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Incoherent imaging of a periodic point object using

an aperture of black-white concentric annuli

A M Hamed

Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt

The incoherent imaging of a periodic point object consisting of equidistant unit impulses is
considered in this study. An aperture com posed of black-white concentric annuli is utilized. The
intensity distribution in the imaging plane is calculated from the convolution product ofthe object
intensity and the impulse response appropriate to the system. An expression of the modulation
transfer function of the imaging system s deduced in matrix form. A com puter program is
constructed to com pute the normalized autocorrelation function of some black-white apertures

and compared with that obtained for a uniform circular aperture

1. Introduction

The incoherent im aging system m ay be regarded as a linear shift-invariant system
[1]. 1In this system , the light radiated by the object has a narrow tem poral
frequency spectrum , i.e., if the light has a bandwidth A X centered about the

wavelength X, we require it to fulfil the inequality AX « X but to be spatially
incoherent. This differs from the coherent im aging system in which the light was
assum ed to be m onochrom atic and therefore perfectly coherent. Therefore,
a coherent wave field is characterized by its ability to produce constructive and
destructive interference when different portions of it are com bined at the same
location. The fundamental reason for this behaviour is that the realtionship
between the phases at any two points in a coherent wave field is fixed in tim e.
A monochrom atic wave field would be coherent both spatially and tem porally.
But such a wave field cannot exist in the real world. On the other hand, no wave
field in the real world is com pletely incoherent either. Thus, all the real wave fields
exhibit som e degree of partial coherence, and the notations of coherent light and
incoherent light are contrived to sim plify certain calculations. In the former case
of incoherent im aging, the object may be either self-lum inous or irradiated by
som e incident wave field; in either event, we shall consider the radiated light
to be spatially incoherent. Hence, the diffracted im aging distribution is com puted
from the convolution product of the point spread function of the system and
the irradiance of the geometrical image. In the other case of coherent imaging,
the diffracted im age is calculated from the modulus square of the convolution
product of the am plitude spread function and the com plex am plitude of the

object.



The pioneer work of many scientists on the transfer function of the incoherent
imaging system s with slit, circular, and annular apertures has been reported
[2] — [6]. In most of these studies, incoherently illum inated sine wave objects have
been taken as targets. Since these target objects are fabricated with a great difficulty,

hence practical objects of rectangular or triangular wave shapes are suggested and

realized easily. The frequency responses of the above-mentioned objects are
investigated [71 [10]. Studies on the evaluation of sine wave, rectangular and
triangular wave responses ofnon-uniform ly illum inated apertures have been m ade in
[11] — [14]. In view of the above discussion, we made a theoretical study on a com b

function as representing an object in the presence of a novel apodization of the

aperture. In this case, the response of this object is calculated and the transfer
function of the incoherent imaging system is com puted for that aperture of B /W
concentric annuli. The manipulation of this apodization is recom mended for that

hyper-resolving aperture. The analysis is followed by theoretical results and finally

a conclusion is given.

2. Theoretical analysis

The intensity distribution in the im aging plane is given by the convolution of the
object intensity distribution E (r) with the im pulse response R{r') appropriate to the

imaging system . In the former case of incoherent imaging, the intensity becomes

m = 2 E(r)R(r-T)dr (@)

—m

or sym bolically as

I(r')y = E(r')*R (r% (la)
* — sym bol for convolution product, r — (x,y) is the radial coordinate in the object
plane, and r* = (x\y') is the radial coordinate corresponding to the im aging plane.

N ow , assume that the periodic point object represented by a comb function of

equidistant unit im pulses separated by r0 is written as

E (r)= t S(r-nro0). (2)

The Fourier series representation of such a wave can be shown to be given by

E(r) = - £ exp (jnco0r) (3)
r0 a=-oo

where cois the angular frequency given by co0 = 2n/r0 = 2nv, and d is the number of

repetitive elem ents per unit distance, so that the period is r = 1/o. This type ofobject

can be generated artificially by drawing a series of a great number ofcircles of dim i-
nishing diam eters separated by a distance r0. Each Fourier com ponent ofthe object

E(r) at frequencies ft) = 0, * a>0, ... , * nco0O is modulated by a transfer function and
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therefore the im aging intensity distribution is given by

re¢ry = — £ R (nco0)cos (nco0T/) (4)
ron=-o0o0

where R(nco) is the transfer function ofthe im aging system and is calculated from the

Fourier transform of the spread function of the incoherent imaging system . This

spread function or the intensity im pulse response iscalculated by taking the m odulus

square of the point spread function of a coherent imaging system , i.e.,
m = |h(r)j2 (5)
where h(r')y = FT {y4(w)}.
Fig. 1. General representation of black-white concentric annuli used as an aperture ofa definite number
ht
of zones N, where the effective pupil is: Pat = £ (P2m—P2m-i)> M = N /2
m=*1

It is known that the m odulation transfer function of the incoherent im aging

system is the autocorrelation function of the pupil aperture, i.e.,

C(w) = A(w) *j4*(w) (6)
where w = (u,v) is the radial coordinate in the plane of the aperture It consists of
a series of concentric annuli with black and transparent areas of equal width as

shown in Fig. 1. This aperture is m athem atically represented as follow s:
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A(w) = £ A A t(w) (7)
i= 1

w here = .ié¢wW)— A NMNANMw ) is the difference between any two successive circular

apertures and is considered as an annulus ofradial width Aw = W — w, N is the total

number of transparent and b lack zones constituting the whole aperture. The
com putations are made for a definite number of zones. The intensity im pulse
response (IM R) of the imaging system is obtained by operating the Fourier

transform upon equation (7) to obtain this result

where: \i — 2nw/Xf, € = 2nw"'/Xf.
From Equations (4) and (8), the intensity distribution of the incoherent imaging

system is obtained. The object was described by a com b function and the aperture of

the im aging system was a black-white concentric annuli It is clear that at the
fundamental frequency c¢co0 = 0, the intensity distribution becomes
j(r)y = ~R (m 0 = 0), (9)
ro
w hile for the first harm onic frequency, co = <co0>
m = — K(2Tt/ir0)cos(coOr'); co0 = 2n/ro. (10)
rn

In this study, we confine ourselves to definite num ber of zones N considering that

a series of black-w hite concentric annuli represent the aperture of the system . The
convolution product of two apertures is calculated for N = 2 as follows:
c M = (P2-p 2)*(Pi-P i)= Pl o*P

T his transfer function can be represented in a m atrix form as follow s:

In a similar form , C(w) is obtained in a matrix form (N = 4) as follow s:

Pi Pi Pi
-1p2 -2P3  -2p*
c v o= 2P3 2Pi 0

L-2P* 0 0

4 1
. Pi (12)
Pi
Lnl

oo oW

The apertures used for calculating the transfer functions are represented as shown
in Fig. 2 for N = 12, Fig 3 for N = 4, and in Fig. 4 for N = 6. The radii

corresponding to each aperture are represented in the figures.
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Fig. 2. Black-white concentric annuli of N = 2. The aperture consists of two concentric circles. The inner
zone is a black circle of radius = 0.25 and the outer zone is transparent of radius r2 = 0.5,
P.n = P 2-P1

Fig.3.Black-white concentric annuli of N = 4. The aperture consists of four zones, of which only two are
transparent The radii are: rx = 025, r2 = 0.5, r3 = 0.75, rA = 1.0 and the effective pupil is calculated as:

PM = (P*-P3)HP2-P>) :

Fig. 4. Black-white concentric annuli of N — 6. The radii are: r2 = 0.25, r2 = 01J,

r51 125, r6 = 1.5 and the effective pupil is: P ,n = (P6-P 5)+ (P i-P A+ (P 2~ P i)
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For N = 6, we obtain this res t for the trans function
P 6
P P i *
i p 1
-2 P 2 2P -2 P 4 -2 P 5 S22 P 6 0 b
2p * 2Pt 2P s 2P 6 0 0 * P (13)
Cc » =
2 p o 2P, .2 P s 0 0 0 P
2P s 276 0 0 0 0
L -2 P 0 0 0 0 0 =
In general, for N zones, the convolution m atrix becomes
) -
P i ~ 3 P N 1 r ep1
K ~ 2P i -2 P * 0 P
~3 2p * 2P, 2p 0 0 P
*
CN(w) = . -2 P, 0 0 0
0
R 2P H 0 0
°N 0 e e oy ses 0 .
(14)
3. Theoretical results
It is known that the convolution of any two sym m etric circular apertures is
calculated as [1]
CuM = Pi*Pi= r2{cos“1(w/2rf)- (w /lrj [1 - (w/2f|)2]1/2} (15)

where r{= ril1} r2..

N - total number of zones.

The convolution of any two different circular apertures ij is calculated as [1]

Cy(w)= Pi*P.= rf—cos-1(a)—a (l—a)l/2+ r)cos- 1(3f)— /1(1 — P)m (16)

where: a = {[w2+ (rf—r2)]/2wrj and /2 = {[w2+ (rj—r2)]l/2wr7}.

By substituting the corresponding expressions from Eq. (15) and Eq. (16) in the
convolution m atrix C(w) given by Eq. (14), the transfer function of the imaging
system can be comoputed. A com puter program in Fortran has been written to
com pute the convolution m atrices corresponding to a definite number of zones N

The transfer function of a circular aperture is given for com parison with the results

obtained. It is seen, referring to Eq. (4), that the spatial harmonics of the periodic
impulse function are attenuated by the transfer function corresponding to its
frequency, hence the image intensity distribution is obtained by adding these

attenuated harmonics. The series given by Eq. (4) consists of a finite num ber ofterms
because there is a lim iting value ofco beyond which the transfer function falls to zero
for all larger values of co, i.e., the cut-off spatial frequency m ust satisfy the following

condition: co < coc, coc = rJXf, where/ — focal length of the Fourier transform lens
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of the im aging system . The above condition is only valid in the case of uniform
circular apertures. In the former case of B /W concentric annuli, the cut-off spatial
frequency is dependent upon the results of com putations obtained from the

convolution matrix which is dependent upon the total number of utilized zones N

The com putation of the convolution matrix for N — 2 has been performed, where
the internal black circle has a radius rv = 0.25, while the external transparent circle
has a radius r2 = 0.5 Four different curves of convolution are drawn in Fig. 5 using

Eq. (11). The cut-off spatial frequencies corresponding to the curves in Fig. 5 are

located at r, = 0.5, r. = 1.0 and r, — 0.75. The curve obtained for number of

Cl1 c22 cl2

Fig. 5 Convolution product of two concentric annuli calculated as: C (total) = P1*P 1+ P2*P 2

2 (P 1*P2)

Fig. 6. Convolution product of two uniform circular apertures



N = 2 shows an oscillation between a minimum atr = 0.27 and a maximum at

A set of four curves are given for com parison, corresponding to the convolution
product of tw o sym m etric circular apertures as showwn in Fig. 6. The cut-off spatial
frequencies are located at re” = 0.5, rc22 = 1.0, rC33 = 1.5, and rch = 2.0. These

results are obtained easily using Eq. (15). Another set of six curves are obtained from

Eq. (16) as shown in Fig. 7 representing the convolution product of two circular

Fig. 7. Convolution product of P2*P 2, Pt*P3, Pt *P4, P2*P3, P2*PA and P 3 +Px, respectively

Fig. 8. Convolution product of two modulated apertures calculated as: C(r) = P1*P 1+ P 2*P2
+ P 3*P 34+ P 4*P4+2P | *P3+P 2*PA-2; Pi*P2+P 3*PA+P 1*P4 (* symbol for convolution

product)
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apertures of different radii. The cut-off is located at these values for the apertures:
(1, 2) = 0.75, (1, 3) = 1.0, (1, 4) = 1.25, (2, 3) = 1.25, (2, 4) = 1.5, (3, 4) = 1.75. The

resultant convolution matrix C(w) is obtained from the sum m ation of the above

curves, which is calculated from Eq. (12) giving a curve shown in Fig. 8. That
curve decreases until reaching a minimum value atr = 0.25 and then increases with
a smooth fluctuation until reaching a maxim um value at r = 1.75. Finally, the
convolution m atrix obtained for N = 6 using Eq. (13) is graphically constructed
as shown in Fig. 9, giving a m inim um value at r = 0.25 and then increases with a

Fig. 9. Convolution product of two modulated apertures, each having black-white concentric circles

(six zones are used)

small fluctuation until reaching the point r = 1.0. The curve increases sharply in
a nearly rectangular shape in the region [1.0,1.5] with a curvature in the envelope of
the gate and then an abrupt decrease occurs at r = 1.5 and increases again with

a slight variation in the range [1.5, 3.07.

4. Conclusion

Firstly, the intensity distribution in the im aging plane is obtained using the periodic

impulse as a target represented by a comb function. The aperture of the imaging

system is com posed of a series of black-white concentric annuli.
Secondly, the transfer function of the incoherent imaging system is com puted
using the black-w hite concentric annuli as an aperture. The com puted results of the

convolution m atrices which represent the transfer function are dependent upon the
number of utilized zones. A general expression ofthe transfer function is obtained in
a m atrix form for black-w hite annuli and com pared w ith the corresponding

autocorrelation function valid in the case of uniform circular apertures. The former
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aperture of black-w hi

gives a wide transfer
aperture is useful for
the clear circular
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