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Diffraction using an amplitude grating object 
of truncated inverted parabolic shape

A. M. Hamed

Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt.

A theoretical model of an inverted parabolic function is considered to represent an amplitude 
object. The intensity distribution of the diffraction pattern is calculated by applying Fourier 
transformations and convolution operations upon the object A computer program is constructed 
to plot the intensity distribution of the diffraction pattern obtained. In the computations, the 
maximum heights of the inverted parabolic function are taken to be 2.5, 5, and 10 pm, while the 
object width is kept constant at 5 pm. The theoretical results of the intensity distribution are 
graphically represented using MATLAB program. Finally, a discussion and conclusions are 
presented.

1. Introduction
The scalar theory of diffraction has been successfully applied to compute the point 
-spread function in coherent optical systems [1] — [4]. The calculations are based on 
Fourier techniques and optical communication theory [5] —[8] to investigate the 
image performance of the optical systems.

The precedent publications have considered only the circular and annular 
apertures. Recently, we have studied different modified apertures [9] — [12] in order 
to improve the resolution of the optical confocal microscopes. Among these 
apertures, one aperture has four-fold symmetry and another has eight-fold symmetry 
[9]. Also, conic [10] and quadratic apertures [11], [12] are investigated. The author 
[13] has calculated the transfer function of black-and-white concentric equally 
spaced annuli in confocal imaging systems.

In this study, a theoretical model of a limited comb function having an inverted 
truncated parabolic shape is assumed. The intensity distribution of the diffraction 
pattern is calculated taking into consideration the height and width of the amplitude 
object A Fortran computer program is constructed to compute the intensity 
distribution. The theoretical results are plotted, using MATLAB program, followed 
by a discussion and conclusions.

2. Theoretical analysis

An amplitude object is illuminated by a coherent plane wave emitted from a He-Ne 
laser at X =  6328 Â. This object assumes an inverted parabolic shape having
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a truncated comb function to represent it. It has a width d. =  2x0 and maximum 
height <rm. The diffraction pattern is recorded in the Fourier plane of coordinates 
(u, v). This plane is situated in the focal plane of the converging Fourier lens L in 
order to record a far field diffraction pattern. A treatment in one dimension is 
considered, where N  is the total number of scattering periods along x-coordinate.

Now, the transmitted complex amplitude for the inverted parabolic object can be 
represented mathematically as follows:

(1)

The letter a represents the incident amplitude and the letter s is given to represent 
the effective cross-sectional area of the beam incident upon the object. Equation (1) 
can be rewritten, making use of convolution operations, as follows:

(2)

The symbol <g) is taken to represent the convolution operation and the summation is 
to represent the limited comb function in one dimension.

The complex amplitude of the diffracted image formed in the focal plane of the 
converging lens L is obtained by operating the Fourier transform upon Eq. (1) as 
follows:

G(«) = FT [?(x)] =

00

g(x) exp dx
-  oo

(3)

where u-coordinate in the Fourier plane corresponds to x-coordinate in the object 
plane and k = 2tz/X is the propagation constant Making the substitution of Eq. (2) 
to Eq. (3), using convolution operations that transform the convolution product into 
a simple product through Fourier transform operation, then we obtain

G(u) = (4)

The transformation of the limited comb function in Eq. (4) is immediately solved 
applying the Fourier transform to yield this result

(  n = N/2 ·) n = N/ 2 r  /K \
FT] £  <5(x-ndn= £  exp - ; ( - ) (n d ) u  .

(.»= —N/2 )  n=-N/2 L \ J /

The other transformation in Eq. (4) is solved as follows:

■+-©> ilXJMXX— 00
This integration is divided into two separate integrals:

(5)

(6)
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The first definite integral is easily solved as

Knowing that k = I tz/X and defining the sine function

sinc(x) = (sin(rcx)\ 
nx )

we get

J1 = 2x0 sine ( 2ux0\
V V /

(9)

The second integral is solved, using integration by parts, as follows:

Hence, I 2 becomes a complex quantity represented as

(10)
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Let C(x) = and tj(x) = x2 — 2 ^ - J  , then the definite integral is solved

after the substitution of the upper and lower limits of integration as follows:

kuxn

T
Equations (9) and (11) are grouped to obtain finally the result for the transformation

(2ux0^
Xf

(1 2)

substituting Eqs. (5) and (12) in Eq. (4) we get the formula for the complex amplitude 
of the image

2ux(
J f ,]1/2}

(13)

The summation over the exponential term is decomposed into real and 
imaginary parts:

" v /2 I L  exP|
n= — JV/2

[ ~ j ( j ) ( n d ) u  = £  c o s [ 0 ) („d )« ]-,s in  0 ^ M )u J .  (14)

The modulus square of the complex term becomes a real quantity which will 
appear in the intensity distribution of the diffracted image

l(u) = |G(u)|2. (15)

Substituting the respective magnitudes from Eq. (13) and (14) to Eq. (15), we 
finally get for the intensity distribution of the diffracted image the following 
equation:

I 2
0  \  · 2 1 sine MTF

( n = JV/2 r /k\  I2 n = N/2 r/fc\
* £  COS | + £  sin -f H « ]

( i.= -JV/2 n= -  JV/2 L\//
(16)
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where a represents the maximum output intensity

The ratio between the input intensity I0 = \a\2 and a is

It is clear that the parameter a is dependent upon the following:
i) the incident intensity I 0 = \a\2 for monochromatic illumination,
ii) the cross-sectional area of the incident beam s,
iii) the maximum height of the object am,
iv) the object width d = 2x0,
v) the focal length /  of the lens L.

(17)

(18)

3. Theoretical results and discussion

A computer program is constructed to represent the model of the object. This object 
assumes a repetitive truncated inverted parabolic shape g(x) as shown in Fig. 1. Three 
different heights of 2.5, 5, 10 pm are taken while the width is kept constant at 5 pm.

Fig. 1. Repetitive truncated inverted parabolic function to represent an amplitude object of width 2x0 
=  5 pm at different heighst of am =  2.5, 5, 10 pm.

Another Fortran computer program is designed to compute the intensity 
distribution of the diffracted image represented by Eq. (16). Figure 2 represents the 
intensity I(u) at a j x 0 = 1 in the range extending from u = 0 to u =  10000 pm. 
It is clear that the intensity shape is nearly a sine2 function. In Fig. 3, the magnified



838 A.M. Hamed

Cartesian coordinate u [pm]

Fig. 2. Intensity distribution of the diffraction pattern vs. Cartesian coordinate u for an inverted parabolic 
shape of height om =  2.5 pm and half width x0 =  2.5 pm.

Cartesian coordinate u [pm]

Fig. 3. Magnified portion of the intensity distribution /(«) in the range from u =  1000 pm up to 10000 pm 
(am = 2.5 pm and x 0 =  2.5 pm).

part of the intensity I(u) in the range from u = 1000 pm up to u =  10000 pm is 
plotted. It is clear that the average width <u> is obtained from Fig. 3 in the range 
from u = 5000 pm up to 7000 pm as follows: u = 2000/5 = 400 pm which is in 
agreement with the theoretical value obtained from the linear imaging system as 
u = Xf/(2x0N). In the object model, N  is taken as N  = 65 total number of truncated 
inverted parabola, X = 0.6328 pm ,/ = 20 cm and x0 = 2.5 pm. Hence, u =  389.4 pm. 
An error of only 2.65% between the computed value attained in Fig. 3 and the 
theoretical value obtained from the Fourier transformation is considered
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Fig. 4. Intensity distribution of the diffraction pattern vs. Cartesian coordinate u for an inverted parabolic 
shape of height am =  5 pm and half width x0 =  2.5 pm in the range from 300 pm up to 6300 pm.

Cartesian coordinate u [pm]

Fig. 5. Intensity distribution of the diffraction pattern vs. Cartesian coordinate u for an inverted parabolic 
shape of height om =  5 pm and half width x0 =  2.5 pm in the range from 6000 pm up to 10000 pm.

reasonable. A set of curves of I(u) are plotted as in Figs. 4 and 5 for am/x0 = 2. 
The curve in Fig. 4 is drawn from u = 300 pm up to 6300 pm, while the other curve 
in Fig. 5 is plotted in the range from u = 6000 pm up to 10000 pm. A third set of 
curves is plotted as in Figs. 6 — 8 for o j x 0 = 4. The curve plotted in Fig. 6 is for 
the global range of u = 10000 pm, the other curve in Fig. 7 is a magnified part of the 
intensity I(u) in the range from u = 0 up to 3000 pm, while the curve plotted in 
Fig. 8 is drawn in the range from 4000 pm up to 10000 pm. It follows from 
Figs. 2 — 8, obtained from the theoretical calculations of Eq. (16) that the average
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Cartesian coordinate u [pm]

Fig. 6. Intensity distribution of the diffraction pattern vs. Cartesian coordinate u for an inverted parabolic 
shape of height cr,, =  10 pm and half width x0 =  25 pm.

Fig. 7. Magnified portion of the intensity distribution /(u) in the range from u =  300 pm up to 3000 pm 
(<7m =  10 pm, x 0 = 2.5 pm).

width <u> = 400 pm for the same width 2x0 of the truncated inverted parabolic 
object for different am = 2.5, 5, 10 pm. Secondly, the heights of the intensity 
harmonics have greater values for greater heights of an object for any value of 
parameter u.

4. Conclusion

We have suggested a repetitive truncated inverted parabolic shape to represent an 
amplitude object We have calculated the intensity distribution of the diffracted
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Fig. 8. Magnified portion of the intensity distribution 7(u) in the range from u =  4000 pm up to 10000 pm 
(ff„ =  10 pm and x„ =  2.5 pm).

image using Fourier techniques and convolution operations. From the theoretical 
results we conclude that firstly, the intensity distribution has a nearly sine2 function 
form and the average width is computed. Secondly, the height of the amplitude <rm 
only affects the heights of the intensity peaks while its shape remains unchanged. For 
higher values of am the intensity heights increase. These concluding remarks are 
presented assuming the same width 2x0 of the object shape.
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