to a high degree of accuracy, parabolic.

Scheme of the optical transitions of an electron and a hole in a CdS nanocrystal. The electron energy 
spectrum E„ , (s) (18) and the hole potential energy t?'V0,0(x,s) (14) are shown; £ g — bandgap width. The 
electron states in the conduction band are labelled as Is and lp. The hole states in the valence band are 
denoted by |rh =  0> and |th =  1). Transitions are labelled as follows: 1 — pumping, 2 — creating inverse 
population, 3 — lasing.

In the Figure, the energy diagram of the optical transitions in CdS SN of radius a 
fulfilling condition (6) is shown. The electron energy spectrum E„e,ie(a) (Eq. (18)) in 
the conduction band of a SN of the radius a comparable with the linear dimension of 
quasiparticles in semiconductors is determined only by the size quantization effect.

The energy spectrum /lhc,o,o of heavy hole in the valence band is equivalent to the 
spectrum of hole carrying out oscillator vibrations with frequency c3(s, ne) (Eq. (16)) 
in the adiabatic electron potential.

Based on the results presented we can formulate an action scheme for a laser 
designed on CdS quantum dots grown in boric-silicate glass matrices [3] —[5],
[18]-[22]:



Nanolaser on heavy hole transition ... 155

i) Pumping: the hole transition from energy level 2{,h,0,o(fl) to electron state 
E„e=i,it=o(a) (Is state) in conduction band with energy (transition 1 in the Figure)

hvi{s) =  £ 0+ £ lo (s) +  AiiO,o(s). (22)

ii) Creation of inverse population on the hole level |rh =  0) by means of 
electron transition from the energy level £ x 0(s), with spin flip [23], to the hole 
energy level 2?,0,0(s) (transition 2 in the Figure). The energy of this transition

hv2(s) = Et +Elt0(s)+Xlo,0(s). (23)

in) Lasing: transition of the hole in the valence band between equidistant levels 
\th =  0) -* |ih =  1) (transition 3 in the Figure) separated by the energy

d(s) =  hœ(nc = l,s). (24)

Under the experimental conditions from [3] —[5] and [18], [19], [22] at liquid 
nitrogen temperatures (T  = 77  K), the distance AEC between electron energy levels 
(ne = 1, lc — 1) (1 p state) and (ne = 1, le = 0) (Is state), according to Eq. (18)

ae . = M j l . u t . h W l l ,  *  480 meV
e s2

where ul x = 4.493 [24]. The distance d(s) between the hole energy levels (23) is 

d(s) = hœ(ne = l,s) — 53 meV.

For SN of the radius a = 2 nm, d(s) is several times greater than the thermal 
energy kBT  at T  = 77 K.

In a nanolaser on CdS nanocrystals, the pumping energy hv1 ~  3.11 eV (22) 
would correspond to visible light, and lasing at energy d(s) a  53 meV would occur 
in the infrared range.
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