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Diffraction of a plane TM-polarized optical wave
on a non-absorbing medium
with a periodic dielectric permeability variation
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Taking advantage of the coupled waves method, a system of linear differential equations with 
constant coefficients has been obtained which describes the diffraction of a plane TM-polarized 
optical wave on a grating. The electric field strength was used as a variable. For such a choice of 
a variable, only the coupling between the adjacent coupled waves appears in the system of 
equations, which results in a substantial simplification of the system.
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1. Introduction

Media with periodic variation of a certain optical parameter (refraction index, 
absorption coefficient, thickness) are used in many optical devices [ 1]—[ 4]. Therefore, 
there is a great number of papers devoted to the analysis of light diffraction on periodic 
structures. The monograph [4] published in 1981 lists 780 references. But in that 
monograph, light diffraction analysis is mainly made by means of approximate 
methods based on the solution of the wave equation, where the second derivative 
obtained in the equations is neglected as a consequence of the assumption that the 
wave amplitude varies very little as the wave propagates throughout a periodic 
medium. Kogelnik’s theory [5] is the one known best among such theories. However, 
it is also an approximate one, and therefore it can only be used to analyze thick 
holograms with a small coefficient of the refraction index modulation. In monograph 
[4] and in paper [5], the analysis is made mainly for TE-polarized light. Approximate 
equations for description of TM-polarized light diffraction were obtained by means of 
indirect methods, by correcting appropriate equations for TE-polarization. New 
publications appeared afterwards, which focused attention on light diffraction on 
volume gratings, without neglecting second derivatives. But they also deal mainly with
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TE-polarized light diffraction. Among those publications noteworthy are papers [6], 
[7], where precise systems of linear differential equations were obtained to describe 
diffraction on periodic structures for both TE- [6] and TM-polarizations [7]. But 
equations obtained in [6] are rather complicated since the choice of variables is not 
quite adequate. Based on the approach described in [8], linear equations were obtained 
[9], which turned out to be simpler than the corresponding systems in [6]. This system 
of equations proved to be applicable to the analysis of thin, intermediate and thick 
holograms [9]. It should also be mentioned that in the systems of equations obtained 
for TE-polarized light diffraction analysis [6], [8], [9], the variables sought are related 
to the electric field strength of the optical wave in a periodic medium, since for this 
case the assumption equation (Helmhlotz’s equation) obtained, based on Maxwell’s 
equations, is scalar. In [7] in order to obtain equations which describe TM-polarized 
light diffraction on periodic structures based on Maxwell’s equations, an assumption 
vector wave equation was used with respect to the magnetic field strength of the optical 
wave, which has an extra term compared to Helmholtz’s equation. This extra term 
results in a greater complexity of the corresponding systems of differential equations. 
In each equation of the TM-polarization system, the two extra sums appear, each 
having r terms (r being equal to the number of diffraction orders). This system will be 
especially complex for thin and intermediate thick gratings, and for a large refraction 
index modulation coefficient, when big values of diffraction orders have to be taken 
into account. Such a complex system of equations in [7] is due to the fact that the 
dielectric permeability is multiplied by the electric field strength in Maxwell’s 
equations, while the variables in those equations are associated with the magnetic field 
strength. If the magnetic permeability varied with a periodic law, the approach used 
in [7] would lead to a simpler system of equations similar to those obtained in [6] for 
TE-polarization. Therefore, it seems that the precise system of equations used to 
describe TM-polarized optical wave diffraction on periodic structures will be simpler 
than that in [7] when the variables are associated with the electric field strength. 
Besides, the solutions obtained in [6], [7] and in part those in [4] consist in reducing 
the wave equation with periodic variation of the dielectric constant to Mathieu equation 
which foresees a two-dimensional periodicity. At the same time the actual gratings 
have finite thickness, and in two other dimensions, they may be assumed to have 
infinite dimensions (the thickness of gratings is much smaller than their size measured 
across). That means that the actual gratings can be assigned periodicity in one direction 
only. Therefore, the coupled wave equations [4], [6], [7] obtained, based on Floquet’s 
theorem, are not quite adequate to the actual gratings. The coupled wave method used 
in [8], [9] to obtain equations describing TE-polarized light diffraction is not based on 
Floquet’s theorem and can be used to describe diffraction on finite-thickness gratings. 
Thus, the purpose of this paper is to obtain, without using Floquet’s theorem, a system 
of differential equations describing TM-polarized optical wave diffraction on periodic 
media and having variables associated with the electric field strength.
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2. Theory o f TM -polarized light diffraction  
on periodic non-absorbing structures

Let us assume that in a dielectric medium along a certain direction the dielectric 
constant varies according to the formula

* 1’ - 0 0  <  z <  0 , - 0 0  <  X <  oo, - 0 0  <  y <  o o,

£20 +  £cos(Kzz +  Kxx) =  

=  £20 +  £ c o s K r ,
0 < z < T, - 0 0  <  X < o®, - 0 0  < y < 00,

e 3> T < z <°°,  —00 <  X < 00, —00 <  y <  00

( 1 )

where and e3 are the dielectric constants of the first and the third media, respectively,
£20 -  constant component of the dielectric constant of the grating medium, £ -  
amplitude of the variable component of the dielectric constant, Kx -  projection of vector 
K onto the axis OX, Kz -  projection of vector K onto the axis OZ, the modulus of vector 
K being related to the grating A a s K  = 2n/A. Figure 1 shows a schematic representation 
of non-diffracted and diffracted plane waves and a periodic volume grating.

The electric field strength vector E of a TM-polarized electromagnetic wave is in 
the plane of propagation and diffraction, i.e., in the plane XZ. The magnetic field 
strength vector H is perpendicular to the plane XZ and coincides with the direction of 
the axis OY. A non-diffracted plane wave containing a wave vector k0 propagates at 
an angle 90 to the axis OZ. At an angle Qi the wave diffracts into the i-th order. For 
instance, Fig. 1 shows a wave diffracting into the first order at an angle 0j with wave 
vector kj. Grating vector K  is at angle 0 to the axis OZ.

ci O X

Fig. 1 . Schematic representation of incident and diffracted plane waves and a periodic volume grating 
(T is the thickness of grating in the direction of axis OZ).
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Equations describing TM-wave propagation through a periodic medium can be 
obtained from the systems of equations that are given in [10] and have the following form:

ro tE  = - j - H,c
T T  . f t )  „rot H = j £2 -  E

1 c

(2)

where e2 is the dielectric constant which varies along a certain direction according to 
Eq. (1), c -  the speed of light, ft) -  the angular frequency.

Based on systems (2), we can write the second-order equation as follows:

ft)rot rotE = £2 —: E . ( 3)

The solution to Eq. (3)

E (x , z )  = '£ lCi[-\cos6iA i' X(z) + n s m d iA itZ(z)]exv[- j(kitXx + k kzz)] (4)
I

where 1, n are individual vectors directed along the axes OX and OZ, respectively, C, 
is the normalization factor, - c o s s i n f y A ^  Jz) are electric field strength 
amplitude projections on the axes OX and OZ, respectively, k = |k,| = 2nn20/Z is a 
modulus of the wave vector k, of plane waves into which the electromagnetic field in 
a periodic medium is decomposed, ki x = ksinOj, kt z = kcosd, are wave vector 
projections on the axes OX and OZ, respectively, exp(-/k ;r) = exp[-j(kit j  + kt Zz)].

As a matter of fact, the solution to Eq. (3) has been represented as a sum of plane 
waves that propagate in a periodic medium and whose amplitude is a function of 
z-coordinate, with the electric field strength vector projections being described by 
different functions. If £ = 0, then the solution to Eq. (3) can be represented as a plane 
wave with a constant amplitude.

In order to find the normalization factor Q  we use the first equation of system (2) 
and find magnetic field strength for a constant-amplitude plane wave propagating at 
angle Qt, when £ = 0. Thus the magnetic field strength for a plane wave is

H, = j  ^ r o t E • = j ^ T O t { C i[ - \ c o s d i + n s m 0 i]exp[-j(ki j(x + ki Zz)]}

= m C ,-y ^ o e x p H 'k ,! - )  (5)

where m  is the individual vector directed along the axis OY.
Let us find the projection of Poynting vector [10] for a plane wave on the axis OZ 

and assume it to be unity

(S)i,z = Re{& '*» COS 9; 1. ( 6)



Diffraction o f a plane TM-polarized optical wave ... 241

Thus the normalization factor C, is

Ci = 2 7t
Ajcn20cos 0,

(7)

where n20 = J e 2Q.
Such a representation of the normalization factor C, is due to the fact that the 

diffraction efficiency of a hologram can be expressed by a z-component of Poynting 
vector in the third medium if z-component of an incident plane wave on the grating in 
the first medium is equal to unity [2].

Substituting expression (4) into the left-hand side of the Eq. (3), and we have

ro tro tE  =

= -  2 jkcos26iAi>x -  jksirfdjAi'Z -  k2cos36iAi x

2 2 • 2 2
-  k sin 6icos 6t A t ■ ] + n [y£cos0 t- sinfyA,-,* + k cos Qi smQi Ai x

+ k2sin39iAi J  } exp (-yk .r). (8)

Substituting expression (4) into the right-hand side of the Eq. (3), we obtain

ro tro tE  = ^  + \  exp(y'K r) + exp(-yK r) J
/

x (-1COS0-A,>Jt + nsinfyA , z)exp(-y 'k fr) . (9)

By equalling the right-hand sides of Eqs. (8) and (9) and reducing similar terms we 
obtain the following expression:

^  C4{ 1 [ cos 0, Ai, jc — 2 y'&cos20, A;, x -  y fcsin2 0, A,-, z + k2 cos 0,sin20; At- x
i

-  k sin 0, cos 0; Ai z]+ n[ jkcos 6i sin 0- A;, * + k cos 0, sin 0, A^ x
2 9

-  cos" 0f sin 0t Af , ] } exp (-y k-r) =

= f l ^ C f[ex p (y K r) + exp( -  y‘K r ) ] ( -  Icos 0i ALfX + nsin 0, A( z)exp (-y k-r)

1 ( 10)
2 2

where a = ) / ( 2c ).
We calculate a vector product of Eq. (10) and a complex conjugate of Eq. (5), 

integrate it in the plane AT, divide the result by the integration domain area and take 
the limit of this expression for the integration area approaching infinity. Here we use
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the fact that the idealized grating has infinite dimensions in the plane XV. As a result 
we obtain the following system of equations:

- k 2cos20, sin2 0, A, z -  - a  cos 0, cos 0, _ j
cos 0,

-  ^ i - i . , exPOA+z)
COS 0:7-1

+  COS 0, COS 0:7+ i exp(~jAi_z) , (ID

j k c os 0, sin20|. A/, * + k2cos20i sin20, A^ x-  k2cos2Qi sin20, A^ z

( 12)

where Ai+ = Kz + kt z -  *M> v A,_ = Kz - k t z + kt+hz.
Thus, we have obtained a system of equations describing TM-polarized wave 

diffraction on volume non-absorbing gratings, being a linear system of differential 
equations with variable coefficients. The system of Eqs. (11) and (12) corresponds to 
Eq. (10), provided the following condition is fulfilled:

This condition stems from the assumption that the grating spreads in the plane XY  to 
infinity. On the other hand, the system of Eqs. (11), (12) is valid only if Eq. (13) is 
fulfilled. According to this condition we determine the direction of diffraction 
(diffraction angles 0,) of plane waves with variable amplitudes into which the 
electromagnetic field is decomposed inside the grating. Knowing k0 x (determined by 
the direction of a non-diffracted wave), we can determine k±l x, then k±2x and so on 
from Eq. (13). From ki x  we can calculate ki z in accordance with the formula

Thus, all the quantities are defined in the system of Eqs. (11), (12). It should be noted 
that in this system of equations cos0, must be a real quantity, i.e., for all diffracted 
waves there is a projection of Poynting vector on the axis OZ. So, the condition that 
-1  < sin0, < 1 must also be fulfilled. Since wave amplitudes for /min and /max are very 
small, the system of Eqs. (11) and (12) may be used in practice in most cases, for

Kx + ki , x - K = 0 . (13)
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instance, to explain the properties of phase holograms. In order to take into account in 
the system of Eqs. (11), (12) the diffraction orders for which cos0, is an imaginary 
number, further studies are necessary, as well as a probably somewhat different 
approach to the derivation of equations, because non-uniform waves do not normalize. 
If £ <SC e20, we may use a whole series of approximations. In this case, the amplitude 
A,-x(z) ~ A, Z(z). Equalling the amplitudes x(z) = At Z(z) = A,(z) and deducing 
Eq. (12) from Eq. (11), for each i, one can obtain a simpler system of equations. Such 
a system of equations has been obtained in [11], and it has a relatively simple form

d2A/ 2a ^
— -  cos 6 1 -  2 jkj
dz

dA.- I cos 0r
—  + « cos ( 0, -  e, _ ,) J  exp ( jA , .  z)

+ a cos ( 6 1 -  6i+[)
cos 0,

A; + 1exp (-,A , z ) = 0 . (14)

As we see, the system of Eq. (14) has half as many equations and is rather simple. 
Numerical calculations are necessary to determine the ratio £ / e20 for which the 
approximation (14) will not result in a serious error. To calculate diffraction on thick 
holograms, the parabolic approximation can be used, in which the second derivative 
in Eqs. (11) and (14) are neglected. If we neglect the second derivatives in Eq. (14) in 
the two-wave approximation, we obtain the equations listed in [2], [5]. As we see, the 
approximation of the system of Eqs. (11) and (12), when £ £2o> leads to the well
-known systems of equations that describe approximately TM-polarization wave 
propagation in periodic media.

The coupled Eqs. (11) and (12) are linear with variable coefficients. This system 
can be transformed into the linear one with constant coefficients, if the following 
substitution for the variables is performed:

A i,x(z) = BLX( z )&xvUAiZ),
(15)

A i,zW  = Bi,z( z )QXV(JAiZ)

where A(- = iKz + kt z.
Let us take the first derivative from the right-hand side and the left-hand side of 

expressions (15) and the second derivative from the first equation of (15). We obtain 
the following formulae:

A/.x(z) = BitX(z)Q\p(JAiZ) + jA iBi r(z)expO'AJz),

A i,z(z) = BitZ{z) txp{jAiz )+  j A f i i  z{z)t\p{jAiZ),  (16)

A i,x(z) = BiyX{z)txp{jAiz) + 2/A.Z?/fJC(z)exp(jA i.z) -  A1l Bi x{z)&\p{jAiZ).

Substituting (16) in (11) and (12), we obtain a linear system of differential 
equations with constant coefficients as follows:
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9 -  7 . 7  . o 7 7
cos 0,5/? x - 2 j i  Kz cos 0,5/, * -  7/: sin 0, cos 0,5,. z-  i A", cos 0,5, 

+ k2cos26iBi x+ /7:A'2sin20,cos0,5 . z

= - a
„ . cos 0, „ _ cos 0, „

cos ą  cos ą . , . ir r r T r -s ,- i , ,+  cose, cos oi + , ,,
COS 0;I - 1 cos 0,. +

(17)

yfccos 0,sin2 0,5/, x- i k K zcos 0,sin2 0,5,- &2cos2 0,sin2 0,5,- z

= a
I COS 0: . _ . _ / COS0,

sin ą s in  -  ■ >JćóśĘ ~ , B‘'  '■ ' + s,n ° ' s,n e' + 1 ł  '• V
(18)

In holography, the straight gratings are of great importance, i.e., when tfz = 0. In 
this case, which we shall consider in more detail, the system of Eqs. (17), (18) is 
simplified and is written as follows:

? - 9 - 2 2
cos djBitX -  j k sin 0, cos 0,5, z + & cos 0,5, ^

= - a cos 0, cos 0,
I cos 0, cos 0.

: . I -------- r J — B : _  , +  C O S 0  ,COS0,f + L ------ 7— L - 5  + i ,
' ■ ^ c o s ą . j  ' 1,x ' '  +  1  c o s 0/ + j ' 1,Jt_

(19)

7 . 2 2 2
y7ccos0,sin 0 ,5 ,* - / :  cos 0,sin 0,5, z

=  a sin 0, sin 0, _ , coŝ :. . # . _ ^  + sin 0, sin 0, +
m COS t/j- _ j Wcos 0/ + , ’

(2 0 )

Let us divide Eq. (19) by cos20, and Eq. (20) by ycos0, sin20,. As a result, we 
obtain the following system of equations:

• 2 n> sin 6: . 2

Bi-’ - j k ^ e B“  + k B<'* + a
COS 0,- _ 1  ̂ | c o s ą + lo

5 ;  , . +  /----------— O / + I , ,
COS 0; i - 1, or ł cos 0.

=  0 ,

(21)

0/, * + yfc cos 0,5, 2 + c/,5, _ j z + c,5, + j z = 0 

where the coefficients d, and c, are given by the formulae:

(2 2 )

4  = i —
a sin 0;/ - i

. =  7-
a sin 6 1 +

sin 0, Vcos 0, cos 0, _ j ' k sin 0, ̂ co s 0, cos 0,- +
1

1
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Taking the derivative of the Eq. (22), we obtain the following result:

BiyX+ jkcose iBKz + diBi _ x, z + ciBl+ ^ z = 0. (23)

We subtract Eq. (23) from Eq. (21) and then taking into account Eq. (22), we obtain 
the following, linear first-order system of equations with constant coefficients:

Biil + jk c o se iBl:<+ f lB , _ , x + glBl + l x  + pl6 l . ltZ + qiB ,+ l, z = 0, (24)

B , . + j k cose,B, 2 + _ , , ,  + t',B, + , , = 0 (25)

where the coefficients f h gh ph q,• are respectively:

a J cos 9j cos Gj _ j a ^cos 0, cos 0,-+ {
fi = j -----------1----------- 8i = j -----------1-----------.

cos 6 i cos 0,c,

We see that the linear system of the differential Eqs. (25), (26) is much simpler 
than the corresponding system of equations obtained in [7]. The equations of this 
system contain only variables or their derivatives with indices / -  1, /, i + 1. Therefore, 
it is convenient to solve such a system of equations by means of the standard software 
of Maple 6 type. It should be noted that the system of Eqs. (17), (18) can similarly be 
reduced to a first order linear system that will be similar to the system of Eqs. (25) and 
(26). It is noteworthy that using linear algebra methods one can reduce the subsystem 
of Eq. (24) to the following common form:

B z = DB, (24a)

where Bz is the column vector with components equal to B z, D -  the square matrix 
with constant elements, B v -  the column vector with components equal to Bt the 
dimensional representation of vector and square matrix is imax -  imin + 1. But in this 
form, the subsystem of Eq. (24a) in the right-hand side will contain a linear combina­
tion of all Bj x, where i varies from iroin to /max.

For a complete solution of the diffraction problem, especially when el * e20 *£3 
and e are not much smaller than %)» n *s necessary to find exact initial conditions. 
This can be done in accordance with the method described in [6], [7].

In many practical problems that arise in holography condition £ « : e2o *s fulfilled 
and therefore one can use approximate initial conditions B0 A.(0) = 1, B0 z(0) = 1 and 
B{ x, Bt . equal to zero for all i * 0.

According to [10], the i-th component of Poynting vector projection on the axis 
OZ of the respective coupled wave is expressed as follows:
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<S>it2(z) (26)

In our case of E,(jc, z) = Q t-lcosfyZ^  ̂+ nsin0t^  Jexp^/fcsin#,*), the magnetic field 
strength is (according to Eq. (25))

z) = j ^ rotEi

= m -C ,.[ -  kBi z + jcos6 idiBi _ t z +jcosOiciBl+ uz]exp (-y/; sin ą * ) .  (27)

After substituting E,(a:, z) and H,(;c, z) into formula (26), we obtain the following 
expression:

<S>,z(z) -  Re[*t X «  + P A X i . «  + i. *)* (28)

Direct substitution of initial conditions into Eq. (28) yields the following expressions
for (S)j_ z( 0 ):

<S>0tZ(0) = 1, <S>(, Z(0 ) = 0 for « * 0 . (29)

The notion of diffraction efficiency can be derived for each coupled wave as follows:

»li(z) = <S >;.z(z) = Re[B t  XB ‘ z + PlBlx i, 2 + i, J - (30)

'max
From the results of [12] for the given initial conditions ^  7];(z) = 1, which

'm in

corresponds to the energy conservation law when light propagates in a non-absorbing 
medium with periodic variation of refraction index.

3. N um erical analysis o f T M -polarized light diffraction  
on a non-absorbing thick phase hologram

Light diffraction analysis was conducted by means of numerical solution of the system 
of Eqs. (24), (25) using the Runge-Kutte method for holograms having the refraction 
index variation period A  equal to 0.438 pm. This period for a mean refraction index 
of n0 = 1.577 (%) = 2.487) corresponds to Bragg angle inside the medium 
6b = 0.325 rad. The analysis was made for a four-wave approximation, when 
/min = -1 , /max = 2. To this end, a system of equations consisting of eight first-order 
differential equations was solved numerically. As the solution was obtained, all 
diffraction efficiencies 77, were sought, their sum was found, and x(z)|2 and |B l Z(z)\2
were calculated, with which the diffraction efficiency of the first-order diffraction r]l
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Fig. 2. Plot of diffraction efficiency 77,(2) for £ = 0.0505 (a) and £ »  0.404 (b).

was compared. First, the diffraction efficiencies were calculated in relation to the 
coordinate z according to formula (30) for 0O = 0b and for the following amplitudes 
of a variable term of dielectric constant £ = 0.0505 and £ = 0.404, which are shown 
in Figs. 2a and b, respectively. The sum of the diffraction efficiencies along the whole 
interval of solutions differed from unity by less than 10-5. This error results from the 
calculation accuracy, and appears when the calculation is done with 10 nonzero digits. 
When the calculation is done with 15 nonzero digits this error is less than 10~9. This 
means that the proposed system of differential equations corresponds exactly to the 
energy conservation law [12]. In Fig. 2, the line is the plot of ^ (z ) , the large circles 
are \BX x(z)\2, the small circles are | f l , Z(z)|2.

For £ = 0.0505 (which corresponds to the refraction index variation amplitude 
n = 0.016) \Bhx(z)\2 and |Bl z (z)|2 are very close to ^ (z ) , and the difference in the 
corresponding coordinates in Fig. 2a is practically undistinguishable. In this case, the 
diffraction efficiencies 77_,(z) and r)2(z) are less than 0.0005. Therefore, in order to 
calculate holographic characteristics of thick holograms with parameters that 
correspond to Fig. la , one may use simpler theories, such as parabolic approximation 
[8]. In the parabolic approximation it is reasonable to make an additional 
simplification: Bj x ~ £, z ~ B, [12]. The difference between rfx{z) obtained by solving 
the accurate system of equations, and ^ (z ) , calculated by means of parabolic 
approximation, is less than 0.0003 within the interval 0-20 pm for £ = 0.0505. For 
£ = 0.404 (which corresponds to the refraction index variation amplitude fi = 0.128) 
I^i, jc(z)|2> |#i,*(z)|2 and 77j(z) differ between themselves, and this difference is clearly 
seen in Fig. 2b. Diffraction efficiencies r]_\(z) and r]2(z) are less than 0.02. The 
difference between ^ (z )  obtained from an accurate solution and that calculated from 
a parabolic approximation reaches 0.02. Therefore, in order to analyze phase 
holograms for large values of £, one should use an accurate system of equations, which 
is especially important for small Bragg angles [12].

Figure 3 shows the dependence of the diffraction efficiency ^ (z )  of a 16 pm 
thick hologram on the propagation angle 60 of a non-diffracted beam for TE- and
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Fig. 3. Relationship between the diffraction efficiency and the angle 0O for TM-polarization (thick line) 
and for TE-polarization (thin line).

TM-polarization. The other data are the same as those in Fig. 2a. The calculation for 
TE-polarization was done by means of the parabolic approximation. For TM-polarization 
the calculations were made by means of accurate Eqs. (24), (25) and using parabolic 
approximation. In the case of TM-polarization the difference in the behaviour of the 
curves obtained by the two methods is not shown in Fig. 3.

As can be seen from Fig. 3, the angular relationship of diffraction efficiency 
for TM-polarization is typical of thick holograms. Since for this polarization the 
hologram parameters are selected, so that 77,(2) = 1 for 60 = 6B, respective efficiency 
for TE-polarization is less than 1. The diffraction efficiency for TE-polarization will 
be equal to unity either for a smaller value of £, or for a smaller hologram thickness 
which can be determined by formulae listed in [5]. Such angle relationships of 
diffraction efficiencies are typical of thick holograms [5].

4. C onclusions

A system of differential equations has been obtained to describe propagation of 
TM-polarized light in periodic non-absorbing structures. This system of differential 
equations with variables associated with electric field strength has been derived 
without using Floquet’s theorem. The obtained system of equations is valid only for a 
certain correlation between the projections of diffracted wave vectors x and the 
projection of the reverse grating Kx, which is equal to Kx + kt x - k i_l x = 0. The electric 
field inside the periodic structure is represented as a sum of normalized plane waves 
with variable amplitudes depending upon component z, each plane wave being 
described by two variable amplitudes that correspond to electric field strength 
projections on the axes OX and OZ. For condition £ <$C e2o one may use vari° us 
simplifications and the system of differential equations obtained can be reduced to the 
well-known solutions.
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