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Some comments on ray trace matrix of an optical diffractive element
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To describe the ray tracing through an optical diffractive element in matrix 
representation, we require that the rays lie in a common plane with the optical axis. 
With this approximation, only the Gaussian optics is of concern and the relations 
between the coordinates x' and /, x  at the diffraction surface are linear (see [1]). 
Therefore, we describe these relations by a matrix. In the Cartesian coordinate 
system, the distance between the optical axis and the intersection point of the ray 
with the diffracting surface is given by x and x', whereas the direction cosines of the 
ray before and after diffraction are /', and /, respectively, as shown in the Figure. If we 
introduce a column vector representing ray tracing at any position of the optical axis

then after passing through an optical element the column vector is given by

where the matrix elements are as follows

= 1,
X d<P 

2nx dx'

f l21  =  °> 

a 2 2  =  I*

The relationship of output to input column vectors is contrained by transfer 
phase function that the optical element is to perform. The value of partial derivative 
of the transfer phase function is taken at the incident point of the ray on the optical 
element. As we see, our considerations are limited to a one dimensional optical 
diffractive element. Therefore, for a grating having a spatial period A, the diffraction 
matrix is
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Diffraction of the ray at an optical diffracting plane P. © and O' are the incident and diffracting angles, 
respectively. The relationships between the direction cosines of the incident and diffracted angles are: 
/ =  cos a =  sin©, I  =  cosoe' =  sin©'

L 0 1 J
where q is the diffraction order, and A is the wavelength of light used. In this case, the 
transfer phase function is a linear function of x

4>(x) =  2nq^.

If we insert the above matrix expression into Eq. (1), then we obtain the equations 
relating / and x  on either side of the grating:

r = l+q
X
d ’

x' = x. (2)

These equations express the fact that a thin grating changes only the slope of the ray 
and not its position. In the Figure the two quantities are shown: / and /' describing 
the direction cosines of the ray, whereas x  (or x') defines the distance between the 
optical axis and the intersection point between the ray and the optical diffracting 
surface. The diffraction grating lines must be perpendicular to the plane of the 
incidence and the diffracted rays.

Now, consider an optical diffracting element with the phase variation that is 
a quadratic function of r

<P(x,y) =
nr
Xf

(3)
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where r =  y /x 2 + y2 is the radius of constant phase, and /  is the focal length of the 
optical element. The transfer phase function described by Eq. (3) represents a Fresnel 
zone plate, since by setting this function equal to 2nn, the radius of constant phase 
takes the form

Tn = V 2nXf
where n is an integer. The method of making such a Fresnel zone plate uses 
a mechanical plotter to draw concentric zones with radii rn. However, the Fresnel 
zone plate made by recording the interference pattern between a divergent wave 
front from a point source located at distance /  from the plate and a collimated 
reference beam, has a transfer function with the phase variation of

f(x,y) =  y ( V r'-i + / i - /) -  (4)

The phase term InffX that is constant is included in this function, so that &(x,y) must 
be zero at r = 0. If we set the function expressed by Eq. (4) equal to 2nn, the radius of 
constant phase of such a Fresnel zone plate, which is the hologram of point source, 
has the form

rn =  •>/2nXf+ n2X2.

If the optical diffracting element with the phase function described by Eqs. (3) and (4) 
is illuminated by the collimated laser beam, then the phase variation in the diffracted 
wave for one dimension, is

and >̂(x) = ~ ( y / x 2+ f - J ) ,

respectively. Therefore, the diffraction matrix takes the form 

— for the first, and

1 — for the second Fresnel zone plate, respectively.

We see that the respective matrix elements in the first and the second matrix for the 
paraxial rays are identical. Thus, for the interferometric zone plate produced by 
recording the interference pattern, we have

a12 =  lim [x2+ / 2] _1/2 =
x~*0 J

This type of diffractive element is easier to produce than the conventional zone 
plate, since it can be made with a large number of zones and small /-number, i.e., by 
a small ratio of the distance of the point source from the recording plane to the 
diameter of the optical zone plate. The diffraction matrix that describes the

[*2+ / 2]
1
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transformation of the ray vector though an optical diffracting element can be 
extended to more complicated systems, as shown in papers [1], [2], and permits 
rapid analysis of optical imaging system.
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