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Gauge reduction of the Fourier transform setup
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The optical Fourier transforming systems are generally realized through the use of an optical 
focusing element with input and output planes being two focal lengths apart. In this paper, we 
consider the alternate setups with the reduced longitudinal space.

1. Introduction

In a coherently illuminated holographic focusing element there exists a Fourier 
transform relation between the light amplitude distributions in its front and back 
focal planes [1]. Due to the transformable property of such a holographic optical 
element, it is possible to produce the Fourier spectrum with minimum phase error of 
an arbitrary amplitude transmittance introduced in the input focal plane of the lens. 
But the Fourier transform relationship can also be realized with minimum phase 
error in a shorter setup that uses one or two lenses and is one-half the overall length 
of the generally used conventional spectrum analyzer.

In this paper, we consider three different configurations of Fourier transform 
relation, whereas each of them is realized in the reduced longitudinal space. As we 
know, the Fourier transform lens must focus the bundles of parallel light rays 
diffracted at different angles to suitable points in the back focal plane of the lens. 
Corresponding to different diffraction angles, the focused spots at all locations in the 
Fourier plane should be the same. All departures in the quality of the focused spots 
are the aberrations, and are found as an incorrect reading of spatial frequencies of 
the Fourier spectrum.

2. Focusing mirror transformer

In the case of a holographic mirror, the light used to illuminate the holographic 
optical element for reconstruction is reflected (diffracted) to form the spherical 
focusing wave fronts. The design uses the reflecting holographic element in order to 
achieve a compact folded geometry with high diffraction efficiencies over the desired 
field of view. Analogously to conventional concave mirror, holographic reflecting 
element of a given focal length can have different shape factors depending on the 
recording parameters of the hologram. Thus, if the focal length is defined by
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where R0, Rr are the object point and the reference point source distances from the 
recording medium, respectively. Let the holographic reflecting element be recorded 
by an object spherical and a reference plane wave fronts, according to the geometry 
shown in Fig. 1. The input plane wave front is tilted at an ctR = 6° angle with the 
recording plane and the object beam incident from the right side at a0 =  0° is 
converged towards the object point at R0 =  100 mm from the HOE being formed. 
It is necessary to expect that the optimum value of the shape is then Q =  1.0 
corresponding to the plane reference wave (Rr -> oo) and the spherical object wave 
front whose curvature radius is equal to the focal length ( /  =  100 mm) of the 
holographic optical element.

Recording

Fig. 1. Recording of an oil-axis reflecting holographic element: a is an offset angle, UQ, UR are the complex 
amplitudes of the object and reference point sources, respectively

It is well known that the third order aberrations of point source hologram were 
derived by M e i e r  [2] and C h a m p a g n e  [3]. Using the Champagne approach, the 
plane wave components of the input are being considered. Assuming no wavelength 
shift, the Gaussian image position is given by the equation

(1)

and
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sinaj =  sinac±(sina0 —sinajj),

cosafsin =  cosacsin/Jc (2)

where subscripts C and I refer to the reconstruction source and image points, 
respectively. But, when the plane wave components of the input are being analyzed, 
the reconstruction wave has Rc -> oo. Thus the Gaussian image position reduces to 
Rj = R0, and sinocj =  sinac — sinaR. As we know, the third order wave front 
deviation from the Gaussian sphere in Champagne approximation is determined by

A =  - ^ ( x 2 + y2)S + ̂ ( x 2 + y2)(xCx+yCy) - ^ j ( x 2Ax + xyAxy + y2Ay) (3)

where the coefficients: S, Cx, Cp A„ Axy, Ay denote the spherical, comatic and 
astigmatic aberrations, respectively, and are given by:
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In our case, the third aberration coefficients become
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, cos2acsin20c ^
Ay = -------- Ro------‘ (5)

As shown, for a given specification the third order coma is inversely proportional to 
the square of the focal length, and third order astigmatism is inversely proportional 
to the focal length of the holographic element under consideration. Therefore, we see 
that the performance of the holographic optical element is heavily dependent on its 
focal length, and can be optimized by increasing the focal length.

FP HOE

Fig. 2. Holographic reflecting element (HOE) as a Fourier transformer: /  — focal length, OP — object 
plane, FP — Fourier plane

Due to the Fourier transformable property of holographic optical elements, it is 
possible to form the Fourier spectrum of an arbitrary object transmittance. Usually, 
the Fourier transform relationship is realized between the input and output planes 
being two focal lengths apart, but the system with a holographic reflecting element is 
one-half the overall length, as shown in Fig. 2. The transparency located at a distance 
/  in front of the holographic focusing element is illuminated by a normally incident 
plane wave. Thus, since the input is inserted in the front focal plane of focusing 
mirror, the phase curvature disappears leaving an exact Fourier transform of the 
object transmittance U0(x0,y0) in the Fourier plane: UF(xf ,yf ) = F{U0{x0,y0)}.

3. Double holographic transformer

Consider an alternate optical setup of two holographic optical elements and H 2 
that perform a mathematical operation between the input and output planes being 
a focal length apart. This system is shown in Fig. 3, where a plane object with 
amplitude transmittance U0{x0,y0) is inserted immediately in front of the first
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Fig. 3. Double holographic lens transformer (H „ H 2). Object plane OP is placed in the (xo,y0) and the 
Fourier plane FP — in the (xf ,y f ) planes of the coordinate system

holographic converging element of focal length / .  The object is illuminated by 
a normally incident, coherent plane wave. To find the amplitude distribution across 
the focal plane of the first holographic lens, we use the Fresnel diffraction formula 
[1] that in our case can be written in the form

+ 00

| | u 0{x0,y0)expj  ̂— i j ( x Qx f  +  yQyf )Jdx0dyG. (6)
~ 00

We see that the amplitude distribution in the output plane is proportional to the 
Fourier transform of the object amplitude transmittance. But as we know, the phase 
transformation by an optical converging element of the focal length /  at co­
ordinates (x,y) may be written in the form of quadratic approximation to a spherical 
wave

V F{Xf,yj) —
e*p[ '^ .(* /+ )’/) ]

u /

Therefore, when the second holographic lens of focal length /  is inserted in the back 
focal plane of the first lens, the quadratic phase factor is seen to cancel, leaving an 
exact Fourier transform relation

+ CO
M.

~ lj ( xo
—  00

x f +y0yf) dx0dx0. (7)UAx' ’y' ) = afj U0{x0,y0)ex p[
We see that the double holographic lens system can be used as a Fourier transform 
setup, where the first holographic element performs the Fourier transform with phase 
curvature and the second one acts as a phase corrector plate. Thus, the double lens 
setup will require only half the longitudinal space of the conventional one.
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4. Converging beam Fourier transform

The converging beam Fourier transform is based on the diffraction of a converging 
spherical wave by the object frequency components [4], as shown in Fig. 4. In this 
case, object is placed behind the holographic lens which is corrected for spherical 
aberration to produce a perfect spherical wave. If the holographic optical element is 
illuminated by a normally incident plane wave of an amplitude A, then it is the

HOE OP FP

Fig. 4. Converging beam setup for Fourier transform

spherical wave that is incident on the object, converging towards the focus of the 
lens, and the field distribution across the focal plane is proportional to Fourier 
transform of the object transmittance

^4exp
UF(xf>yf) = iXd | |^ o ( xo»yo)exp |^ -^ (xox/+> ,oy/)J^odyo- (8)

Thus, up to a quadratic phase factor, the field distribution in the back focal plane is 
the Fourier transform of that portion of the object subtended by the projected lens 
aperture. The setup allows the size of spectrum to be varied, because of the spatial 
frequencies that are given by

n = lL
Id'

We see that by increasing the distance between the object and Fourier planes, the 
spatial size of the transform is increased, and by decreasing the distance it is made 
smaller. Independently of the corrected spherical wave for an on-axis point, 
aberrations in the Fourier plane are induced by this wave owing to diffraction at the 
frequency components of the object. Therefore, it is important to know these 
aberrations quantitatively. Using the Meier’s formulas [2] of the third-order 
holographic aberrations for linear holographic grating that is inserted in the object 
plane, we have for spherical aberration As = 0, the wave front deviation



Gauge reduction o f the Fourier transform setup 191

A = Ac ~h Aa + Af 

where
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X2?
2d

x2e
4 d

R2cos20,

R2 (9)

are the wave front deviations owing to coma, astigmatism and field curvature, 
respectively. £ is the spatial frequency of the holographic grating, and R, 0 are the 
polar coordinates in the exit pupil of the system, whereas the angle 0 is formed by 
R with the positive y-direction. The fifth aberration, that is, distortion yields only 
a shift of image in the Fourier plane.

In this case, the Fourier transform relation between the object transmittance and 
the amplitude distribution in the focal plane is not an exact one, due to the presence 
of the quadratic phase factor (see Eq. (8)). But in most cases the intensity distribution 
across the focal plane is measured that yields knowledge of the power spectrum of 
the object transmittance

lu / ( W /) l2 =

+ 00

|  ^o(*o>.Vo)exP ^ - ^ ( * o x/  + fo>7) dxQdy,

5. Conclusions

The three different configurations with the reduced longitudinal space for Fourier 
transform setup are considered. Note that two of them realize an exact Fourier 
transform relation between the object transparency and the amplitude distribution 
across the focal plane, and the third one is represented by Fourier transform relation 
with the presence of the quadratic phase factor that precedes the integral presenting 
the modified Fresnel diffraction formula.
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