
Optica Applicata. Vol. X XX II , No. 1 - 2 , 2002

Letters to the Editor

Fast thinning algorithm ready for real-time application

Jerzy Siuzdak

Institute of Telecommunications, Warsaw University of Technology, ul. Nowowiejska 15/19,
00-665 Warszawa, Poland.

A fast thinning algorithm is presented. It is based on the pixel index computation and applicat­
ion of a look-up table. The pixels whose removal does not cause line breaking are iteratively
set to zero. The algorithm runs quite fast and requires moderate number of iterations of the entire
image.

1. Introduction
Thinning is the process of reducing the width of a line-like object from many pixels
wide to just a single pixel. It is used to reduce the volume of binary data obtained
from the preliminary image processing stages such as the edge detection or
thresholding. There are numerous thinning algorithms [1], [2] but they are either
relatively slow or require massive parallel processing [3] — [5]. Here, an algorithm
is presented which lacks these deficiencies.

2. Description of the method
We assume that the input image is binary with ones corresponding to the lines and
zeros corresponding to the background. During each step of the algorithm an
8-element neighbourhood (shown in Fig. la) of the current non-zero pixel is tested.
Based on the neighbourhood the decision is taken whether or not the central pixel
may be removed (set to zero). Examples of the pixels which should be removed
are shown in Fig. 2a and examples of pixels which must not be removed are depicted
in Fig. 2b. The reasons why the pixel must not be removed are simple: either it is
a line end or its removal breakes the line connectivity.

Po P i P2

P7 P3

p6 P.5 P4

1 2 4

128 0 8

64 32 16

Fig. 1. Notation of the pixels in the 8-element neighbourhood of a pixel (a). The mask convolved with (b).

198 J. SlUZDAK

0 0 0

1 1 0

1 1 1

1 1 1

0 1 0

1 1 1

1 1 1

1 1 0

1 0 0

1 0 0

0 1 0

0 0 0

Fig. 2. Examples of 8-element neighbourhoods of removable (a) and not removable (b) pixels.

To avoid comparison with several templates, as done in some other algorithms
[1] —[5], we calculate an index of each non-zero pixel convolving its 8-element
neighbourhood with a mask shown in Fig. 1 b. Following the notation of Fig. 1
we have

index = £ pi2l. (1)
i = 0

The index ranges from 0 to 255 and it defines in a unique way the type of the current
neighbourhood of the pixel (out of the 28 possible ones). Considering each possibility
defined by the index value one can decide on the possible removal of the central
pixel. These decisions are taken before processing and are grouped in a look-up
table. Thus in each step the value of the central pixel is determined from the look-up
table (TABLE) shown in Fig. 3.

Central pixel = TABLE(index). (2)

This step is iteratively applied to all non-zero pixels in the image until no further
deletion is possible. The required number N of entire image iterations is rather
small (typically N = 3 ,. . . , 5) and it depends on the line thickness of the image being
processed.

An example of the initial edge image obtained by gradient modulus calculation
followed by the comparison with a threshold is given in Fig. 4a and processing
results are shown in Fig. 4b.

We compared the execution time of ours and two other thinning algorithms [4],
[5] and it turned out that our algorithm was a few times faster. All the programs
were written in high-level language (Delphi) and run on IBM PC. The following
typical execution times have been obtained for various 640x480 pixel edge
images:

Letter to the Editor 199

0 1 2 3 4 5 6 7 8 9

0 0 1 1 0 1 1 0 0 1 1

10 0 0 0 1 0 0 1 1 1 I

20 1 1 1 1 0 1 0 0 0 1

30 0 0 1 1 1 1 1 1 1 1

40 0 1 0 0 0 1 0 0 0 1

50 1 1 1 1 1 1 0 1 0 0

60 0 1 0 1 1 1 1 1 1 1

70 1 1 1 1 1 1 1 1 1 1

80 1 1 1 1 1 1 1 1 1 1

90 1 1 1 1 1 1 0 1 1 1

100 1 1 1 1 0 1 0 0 0 1

1 10 0 0 0 1 1 1 1 1 1 1

120 0 1 0 0 0 1 1 0 1 0

130 0 0 1 1 0 0 1 1 0 0

140 1 1 0 0 1 1 1 1 1 1

150 1 1 1 1 0 0 1 1 0 1

160 0 0 0 0 1 1 0 0 0 0

170 1 1 0 0 1 1 0 0 0 0

Ooo 1 1 0 0 0 0 1 1 0 0

190 1 1 0 0 0 0 1 1 0 0

200 1 1 0 0 1 1 0 1 1 1

210 1 1 1 1 1 1 1 1 0 0

220 1 1 0 0 0 0 0 0 1 1

230 0 1 0 0 I 1 0 0 1 1

240 0 0 0 1 1 1 0 0 0 1

250 1 1 1 0 1..... 1 X X X x

Fig. 3. Look-up table TABLE. To get the index value add columns’ and rows’ indices.

200 J. SlUZDAK

Fig. 4. Initial image (a), processing results (N = 4) (b).

method [4] 90 s,
method [5] 60 s,
our method 15 s.

These results show the method potential.

3 . C o n c lu sio n s

A fast thinning algorithm is presented. It is based on the pixel index computation
and application of the look-up table. It performs faster than other thinning
algorithms [4], [5] and requires moderate number of iterations of the entire image.

R eferen ces

[1] Naccache N .J , Shinghal R., IEEE Trans. Syst. Man. Cybem. 14 (1984), 409.
[2] Smith R.W., Pattern Recognition 20 (1987), 7.
[3] Celenk M , Choon K.L., O pt Eng. 30 (1991), 275.
[4] Bowen C , Bagherzadeh N., Computers Electr. Eng. 19 (1993), 351.
[5] Datta A , Parui S. K.,·»Pattern Recognition 27 (1994), 1181.

Received November 5, 2001

