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The influence of the layer thickness
on the coupling efficiency of plane waveguide
with periodically variable refractive index**

Coupling equations for the plane waveguide with periodically changing refractive index have been derived. A weak modulation
ofthe refractive index has been assumed. Also it has been accepted that both the media surrounding the waveguide have the same
refractive index equal to the average refractive index of the waveguide. The solution of coupling equation for a purely phase and
purely amplitude modulation has been given and the influence of the layer thickness on the coupling value examined.

Consider a plane waveguide, which is unlimited
in the direction of x and y axes, respectively, and
has the thickness y — called layer thickness — along
the z axis. The coupling may be great but not great
enough to change considerably the amplitude along
the way equal to one wavelength of the radiation
used. This allows to neglect the second derivatives
of the amplitude. Let us assume, that the refractive
index changes periodically

H= Ho+ ?7cos(j?-r+y). (1)
The vector /7 is perpendicular to the planes H=
const. A medium of this kind may be realized,
for instance, with the help of accoustic waves pro-
pagating in a dielectric medium. The change of the
refractive index in an acoustic held propagates with
the velocity of sound. This motion is not taken into
account in the equation (1), which may be treated as
being caused by the held at a given time. The refractive
index distribution determined by equation (1) may
be obtained, for instance, by taking a photo of a
spatial interference pattern. After bleaching the
distribution of the refractive index is equivalent to
that of n (eq. (2)).

This is a three-dimensional distribution of the phase
grating in the dielectric material. The geometry of the
problem is shown in hg. 1 Besides the vector /?, the
vector of incident plane, and vector 7¢ of the
scattered wave have been also marked.

Hereafter we will assume that the media surroun-
ding the layer have the refractive indices H, This
considerably simplifies the discussion (allowing to
neglect the reflection and refraction at the boundary
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surfaces) and does not restrict the generality of the
derived conclusions. The coefficient ?is assumed to be
small, hence eq. (1) can be written in the form

Fig. 1. Plane waveguide with periodically changing
refractive index

Equation (2) may be generalized by introducing
a complex refractive index

H = n'—m".

©)

We assume that modulation of the refractive
index 171 is weak, and that the losses are defined in
such a way that the amplitude along the way A
changes only slightly (n" n'). This assumptions
enable to write the equation (2) in the form

2;n'n"—=27n" cos(/7-r).

4)

The restricting conditions are almost always
satisfied, otherwice the absorption becomes so strong
that the Bragg condition is no more valid. A medium
of refractive index determined by equation (4) may
play the part of a spatial grating of phase, amplitude
or mixed type. For the wave falling in accordance
with the geometry shown in fig. 1 the resulting field
may be written in the form

y = A@exp(—ZA-r)+2?(z)exp (—Z%-r), (5)
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where the first term corresponds to the incident wave,
and the second one to the diffracted wave. By inserting
the wave function defined by eq. (5) into the wave
equation and neglecting the second derivatives we get
[1,2]:

M .
[-2:'k, R 2m'u"'/iQ yf+
3z

A.Bexp rf(A—A—?)-r)j exp(—:A-r+

T 3B

+ j— — 2fwn"A:QR+

+ exp (F(A— -Njexp (<A -r)+
+ryaA exp(- fA+") 1)
+Bexp(-i(A,-j?).r)] = 0, (6

where A; and A;; are the z-components of the vectors
A,and Ifthe Bragg condition is fulfilled the expone-
nt in the third term of the first and second squared
brackets disappears. Let us multiply the both sides
of (6) by exp(’&*r) and integrate over the whole
space. The integration along the z-axis is here reduced
to that along the layer thickness. Thus the integration
path is short as compared to the distance along which
~(z) and B(z) change considerable, but it covers
simultaneously many periods of oscillation. Keeping
in mind that it follows that all the

jy Jexp(:'(ANM—AJ-r)Ax3yJz (6a)

= (2n)3<$(AN-AJ-<$(AN-A,) -3(AN-AJ,

we obtain that all the terms containing an exponential
expression of quick oscillation will approximately
cancel each other. This is valid for all the terms con-
tained in the second squared bracket and for the first
term in the third squared bracket. When Bragg con-
dition holds, the second term in the third squared
bracket is, however, different from zero and its negl-
ecting as done by mARcuse [2, 3] is unjustified.
The integrad of the remaining terms will be equal
to zero for all x and vy if the integrad is equal to zero,
ie. if

&4 a'a"An na'A,

°zt = -L— ?-B. (7)
3z A,

By muitipiying the equation (6) by exp(fAg-r) and
integrating over the whole space we get the relation
3B a'a"A:

3z (A. (72)

For a constant refractive index = 0) there is no
coupling and the both equations (7) and (7a) are
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identical. Then the solution of equation (7) is given
by the following function

A = ~oexp(-u,(z+?)),

where (8)

a =
A,

and the solution of the equation (7a) is

B = B,.exp(-a,(z+.y)),
where (8a)

n'a"AQ

In this case the both waves are evanescent. For
# 0 equations (7) and (7a) take the form

A4 An

+a, = -f-— 3B,
3z A,
€)
3B ,
— +a,B :-;—A 3.4,
3z A,
where
3 = Ma'Ag. (9a)

By excluding B from the second equation we obtain

AN\

i/\ +(a,+a,)—A +/("""-+TAI'|V|:° (10

In this equation the 3*"4/3z* may not be neglected,
because the quantities a,, a,, and 3 are small.

The solution of equation (10) my be sought in
the form ~ = exp (az). After substitution we obtain
a quadratic equation for a

CA+(a,+<?)<I+ = 0- (12)

By solving it with respect to a we obtain

at = —

()

Thus solution of equation (10) will be given by the
function

A = cexp (a+ (z+7)) + 3exp (a_ (z+7)). (12)
From the first of equations (9) we get
B = [(a+ +a,)cexp (a+ (z+7)) +
+(a_+a,)3exp(a_(z+™)]. (13)

In order to examine the expression obtained let us
divide the possible cases into two groups. The cases
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in which the scattered wave appears at the same side
as the incident wave, i.e. if

>
S

(14)
and

- (15)
belong to the first group. This scattering is called the
backward or reflection scattering. The second group
comprises the cases scattering in which the scattered
wave appears at the opposite side with respect to

the incident wave. Then
7?W) = o,

This scattering is called forward-scattering or
transmission-scattering. For the first case (see eq.

™e fyhivee of 2%e

Generally, the amount of the transmitted power
depends upon the coupling and the thickness of the
layer 3. For the very small thickness (2<3j 1) the
solution of equation (19) may be simplified to the form

-2 (21)

For the first case (backward-scattering) the direc-
tion of the scattered wave is reverse to that of the
incident wave

4,%4, < 0-

Parameter 6 is thus imaginary

(14) we have at = #I<3l, (22)
(a_ +a,)exp2ct_ w4, 16
(a_ +a,) exp2a_y—(a™+a,) exp2a+.y ' (16)
(a++a,)exp2a,
(ct_+ a)exp2a_"—(@"_-j-a,)cxp2a’s-
while for the second one we get and the amplitude is represented as follows
A)6I(z-
Cc— o — ? (17) /\4(2) _(_:___2___&2___3_2 N oz N
- CA2IN's
(23)
-1 N3 ()
a_— = fil" -
_ R(z) = fj/ A 3

For a stricktly wave grating n" = 0, thus a = 0,
a, = 0. The equation (11a) may be simplified to the
form
aj = rh: 4§
(18)

@

The magnitude of amplitudes may be evaluated

from equations (12) and (13). For the second case we
get from (17)

y4(z) = yA4(,cos<l(z+.y),

F(z) ——i'l/ -~-y4oSin<$(z+.y), (19)

for
—F< Z< S\

Thus exchange of power occurs periodically. The
effectivity will be equal to 100% if there exists only
a scattered wave (y4(s) = 0)), i.e. for the thickness
satisfying the relation

25y = (2n+1) —,

n=20,1,2, ....

(20)

For this scattering there is no power oscillation
and the complete power transfer is impossible. The
power transfer is the better the greater is the thickness.
In this problem the thickness is not critical as it was
the case for forward-scattering. Now, consider the
amplitude gratings with both the components of

~  refractive index admitted. To avoid amplification

we assume

Now, the coefficient ~ is imaginery and
To scatter the transmission

< 0.

> 0.

For this case the equation (11la) is written as
follows

—at vy,
a=Y (<%+"). (24)

)+ 4

3l
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The amplitudes calculated from the equations (12)
and (13) amount to

~z) = exp(—a(z+y))"cAly(z+"M)] —

* NMy(2+-9)]j Mo- (25)
B(z) = —  exp(—a(z+™)"[y(z+i)]"Q.
From this equations it is visible that the full

exchange of power is impossible.

Consider the normal incidence (IAl= k7). As we
are interested in the scattering satisfying the Bragg
condition

then the components x and y of the vectors A, are
identical with the respective components of the
vector /2. For arbitrarily oriented planes of constant
refractive index

while

0< — < 1. (26)

The coefficient of proportionality has been written
in the form 1/m, which will be convenient in further
considerations. This leads to the following values of
a,, a, and y (eq. (26)):

a, = wa,,

a= -La,(l+m), 27)
y= -y l/(I-m)2+4-~j-m.
2y n
Since n" N ? then n" = ™™ will be the best

assumption. For this value of the imaginary part of
the refractive index we obtain

y = y(l+w). (27a)

From (24) we may be evaluated a”

LI

0,

a_

a, (;"+??).
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The amplitudes calculated from (25) — after
small rearrangements — may be written in the form

N(2) = exp(-y a@+m)(z+N)) Ay a,(1+

+m)(Z+")----?-(i-T-2 'Aia (I +m)(z+i)1A (28)
1+m ] 2 J
~Nz) = E —Zexp (- ia,(|+m)(z+y) X

1+m 2

XVAj™Y a, (1+m) (z+7)j.

Let us calculate for which s the amplitude B(")
is maximal

2in!'~o

Ne ) = Lem exp(-a,(l+

+m)M) A8 (1--M3].  (28a)

For maximal scattering the following condition
must be fulfilled

dR(j)
&

2:n!
yiQ -a,. (L+m)exp (—a,(1 +
1+m

+w)NjA[a, (I +m)jl+a,(l +m)exp(—a,(l +
+m).y)cA[a,(1+m)y]j =0.

Hence we obtain
SAa, (1+m)"~] = cAla, (L +m).s]. (29)

This condition
thickness. Then

is satisfied for infinitely great

(30)
1+7M

From (29) and (30) it may be seen that the maximal
value of amplitude of scattering may be reached not
only for very great thickness, but also that it depends
on the orientation of periodical changes of refractive
index. Thus for instance, if the planes of constant
refractive index are identical with z = constant
planes, m= 1, and the diffusion efficiency is equal to
about 25%. The amplitude grating does not give the
complete efiectivity, and the advantageous conditions
(great thickness and suitable orientation) are not
always possible to satisfy. Generally speaking, for
the amplitude gratings the scattered wave is difficult
distinguish from that incident.
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Now, consider the reflection scattering (~'~z <
< 0). The equations (11) become

a+ = —a+<5,
_ ) (3i)
=y ]/ (a,+tay Aing
The amplitudes may be presented as follows
74(z) = rlgexp(—n(z+3.9)j X
Oc/;inN@Ez S)-"(a,- als'Aiz -.s),
dc/;2&+f(a,—
(32)

F(z) = - ~oexp(—a(z+3y)j x

] y?<S(z—y)
bcl/izbs—) (a,—a,) §/;2 &

The scattered wave appears for z = —s Let
us calculate the extreme amplitude of scattering for
normal incidence. Let

(33)

From (31) we get

A, = ma,
a= 1/2(1 —?2)1,
&= 1/2(1—m)a,, (34)
=0,

a =

—(1—T™m)1,.

With the help of these relations the amplitude

of the scattered wave for z = —n will be
A(—y) = 2Hn4(, x
yA[(l—m)s;Y]

(35)

@ —m)c/; [(1 —2m)a,y]+(1 tm).s/i [(1 —m)a,y]
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If there exists the maximum scattering with respect
to the thickness the following condition must be
satisfied

ifR
_ /\(_l) o

This leads to the condition

(36)
(1 —w)™a,
@L— )l [A-T)a,y]+(1 +wW)XA [(1—T1)5,y]

which is fulfilled only for inhnitely great thickness of
the layer. Thus, the critical thickness does not exist.

For m = 1 the solution of equation (16) for ¢ and
< cannot be applied, because there appears dividing
by zero. Hence, the equation (12) should be a starting
point. The value of amplitude of scattered wave is,
however, so small that the application of the per-
turbation calculus may generate great errors. More-
over, the smallness of scattering amplitude leads to the
case of no practical meaning.

BnunsiHWe TONLLUMHBI C10A
Ha 3((eKTMBHOCTb CBSI3U MMJIOCKMX BOJIHOBOAOB
C NEPVIOANYECKN MEPEMEHHBLIM
KO3O(hMLMEHTOM MPESTIOMEHNS

BbiBeaeHbl ypaBHEHUSI CBA3W A5 MNJ0CKOr0 BOJIHOBOAA
C Mepuoanyeckn nepeMeHHbIM KO3(PMULMEHTOM NPeoMaeHns,
npuyem 6blna npeanonoXxeHa cnabas mofynAuMa Koagdu-
LUMeHTa MpenoMeHns; MPUHATO Takke, UYTO KO3(PDULMEHT
NpesioMneHns y OKpy>KatoLLieli cpefibl paBeH cpegHeMy Koathdu-
LMeHTY NpenoMaeHns BonHoBoga. MpuBefeHbl pelleHns ypas-
HeHWs CBA3W ANs cO6CTBEHHO (DasoBOW M aMnNAUTYAHO MoO-
pynaumun. MpoaHanvM3MpoBaHO BAWAHME TOMWMWHBI Ha 3Ha-
YeHre CBSA3M.
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