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Numerical calculation of electron density 
distribution in modulation-doped 
GaAs/AlGaAs heterostructures

M ichał Szymański, Mariusz Zbroszczyk

Institute o f Electron Technology, al. Lotników 32/46, 02-668 Warszawa, Poland.

Electron density distribution in GaAs/AIGaAs heterostructure is calculated. In addition, the 
diagram of the conduction band edge is presented. The results were obtained through the self 
-consistent solution of one-dimensional Schródinger-Poisson equations. For numerical 
calculations the finite-difference method with non-uniform mesh has been used.

1. Introduction
Recent, dynamic development of such techniques like molecular beam epitaxy or 
metal-organic chemical vapour deposition enables growth of low-dimensional, 
multi-layer, modulation-doped semiconductor structures of excellent uniformity. 
These structures are used for producing different opto- and microelectronic devices 
like lasers, detectors or transistors. However, understanding their optical and 
transport properties requires the self-consistent solution of both Schrodinger and 
Poisson equations. For example, such a solution enables the calculations of material 
gain in the active layer of a laser [1], density of two-dimensional electron gas in 
high-electron-mobility transistor (HEMT) [2] or interpretation of the inverse 
capacitance-voltage profiling technique [3].

In this work we create software for finding a self-consistent solution of 
one-dimensional Schrodinger-Poisson equations. Next, we apply our numerical 
tools for investigating the n-doped GaAs/AIGaAs heterostructure of HEMT grown in 
molecular beam epitaxy (MBE) reactor in Institute of Electron Technology, Warsaw, 
Poland. As a result we present electron density and conduction band edge versus spatial 
coordinate. Our software is based on the finite-difference method. Because of the large 
differences between layer thicknesses we decided to use a non-uniform mesh.

2. Basic equations
The one-dimensional, one-electron Schrodinger equation is

(1)
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where y/ is the wave function, E is the energy, V is the potential energy, ft is the Planck 
constant divided by 2n and meff is the electron effective mass. The one-dimensional 
Poisson equation is

<2>

where es is the dielectric constant, (p is the electrostatic potential, ND is the ionized 
donor concentration and n is the electron density distribution. Electron distribution in 
the conduction band can be found when the potential energy V is set to be equal to the 
conduction-band edge energy [4]. The potential energy V is related to the electrostatic 
potential (p as follows [4]:

V(x) = -  q(p + AEc(x) (3)

where AEc is the psudopotential energy due to the band offset at the heterointerface. 
The wave function t/r and electron density n are related by

m
n(x) = ^  y/*(x)y/(x)nk (4)

k = 1

Fig. 1. Iteration scheme for finding the self-consistent solution of one-dimensional Schrodinger-Poisson 
equations.
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where m is the number of bound states, nk is electron occupation of k-th state of energy 
Ek and is expressed by

m eff

71 ti ( E - E p
1 + expl  ~ k T

-d E. (5)

Self-consistent solutions of Eqs. (1) and (2) are obtained through the iteration 
procedure symbolically depicted by block diagram in Fig. 1. The error criteria are 
defined as changes SV and dn smaller than arbitrary assumed values.

3. Numerical methods
In order to solve Eqs. (1) and (2) we used the finite-difference method. Since the 
analyzed semiconductor structures contain layers of significantly different 
thicknesses, many parameters may vary rapidly in some regions and slowly in other. 
Thus, we decided to use a non-uniform mesh (see Fig. 2) and wrote three-point 
approximation of the function derivative as

dRxj)
dx

f [ xJ + 2hJ+') ~f {Xj~ \hJ+ 1

\ hi ^  + \ hi

(6)

In Equation (6) half-steps have been used deliberately. Schrodinger (Poisson) equation 
relates the wave function (electrostatic potential) with its second derivative. Thus, after 
discretization, values of i/r and (p in mesh points only have been required.

Fig. 2. Discretization of if/ or tp using a non-uniform mesh.
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Using the rule (6) to Schrodinger equation (Eq. (1)) we get a set of N  linear 
equations, where N  is the total number of mesh points. Therefore, the discrete form of 
Eq. (1) may be written as NxN  matrix equation

N

= Ey/i
j= i 

where

A U

2  m j + l / 2 h j + \ ( h j + l  + h j Y

2  m j ~  \ / 2 h j ( h j +  1 +  h j ) '  

- A i , i + l ~ A i , i - \  + V i ’

0,

j  = i + 1,

j  = i ~ 1 -

j  = i,
in remaining cases

(7)

( 8)

Diagonalization of matrix A allows to find bound states for a particular profile V(x).
Application of rule (6) to Poisson equation (Eq. (2)) leads to NxN  non-linear set 

of equations:

(p2, ..., (pN) = 0 (9)

where <p, is the value of the electrostatic potential in the i-th point of the mesh and the 
r'-th equation takes the form

hi(hi+i + h i) <Pi-
h ,h i + \

<Pi
li+ 1(h + h ^ +'  +  7 i N  D. . · - ” »■)

/ + 1 n i> b s
0 . ( 10)

Solution of Eq. (10) is found by Newton-Raphson method [5].

4. Results and discussion

Quasi-one-dimensional GaAs/AlGaAs heterostructures tend to have conduction band 
edge exhibiting several quantum wells where bound states may appear. Consequently 
in all these wells electrons may be accumulated. However, the proper operation of 
most semiconductor devices requires high electron concentration in a very small 
region. Particularly, in investigation of HEMTs, one of the most important subjects 
has been the improvement of two-dimensional electron gas concentration [6]. An 
example of the well-designed heterostructure one can find in paper [4] where electrons 
are confined to one region, namely at the interface of AlGaAs quantum well and 
undoped GaAs layer.
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Material Nd [cm"3]

GaAs 1.5*1018 (obtained) 
3.0«101* (assumed)

AI0.3G3 0 .7AS 0.5x1018 (obtained) 
1 .0 x1 0 18 (assumed)

AI0.3G3 0 .7AS —

GaAs —

-- 0

-- 300

c
-- 900 |

H

-- 5900

GaAs (substrate)

Fig. 3. Schematic view of the investigated heterostructure.

In this work we consider a GaAs/AlGaAs heterostructure schematically depicted 
in Fig. 3. It has been grown by MBE in Institute of Electron Technology. Note that 
the doping concentrations assumed and obtained during the technological process 
differ significantly. For both cases we calculated the electron concentration n(x) and 
conduction band edge V(,r). The diagrams are presented in Figs. 4 and 5. In the case 
of the real heterostructure (Fig. 4) we see the undesired three-peak profile of electron
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concentration. This indicates that a large part of electrons has been accumulated in 
three regions: at the doped GaAs-doped AlGaAs interface, in AlGaAs layers and at 
the undoped AlGaAs-undoped GaAs interface. Calculations done for the assumed 
doping profile (Fig. 5) show that almost all the electrons are confined at the undoped 
AlGaAs-undoped GaAs interface. Thus the deviations of doping profile, occurring 
during technological processes, may significantly influence the features of 
heterostructures.
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