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We fully analytically describe the amplitude and phase modulation which arise due to cascaded 
second-order interaction. We show that an interplay between nonlinearity and mismatch 
determines the characteristic features of the output modulation. Simple equations for the phase 
modulation in the limiting case of moderate mismatch are derived. For the nonstationary situation 
conditions are identified where a homogeneous phase shift across the pulse can be accomplished 
being very important for the performance of phase-sensitive switching devices such as nonlinear 
Mach—Zehnder interferometer or loop mirrors.

1. Introduction

For more than a decade, degenerated cubic nonlinear effects have been preferred in 
all-optical processing schemes (see, e.g., for an overview [1]). In this cubic scenario 
power- and distance-dependent self-phase modulation of one wave by itself and 
cross-phase modulation of two waves are the basic effects. As far as all-optical 
switching is concerned the phase modulation can only be transformed into an 
amplitude modulation in particular devices being sensitive to phase changes as 
interferometers (Mach—Zehnder, Fabry—Perot, Sagnac) or directional couplers. 
A serious obstacle to the implementation of such all-optical switching devices based 
on cubic nonlinearities and operating at reasonable power levels are the small 
off-resonant Kerr nonlinearities. They are even small in such promising materials as 
direct semiconductors near half-the-band-gap energy [1]. In a search for alternatives 
quadratic nonlinear effects were revised recently bringing back to mind the 
well-known fact that a nonlinear phase modulation can also arise in this situation 
[2]. Due to the cascaded up- and down-conversion upon propagation this modula­
tion is acquired by all waves injected. Hence, it can be used for an all-optical 
manipulation of the fundamental frequency (FF) signal as in a cubic nonlinear 
environment [3] — [7]. With regard to all-optical switching the attention should not 
be merely focused on a search for effects known from cubic materials. The essential 
peculiarity of the quadratic effects is the unavoidable coexistence of phase- and 
amplitude modulation. Hence, on the one hand, this is advantageous for switching 
because no phase sensitive devices are required. On the other hand, this might be 
detrimental if phase modulation is intended to be exploited because the amplitude 
modulation appears as an undesired side effect.
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Early studies [5] — [7] were mostly concentrated on the limit of large wave vector 
mismatch. In this particular situation, it has been numerically predicted [7] and 
experimentally shown [8] that the phase modulation of the FF wave is compared 
qualitatively to that emerging in a cubic nonlinear material and that the amplitude 
modulation is only minor. Although this case only covers a very restricted 
experimental situation, it tells us that cascaded second-order processes can be 
potentially more effective than third-order ones, provided that the extremely large 
second-order nonlinearities of semiconductors or poled polymers can be exploited. 
Evidently, the general case of arbitrary mismatch yields a more complicated 
evolution of the phase and, moreover, an unavoidable combination of phase and 
amplitude modulation.

The aim of this paper is to study quantitatively amplitude and phase modulation 
in cascaded interaction in a quadratic medium considering the effect of the phase 
mismatch, to analyse switching prospects, and to compare them with the traditional 
cubic schemes. The paper is organised as follows: In Sect. 2 we briefly review basic 
equations and their solutions for both amplitude and phase modulation. Formulas 
for the effective nonlinear cubic coefficient in different approximations are derived in 
Sect 3. Peculiarities of the output modulation in the nonstationary situation are 
discussed in Sect. 4. A short summary concludes the paper.

2. Analytical description of wave interaction

In what follows we concentrate on the so-called vectorial or type II interaction, 
where two orthogonally polarised FF waves cij interact with the second harmonic 
(SH) wave b. The evolution of three waves is described by a coupled set of equations 
[9]:

^  =  iyaí-jb, ^  = i{yal a2-2 k b \  j =  1 ,2  (1)

where normalised quantities for the propagation distance, the mismatch and the 
amplitudes are introduced as:

Z =  z/L, k = AfiL/2, flj =  s /lA J s /P , b = (B/^P)exp(-iApz).

Here L is the device length and P =  + \A2\2 + \B\2 is the total guided power or
the total intensity of the plane waves in the bulk crystal, respectively. The wavevector 
mismatch is defined as Afl =  pi(co)+p2{co)—P{2(o)-\-g with g = 2n/p and p is the 
periodicity of the grating optionally imposed to get quasi-phase matching [10]. The 
crucial quantity describing the effectivity of the nonlinear conversion and playing 
a key role in the subsequent discussion is defined as y =  L χe[{̂ /P  (xe{[ is the effective 
second-order nonlinear coefficient) ans is henceforth termed as nonlinearity. In the 
nonstationary case the parameter y depends on time t according to the pulse shape 
(instantaneous amplitude oc y/P).
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The system (1) can be straightforwardly integrated [11]. Provided that the group 
velocity mismatch is negligible for zero initial SH input, we get the evolution of FF 
profiles as

\ai.i(Z,T)\2 =  (1 ±  d)p(z)-  u _ (r)sn2 (V  u+(t) yZ\m(z)), (2)

U±(T) =  ^ 2  ( 2>’2P(T) +  k2 ±  y/k4·+ 4 j 2p (t ) [fc2+ p(T)y2<52]^ , (3)

m ( x )  =  u _ ( t ) / u + ( t ) .  ( 4 )

Here, for the weaker ai and the stronger a2 FF waves the —/+  sign holds, 
respectively, p(r) represents the pulse shape supposed for clarity to be Gaussian 
[p(r) =  p0exp(—t2)] and to have the same width for any input wave, i.e., the 
parameter 5 represents the input imbalance between the two FF components 
(|a1(0,T)|/|a2(0,T|)2 = (1 —<5)/(l +  <5). The evolution of the phase profile of the weaker 
and the stronger FF envelopes can also be obtained integrating (1) [12]:

(p±(Z,t) =  - k Z + - 7 = =  T l\n±;am(v/u+(T)yZ|m(T))|m(i) ,
V W+(T) L J

(5)

n±(r)
(l±S)p(x) (6)

where II(u;S\m) is the elliptic integral of the third kind, am(v|m) is the Jacobi 
amplitude function, and u± and m are given by (3) and (4), respectively. Using Eqs. (5) 
and (6), the optimum ratio mismatch/nonlinearity can be calculated to obtain phase 
shift required for the operation of various all-optical schemes [12].

Frequently, one encounters situations where the linear mismatch |k| exceeds the 
nonlinearity y . We found that the fairly involved Eq. (5) describing the evolution of 
the phases can be considerably simplified, where |k| »  y is not required. By inspecting 
the parameter of the elliptic functions m as a function of \k\/y it turns out that this 
parameter tends to zero as \k\/y grows. Hence, the elliptic integral of the third kind 
can be approximated by trigonometric functions J7(n;S|m)«  arctan(^/l — ntanS)/ 
■J \  — n. Note that the domains where the function 77(n;3|m) and arctanS are defined 
do not coincide, which requires particular care to derive the exact relation. In doing 
so one gets a simple relation for the phase shift where only trigonometric rather than 
elliptic functions are involved. Note that it suffices to require \k\/y > 1 to get instead 
of (5)

<p±(Z, t) =  - k Z - f
k \  G[S(Z,t)] + 7c[int(2S(Z,T)/7c)-  int(S(Z,T)/7c)]

y,
(7)

Here S(Z,t) =  ■y/u+(x)yZ, G(x) = a r c t a n 1 — n± tanx^ and int(x) denotes the

integer part of x. In Figure 1, the results of an exact calculation (5), (6) are shown for 
different ratios \k\/y. An approximate solution obtained from (7) is plotted for
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Fig. 1. Phase shift of the FF wave in the scalar (5 =  0) interaction for different ratios mis- 
match/nonlinearity as a function of the normalised length £ =  yZ  (y =  const). Solid line — exact results, 
dashed line — approximation (7) used

\k\/y = 1.25. If \k\/y > 2, the typical differences between the phase shifts, provided by 
both methods, are even at £ « 6  less than 10“3. We note again that this 
approximation has to be handled with care if the nonstationary case is concerned. 
There the condition \k\/y > 1 means that the mismatch has to exceed the maximum 
nonlinearity set by the peak power of the pulse. The dynamics of the scalar (or type I) 
case (the only wave at FF interacts with one SH wave) can also be inferred from the 
analysis performed provided that the limit of the balanced input (<5 =  0) is taken. We 
mention that the diversity of the scalar case is much less than that identified for the 
vectorial one. In particular, it is easy to conclude looking at (2)—(6) and known from 
many papers that no phase modulation appears if k =  0. Finally, the phase 
modulation is always weaker than that for the weaker FF wave in the vectorial case.

3. Effective cubic nonlinear coefficient o f the cascaded quadratic process

The efficiency of the x(2) interaction can be estimated by the nonlinear phase shift of 
the FF wave evoked by the cascaded process of up- and down-conversion which in 
turn can be compared with that accumulated in a degenerated cubic process. It is 
convenient to use the differential phase shift defined in a cubic medium as 
d(p(3)/dz =  (co)/c)n2I, where n2 is the nonlinear coefficient commonly used and I  is
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the input intensity (bulk) or the guided power divided by the effective core area of the 
respective mode (waveguide). Frequently one argues that cascaded quadratic 
processes resemble the cubic one provided that the mismatch is large (|k| »  1). 
Taking as an example a stationary scalar interaction (5 = 0) we are going to show 
that this condition is inaccurate and too rough and that there are essentially three 
levels of approximation, where again the relation between nonlinearity y and 
mismatch k plays a key role.

3.1. Large mismatch \k\ »  1 and \k\ »  y

The crudest approximation to deal with that case consists in rigidly locking the SH 
wave to the FF one (db/dZ «  0) in (1). Then we get a constant effective nonlinear 
coefficient of the cascaded process proportional to the square of the second-order 
coefficient and the inverse of the mismatch

X e f t

( c o / c W

(8a)

32, Mismatch large compared to the nonlinearity \k\ »  y

A more reliable approach is based on the phase evolution obtained from Eq. (1) 
dq>/d£ =  (k/y){ — 1 +  [1/(1 —u(<̂ ))]}, where <p(£) is the phase of the FF wave, u(£) is 
intensity of the SH, and £ = yZ. Expanding this expression into a Taylor series to the 
first order in u(g) we get the relation dq?/d£ =  (y/2k){l — cos[(2fe/y)^]}. Using the 
normalisations we can read off the effective nonlinear coefficient as

(n̂ = r a [1- C0S(J№ (8b)

which depends now on the propagation distance. This expression was earlier derived 
in the so-called non-depleted pump approximation [7]. Note that Eq. (8b) simplifies 
to (8a) if the trigonometric function varies rapidly (|k |»  1) and its average vanishes.

33. Moderate mismatch |k| >y

Finally we lift the strong constraint (\k\ »  y) coming to the case \k\ > y. The 
approximation used there corresponds to the replacement of the solution of (1) 
presented by elliptic functions by trigonometric ones [12] but avoids the Taylor 
expansion of [1/1—u(£)]. The straightforward calculation leads to

Xtfr________ [1 — cos(J/?z)]
' 2 h  H c ) A P  [1—(4XtV / ^ 2)sin2( ^ /2 ) ]  '

revealing that the effective nonlinear coefficient depends now on the propagation 
distance as well as on the input power (intensity in the bulk case). The factor in front 
of the sin-function corresponds to (y/k)2. Hence, it is evident that (8b) can be 
re-established if {y/k)2 «  1 holds. We can conclude that it might be useful to exploit 
the concept of an effective third-order nonlinear coefficient provided that, at least, 
the linear mismatch exceeds the nonlinearity (2Xai^fP/dfS) <> 1. As already pointed



280 A. Kobyakov, F. Lederer

Fig. 2. Effective cubic nonlinear coefficient of the cascaded second-order process versus propagation 
length. Parameters: input irradiance 500 MW/cm2, dtn — 3.1 pm/V, n =  1.8, X =  1.06 pm

out the crucial parameter which controls the characteristic of the cascaded process is 
the relation between mismatch k and nonlinearity y rather than one of these 
quantities. The effective n2 coefficient obtained in different approximations is plotted 
in Fig. 2 as a function of propagation distance for different values of phase mismatch 
Aft in a KTP crystal. The pump irradiance is supposed to be 500 MW/cm2 at 1.06 
pm. Eventually, it remains to mention that second-order cascaded processes own 
a much richer diversity than those described by an effective cubic nonlinearity.

4. Amplitude and phase modulation o f short pulses

Now it is commonly believed that cascading of quadratic nonlinearities could 
represent a competitive alternative to the conventional schemes based on degenera­
ted cubic effects in future photonic networks [12] — [16]. Having this aspect in mind, 
it is necessary to study the amplitude and phase modulation for pulses in the 
picosecond regime. We mention that dispersion-evoked pulse broadening and 
temporal walk-off can be neglected in the context we focus on. Hence, it remains to 
evaluate the analytical formulas obtained in the previous sections to study the 
intensity dependence of the output modulation. First we recall that in a cubic 
material self-phase modulation due to the variation of the power across the pulse is
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the only effect appearing. Thus, it is unavoidable in these materials that the pulse 
acquires a strong chirp upon propagation. This is expected to be detrimental for 
all-optical switching, e.g., in a Mach—Zehnder interferometer where a uniform phase 
shift of the entire pulse is required to obtain an effective amplitude modulation due 
to constructive or destructive interference.

As far as cascading is concerned this behaviour appears only in the limit of 
moderate or large mismatch, where the phase shift depends almost linearly on power 
and the amplitude modulation is only minor (Fig. 1). But for small or zero mismatch 
the coexistence of strong amplitude and phase modulation, evoked by the pro­
nounced conversion process, is peculiar for cascading. The strong amplitude 
modulation depends on the normalised distance £ = yZ  which contains the power 
via the nonlinearity y. Another peculiarity of the cascading process consists in the 
existence of pronounced plateaus, where the phase is almost constant provided that 
the control parameters are properly fixed (Fig. 1). We are going to discuss the 
consequences for phase modulation and assume that the complete initial pulse 
amplitude varies as ^ '^ /P 0exp(—t2), where t is an arbitrarily normalised time in the 
reference frame of the pulse.

Inspecting Equations (5) and (6), one can show that essentially two cases of phase 
modulation can be distinguished, namely for small mismatch a monotonous, but 
almost step-like increase of the phase of the weaker FF wave and for moderate 
mismatch a quasi-linear increase of the phase with slight oscillations imposed (see 
Fig. 1).

By exploiting Equations (2)—(5), we can calculate the amplitude and phase 
modulation as a function of the nonlinearity which now varies across the pulse as 
y =  y0exp(—t)2 with y0 =  LxeffX/P^. For the moderate mismatch the approxima-

Fig. 3»
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Fig. 3. Intensities (a) and phases (b) of the FF wave as a function of the nonlinearity y =  LxtrrJ p .  The 
input is balanced (5 =  0); solid line: k = 17.3, dash-dotted line: k -  43, short-dashed line: k = 0.87, 
long-dashed line: k = 0.25

tion (7) can be used as well. The results are shown in Fig. 3 for various values of 
mismatch. Figure 3 reveals that for moderate mismatches the phase shift is 
proportional to y2 and depends thus linearly on the instantaneous intensity. Hence, 
we can expect a similar phase modulation as in cubic materials because the 
amplitude modulation is fairly weak.
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Fig. 4. Phase and amplitude modulation of a pulse with the input amplitude y =  y0exp(—z2). 
a -  k =  0.25, y0 =  5.07, b -  k =  4.3, y0 -  3.5

The consequences of these results for the intensities and the phases of the pulse 
can be recognised from Fig. 4. In Figure 4a, the peak nonlinearity was set to y0 = 
5.07 corresponding to a maximum amplitude of the FF waves and a centre of 
a phase plateau (see Fig. 3). For the cases where the mismatch is small (Fig. 4a), the 
pulse shapes are only marginally affected, whereas the phase modulation is almost 
homogeneous (no chirp) across the pulse. In contrast Fig. 4b shows the behaviour 
similar to that encountered in cubic materials. The phase modulation follows the 
input intensity of the pulse corresponding to a strong chirp.

5. Conclusions

In conclusion, we have shown that with regard to ultrafast all-optical switching 
cascading of quadratic nonlinearities can be qualitatively superior to the cubic 
effects. First, one can achieve a highly efficient direct intensity modulation at the 
output. Secondly, if phase modulation effects are exploited, being usually the arena of 
cubic nonlinearities, situations can be identified where the pulse shift is homogeneous 
across the entire pulse. Hence, devices which transform this phase shift into an 
intensity modulation as Mach—Zehnder interferometers, loop mirrors or phase 
rotators combined with crossed analysers are expected to operate much more 
efficiently if cascaded quadratic nonlinearities are exploited rather than cubic ones.
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